普罗布考对2型糖尿病大鼠胰岛氧化应激及功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立2型糖尿病动物模型,观察糖尿病大鼠胰腺硝基酪氨酸和8-OH脱氧鸟苷等氧化应激指标表达水平的变化,并通过普罗布考的早期干预,来观察普罗布考对糖尿病氧化应激及胰腺功能的影响。
     方法:雄性8周龄Wister大鼠,随机分为C组(n=7),D组(n=9)和P组(n=7)。其中,C组为正常对照组,普通饲料喂养4周后腹腔内注射柠檬酸缓冲液;D组为2型糖尿病模型组,高脂高糖饲料喂养4周后,按30mg/Kg体重剂量腹腔内注射STZ溶液;P组为普罗布考干预的2型糖尿病模型组,在喂养高脂高糖饲料的同时灌胃以普罗布考,4周后按30mg/Kg体重剂量腹腔内注射STZ溶液。10周后处死,测定空腹血糖(FPG)、空腹胰岛素(FINS)、总胆固醇(TC)、甘油三脂血脂(TG)、MDA及SOD,计算胰岛素敏感指数(ISI),用免疫组化的方法观察NT、8-OHdG及胰岛素的表达。
     结果:D组及P组大鼠的FPG、TG、TC及MDA水平较C组均明显增加(P<0.01),NT和8-OHdG表达的平均光密度也明显高于C组(P<0.01),但P组上述指标的测定又显著低于D组(P<0.01);D组和P组大鼠的SOD水平、ISI及胰岛素阳性面积百分比均明显低于C组(P<0.01),P组这些指标的测定显著高于D组(P<0.01);C组和P组的FINS比较没有显著统计学差异,但都明显高于D组(P<0.01)。
     结论:糖尿病状态下,氧化应激明显增加,胰腺功能明显减退,早期给与普罗布考干预,在降血脂和抗氧化作用的同时一定程度上降低了血糖,保护了胰腺功能,说明氧化应激可能在2型糖尿病的发病机制中起重要作用。
Objective: To establish the animal model of type 2 diabetes mellitus and to observe the levels of nitrotyrosine and 8-hydroxy-2'-deoxyguanosine, which were the biomarkers of oxidative stress. And to observe the effects on oxidative stress and pancreatic islets function in diabetic rats by treated with probucol in early stage.
     Methods: The male Wister rats of 8 weeks old randomly devided into C (n=7),D (n=9) and P (n=7). C was the normal control group, feeding with regular diets ,4 weeks later injected citrate buffer liquid in abdominal cavity; D was the type 2 dibetes model group, feeding with the diets enriched with high-fat and high-sucrose, 4 weeks later injected the aqua of streptozotocin(STZ) at a dose of 30mg/Kg body weight in abdominal cavity; P was the probucol group, feeding with the diets enriched with high-lipid、high-sucrose and probucol, 4 weeks later injected the aqua of streptozotocin(STZ) at a dose of 30mg/Kg body weight. 10 weeks later, measured the fasting plasma glucose(FPG), fasting insuline(FINS), total cholesterol(TC), triglyceride(TG),MDA and SOD,and calculated the insulin sensitivity index(ISI). To observe the expression of NT、8-OHdG and insulin by immunohistochemistric method.
     Results: The FPG、TG、TC and MDA level of C and D group were significantly increased(P<0.01), and the average optical density of NT and 8-OHdG were much higher than C group(P<0.01), but the markers of P group decreased significantly to compared with D group(P<0.01). The level of SOD, value of ISI and percentage of the insulin positive area in the pancreatic islets of D and P group were much lower than C group(P<0.01), however, the markers of P group were higher than D group apparently(P<0.01). The FINS level of C and P group had no significant difference, whereas they increased significantly to compared with D group. Conclusions: The activities of oxidative stress were enhanced and function of pancreatic islets degenerated apparently in diabetes condition. With the treatment of probucol in early stage, the levels of TG and TC decreased significantly, meanwhile partially reduced the FPG and restored the pancreatic islets function acting through as an antioxidant. This suggests that oxidative stress may play an important role in the mechanism of type 2 diabetes mellitus.
引文
[1] 郭啸华,刘志红,李恒等 高糖高脂饮食诱导的 2 型糖尿病大鼠模型及其肾病特点[J].中国糖尿病杂志.2002,10(5):290~294
    [2] 刘萍,何兰杰,张焱 实验用 2 型糖尿病大鼠模型及其肾病观察[J].宁夏医学杂志.2006,28(12):892~895
    [3] Huang BW, Chiang MT, Yao HT,et a1. The effect of high-fat and high-fructose Diets on glucose tolerance and plasma lipid and leptin levels in rats[J]. Diabetes Obes Metab. 2004,6(2):120
    [4] 赵志刚.糖尿病防治若干研究进展[J].实用诊断与治疗杂志.2004,18(3):157
    [5] Storlien LH, Jenkins AB, Chisholm DJ, et al. Influence of dietary fat composition on development of insulin resistance in rats [J]. Diabetes.1998,40(1):280~289
    [6] 李全民,张素华,倪银星等 高脂饮食胰岛素抵抗大鼠模型解偶联蛋白基因表达的变化[J].医药论坛杂志.2003,24(10):1~3
    [7] Haffner S,Agostino R,Mykkanen L,et a1.Insulin sensitivity in subjects with type 2 diabetes . Relationship to cardiovascular risk factors: the Insulin Resistance Atherosclerosis Study[J].Diabetes Care,1999,4(22):562
    [8] 李秀钧.胰岛素抵抗及胰岛素抵抗综合征研究展望[J].中华内分泌杂志. 2000,16(5):274
    [9] Lameloise N, Muzzin P, Prentki M, et al Uncoupling protein 2: a possible link between fatty acid excess and im paired glucose-induced insulin secretion[J] Diabetes.2001,50(4):803
    [10] Tenenbaum A, Motro M, Fisman EZ, et a1.Peroxisome proliferator-activated receptor ligand bezafibrate for prevention of type 2 diabetes mellitus in patients with coronary artery disease[J].Circulation. 2004,109(18):2197~2202
    [11] 丁世英,申竹芳,陈耀腾,等.血糖钳夹技术评价两种胰岛素抵抗动物模型[J].中国糖尿病杂志.2001,9:286~289
    [12] Unger RH, Orci L.Disease of liporegulation: new perspective on obesity and related disorders[J]. FASEB J. 2002,15:312
    [13] Grigsby RJ, Dobrowsky RT. Inhibition of cerramide production reversesTNF-induced insulin resistance[J]. Biochem Biophys Res Commun. 2001,287:1121~1124
    [14] Guha MW, Nadler JL,et al. Molecular mechanisms of tumoe necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stress-dependent and independent pathways[J]. J Biol Chem. 2000,275:17728~17739
    [15] Sethi J, Hotanisligil GS. The role of TNF-αin adipocyte metabolism[J]. Semin Cell Dev Biol. 1999,10:19~29
    [16] Cahoon S, Vines A, Saxena U,et al. Synergistic induction of endothelial IL-6 by diabetic stimuli and initianting event in diabetic nephropathy [J]. Diabetes. 2001,50(Suppl 2):A153
    [17] Karin M, Delhase M. The I Kappa B Kinase (IKK) and NF-kappa B: key elements of proinflammatory signaling[J]. Semin Immunol. 2000,12:85~98
    [18] EI-Seweidy MM, EI-Swefy SE, Ameen RS,et al. Effect of AGE receptor blocker and/or anti-inflammatory coadministration in relation to glycation, oxidant stress and cytokine production in STZ diabetic rats[J]. Pharmacol Res. 2002,45(5):391~398
    [19] Stepherns JM, Lee J, Pilch PF.[J].J Biol Chem. 1997,272:971~976
    [20] 殷峻,陈名道,周丽,等.长程高脂饮食对实验大鼠糖尿病形成的影响[J]. 中国医师杂志. 2004,6(1):47~49
    [21] McGany JD. Banting lecture 2001:dysregulation of fatty acid metabolism in the etiology of type 2 diabetes[J]. Diabetes. 2002,51:7~18
    [22] Stolar MW. 1nsulin resistance,diabetes,and the adipocyte[J]. Am J Health Syst Pharm .2002,59(Suppl 9):S3~8
    [23] Lupi R, Del Guerra S, Fierabracci V,et al. Lipotoxicity in human pancreatic islets and the protective effects of metformin[J]. Diabetes. 2002,51(Supp1 1):s134~137
    [24] Rackietan N, Racetan ML, Nadkarni NR. Studies on diabetogenic action of streptozotocin (NSC-37917)[J]. Cancer Chemotherapy Reports. 1993,29:91~95
    [25] 赵宝珍,白秀平,荣青锋.实验性 2 型糖尿病大鼠模型的研究[J].中国药学与临床.2002,2(6):383~385
    [1] Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage[J]. Nature.2000, 404:787–790
    [2] Brownlee M.The pathobiology of diabetic complications: a unifying mechanism. Diabetes.2005,54:1615-1625.
    [3] NisIlikawa T, Edelstein D, Du XL, et a1. Normalifing mitoehondrial superoxide production blocks three pathways of hyperglycaemic damage[J]. Nature. 2000,404:787~790.
    [4] YoshidaY,Itoh N,Hayakawa M.et a1.Lipid peroxidation induced by carbon tetrachloride and its inhibition by antioxidant as evaluated by an oxidative stress marker,HODE[J].Toxicol Appl Pharmacol. 2005, 208:87-97.
    [5] Spitaler MM, Graier WF. Vascular targets of redox signalling in diabetes mellitus[J].Diabetologia. 2002,45:476~494
    [6] Muijsers RB , Folkerts G, Henricks PA ,et al. Peroxynitrite: a two-faced metabolite of nitric oxide[J]. Life Sci .1997 , 60 :18332~18451
    [7] 凌亦凌,黄善生,谷振勇.过氧亚硝基阴离子的细胞代谢及病理损伤作用[J].生理科学进展.1999,30:71~73
    [8] Ischiropoulos H, Zhu L , Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide[J]. Arch Biochem Biophys .1992 , 298:4462~4511
    [9] CerielloA, Quagliaro L, Catone B, et a1. The role of hyperglycemia in nitrotyrosine postprandial generation[J]. Diabetes Care. 2002,25:1439~1443.
    [10] Ceriello A, Quagliaro L, D’Amico M, et a1. Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat[J].Diabetes. 2002,51:1076~1082.
    [11] Lenzen, SJ. Drinkgern, M.. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues[J]. Free Radic. Biol. Med. 1996,20: 463~466
    [12] Tiedge, MS, Lortz, J, Drinkgern, S.et al Relation between antioxidant enzyme gene-expression and antioxidative defense status of insulin-producing cells[J]. Diabetes 1997,46: 1733-1742
    [13] Silvia DG, Roberto L, Lorella M,et al. Functional and Molecular Defects of Pancreatic Islets in Human Type 2 Diabetes[J]. Diabetes. 2005,54:727~735
    [14] Shigenaga MK, Gimeno CJ, Ames BN.Urinary 8-hydroxy-2'deoxy guanosine as a biologic marker of in vivo oxidative DNA damage[J]. Proc Natl Acad Sci USA .1989,86:9697~9701
    [15] Kasai H, Crain PF, Kuchino Y,et al. Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair[J]. Carcinogenesis. 1986,7:1849–1851.
    [16] Chung MH, Kim HS, Ohtsuka E,et al.An endonuclease activity in human polymorphonuclear neutrophils that removes 8-hydroxyguanine residues from DNA[J]. Biochem Biophys Res Commun.1991,178:1472–1478.
    [17] Boiteux S,Radicella JP.The human OGG1gene:structure,functions,and its implication in the process of carcinogenesis[J].Archives of Biochemistryand Biophysiology.2000,377:1~8.
    [18] Linnane AW, et al. [ J ] . Lancet , 1989 , 25 :6422~6451.
    [19] Wang G,Hazra TK,Mit ra S ,et al . Mitochondrial DNA damage and a hypoxic response are induced by CoC12 in rat neuronal PC12 cells[J ] . Nucleic Acids Res ,2000 ,28 :2135-2140.
    [20] Brown GC.Nitric oxide and mitochondrial respiration[J].Biochim Biophys Acta. 1999,1411:351-369.
    [21] Yoneda M ,Kat sumata K,Hayakawa M ,et al . Oxygen stress induces an apoptic cell death associated with fragmentation of mitochondrial genome[J]. Biochem Biophys Res Commun .1995 , 209 :723-729.
    [22] Maiko K, Toyoshi I, Toshiyo S,et al. Accumulation of 8-Hydroxy-2'-Deoxyguanosine and Mitochondrial DNA Deletion in Kidney of Diabetic Rats[J].Diabetes,2002,51:1588-1595.
    [23] Zangen DH., Bonner-Weir S, Lee C.H., et al..Reduced insulin, GLUT2, andIDX-1 in beta-cells after partial pancreatectomy[J]. Diabetes. 1997,46:258–264.
    [24] Sharma A, Olson L.K., Robertson R.P., et al. The reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to high glucose concentration is associated with the loss of RIPE3b1 and STF-1 transcription factor expression[J]. Mol. Endocrinol. 1995,9 :1127~1134
    [25] Poitout V., Olson L.K., Robertson R.P. Chronic exposure of betaTC-6 cells to supraphysiologic concentrations of glucose decreases binding of the RIPE3b1 insulin gene transcription activator[J] Clin. Invest. 1996,97 :1041~1046.
    [26] A. Moran, H.J. Zhang, L.K. Olson, J.S. Harmon, V.Poitout, R.P. Robertson, Differentiation of glucose toxicity from beta cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line, HIT-T15[J] Clin. Invest. 1997,99 :534~539
    [27] Ihara Y., Toyokuni S., Uchida K., et al. Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes[J]. Diabetes. 1999,48 :927~932.
    [28] Kaneto H., Kajimoto Y., Miyagawa J, et al.. Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity[J]. Diabetes. 1999,48:2398~2406.
    [29] Sakuraba H,Mkukanfi H,Yagihashi N,et a1.Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type II diabetic patients.Diabetologia,2002.45:85-89.
    [30] Fariss MW,Chan CB,PatelM.et a1.Role of mitochondria in toxic oxidative stress .Mol Interv,2005,5:94-111.
    [31] Minn AH,Hafele C,Shalev A.Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis[J].Endocrinology. 2005,146:2397~2405.
    [32] Robertson RP.Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes.J Biol Chem,2004,279:42351-42354.
    [33] MeKinnon C, Docherty K. Pancreatic duodenal homeobox-1,PDX-1,a majorregulator of beta cell identity and function[J]. Diabetologia. 2001 ,44(10):1203~1214.
    [34] 甘廷庆,梁瑜祯,潘海林.氧化应激对2型糖尿病大鼠胰岛PDX-1表达的影响[J].广西医科大学学报. 2006,23(2):213~215
    [1] Kuzyya M, Kuzuya F. Probucol as an antioxidant and an tiatherogenic drug[J]. Free Radic Bid Med. 1993,14:67~77
    [2] Miriam C, Jean CH, Annick Y,et al. Low Density Lipoprotein Can Cause Death of Islet ?-Cells by Its Cellular Uptake and Oxidative Modification[J]. Endocrinology. 2002,143(9):3449~3453
    [3] Gorogawa S, Kajimoto Y, Umayahara Y, et al. Probucol preserves pancreatic ? -cell function through reduction of oxidative stress in type 2 diabetes[J]. Diabetes Research and Clinical Practice. 2002,57:1~10
    [4] O’Lesry VJ, Tilling L, Fleetwwod G, et a1.The resistanee of low density lipoprotein to oxidation promoted by coper and its use as an index of antioxidant therapy[J]. Atheroselerosis. 1996,119:169~173.
    [5] Aarnisalo AA, Aalto-Setala K, Holthofer H, et a1. Puromycin-induced lipid peroxidation in the cochlea of ApoE knockout mice[J]. Acta Otolaryngol(Supp1). 2000,543:102~104
    [6] Russell JC, Graham SE, Amy RM, et a1. Cardioprotective effect of probucol in the atherosclerosis-prone JCR : LA-cp rat[J]. Eur J Pharmacol. 1998,350:203~210
    [7] Denton CP, Bunce TD, Darado MB, et a1. Probucol improves symptoms and reduces lipoprotein oxidation susceptibility in patients with Raynaud‘S henomenon[J].Rheumatology. 1999, 38:309~315
    [8] Takatori A, Ohta E, Inenaga T,et al. Protective effects of probucol treatment on pancreatic β-cell function of sz-induced diabetic APA hamsters[J]. Exp. Anim. 2003,52(4):317~327
    [9] Karasu C. Acute probucol treatment partially restores vasomotor activity and abnormal lipid metabolism whereas morphological changes are not affected in aorta from long-term STZ-diabetic rats[J]. Exp. Clim. Endocrino. Diabetes. 1998,106:189~196
    [10] Shimizu H, Uehara Y, Shimomura Y,et al. Probucol attenuated hyperglycemia inmultiple low-dose streptozotocin-induced diabetic mice[J]. Life Sci. 1991,49:1331~1338.
    [11] Uehara Y, Shimizu H, Sato N,et al. Probucol partially prevents development of diabetes in NOD mice[J]. Diabetes Res. 1991,17:131~134.
    [12] Yoshino G, Matsushita M, Maeda E,et al. Effect of probucol on recovery from streptozotocin diabetes in rats[J]. Horm Metab.Res. 1992,24:306~309.
    [13] Ihara Y, Toyokuni S, Uchida K,et al. Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats,a model of type 2 diabetes[J]. Diabetes. 1999,48:927~932.
    [14] Roche E, Farfari S, Witters LA, et al. Long-term exposure of beta-INS cells to high glucose concentrations increases anaplerosis, lipogenesis, and lipogenic gene expression[J]. Diabetes. 1998,47:1086~1094.
    [15] Tanaka Y, Gleason CE, Tran PO, et al. Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants[J]. Proc. Natl. Acad. Sci. USA. 1999,96:10857~10862.
    [16] Zangen DH., Bonner-Weir S, Lee CH., et al..Reduced insulin, GLUT2, and IDX-1 in beta-cells after partial pancreatectomy[J]. Diabetes. 1997,46:258–264.
    [17] Sharma A, Olson LK., Robertson RP., et al. The reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to high glucose concentration is associated with the loss of RIPE3b1 and STF-1 transcription factor expression[J]. Mol. Endocrinol. 1995,9 :1127~1134
    [18] Poitout V, Olson LK., Robertson RP. Chronic exposure of betaTC-6 cells to supraphysiologic concentrations of glucose decreases binding of the RIPE3b1 insulin gene transcription activator[J] Clin. Invest. 1996,97 :1041~1046.
    [19] Moran A, Zhang HJ, Olson LK, et al. Differentiation of glucose toxicity from beta cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line, HIT-T15[J] Clin. Invest. 1997,99 :534~539
    [1] [1]Fariss MW,Chan CB,PatelM,et a1.Role of mitochondria in toxic oxidative stress.Mol Interv,2005,5:94-111.
    [2] [2]Maiko K, Toyoshi I, Toshiyo S,et al. Accumulation of 8-hydroxy-2'-deoxyguanosine and mitochondrial DNA deletion in kidney of diabetic rats.Diabetes,2002,51:1588-1595.
    [3] [3]Robertson RP.Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes.J Biol Chem,2004,279:42351-42354.
    [4] [4]Sakuraba H,Mkukanfi H,Yagihashi N,et a1.Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type Ⅱ diabetic patients.Diabetologia,2002,45:85-89.
    [5] [5]Hata I,Kaji M,Hirano S,et al.Urinary oxidative stress markers in young patients with type 1 diabetes.Pediatr Int,2006,48:58-61.
    [6] [6]Xu GW,Yao QH,Weng QF,et al.Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients.J Pharm Biomed Anal,2004,36:101-104.
    [7] [7]Pan HZ,Feng LG,Xu FJ,et al. Oxidative damage to DNA and its relationship with diabetic complications.Biomed Environ Sci,2007,20:160-163
    [8] [8]Kowluru RA,Odenbach S. Effect of long-term administration of alpha-lipoic acid on retinal capillary cell death and the development of retinopathy in diabetic rats.Diabetes,2004,53:3233-3238.
    [9] [9]Kowluru RA, Atasi L, Ho YS. Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy.Invest Ophthal Vis Sci ,2006, 47:1594-1599.
    [10] [10]Kowluru RA, Kowluru V, Xiong Y,et al. Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress.Free Radic Biol Med ,2006, 41:1191-1196.
    [11] [11]Jay D, Hitomi H, Griendling KK. Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med,2006,40:183-192
    [12] [12]King GL, Loeken MR.Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol,2004, 122:333-338
    [13] [13]Farhangkhoee H, Khan ZA, Chen S, et al. Differential effects of curcumin on vasoactive factors in the diabetic rat heart.Nutr Metab (Lond), 2006,3:27.
    [14] [14]Wang Y, Schmeichel AM, Iida H,et al. Ischemia-reperfusion injury causes oxidative stress and apoptosis of Schwann cell in acute and chronic experimental diabetic neuropathy.Antioxid Redox Signal, 2005,7:1513-1520.
    [15] [15]Nishikawa T, Sasahara T, Kiritoshi S, et al. Evaluation of urinary 8-hydroxydeoxy-guanosine as a novel biomarker of macrovascularcomplications in type 2 diabetes. Dabetes Care, 2003,26:1507-1512.
    [16] [16]Y.Miyazaki, H.Kawano, T.Yoshida, et al. Pancreatic B-cell function is altered by oxidative stress induced by acute hyperglycaemia. Diabetic Medicine, 2007,24:154-160.
    [17] [17]Shimoi K, Kasai H, Yokota N,et al. Comparison between high-performance liquid chromatography and enzyme-linked immunosorbent assay for the determination of 8-hydroxy-2'-deoxyguanosine in human urine. Cancer Epidemiol Biomarkers Prev, 2002,11:767-770.
    [18] [18]Endo K, Miyashita Y, Sasaki H,et al. Probucol and atorvastatin decrease urinary 8-hydroxy-2'-deoxyguanosine in patients with diabetes and hypercholesterolemia.J Atheroscler Thromb, 2006,13:68-75.
    [19] [19]徐永俊,徐顺清,周宜开.细胞DNA 中8-OHdG的毛细管区带电泳检测方法的研究.卫生研究,2005,34:539-542.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700