2型糖尿病家系血清皮质醇水平及11β-HSD1基因多态性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分2型糖尿病家系成员血清皮质醇水平的变化及影响因素
     目的观察2型糖尿病(T2DM)家系成员口服葡萄糖耐量试验(OGTT)中血清皮质醇变化情况及其影响因素,探讨下丘脑-垂体-肾上腺皮质(HPA)轴功能的改变在2型糖尿病发病的作用及意义。
     方法(1)对重庆地区汉族人群进行T2DM家系调查,根据OGTT结果判断个体的糖耐量状态,剔除家系成员中经过治疗的糖尿病患者及二级亲属、配偶中有糖尿病家族史和患有2型糖尿病的患者,将研究对象分为T2DM组、一级亲属组(FDR)和对照组三组。共纳入114个家系,357名研究对象,其中男171名,女186名。T2DM组97名,FDR组201名,对照组59名。(2)对研究对象测定人体测量学参数、血压、血脂谱、超敏C反应蛋白(hsCRP)、非酯化脂肪酸(NEFA)等。测定OGTT中4个时间点血糖、胰岛素及皮质醇水平。(3)比较三组的人体测量学参数、血压、血脂、hsCRP、NEFA等指标的差别;比较三组人群OGTT中的血糖、胰岛素、皮质醇水平的差别。分析皮质醇水平的变化与各代谢指标之间的关系。
     结果在校正年龄影响因素以后,FDR组体重指数(BMI)、腰围、腰臀比(WHR)与对照组相比有升高趋势,但差别无统计学意义(P﹥0.05)。在校正年龄、BMI影响因素以后,与对照组比较,FDR组收缩压(SBP)显著增高(P <0.05),胰岛β细胞功能指数(Homa-β)显著降低(P <0.05),舒张压(DBP)、甘油三酯(TG)、胆固醇(TC)、低密度脂蛋白(LDL-C)、胰岛素抵抗指数(Homa-IR)、hsCRP、NEFA等指标FDR组较对照组有升高的趋势,高密度脂蛋白(HDL-C)有降低的趋势,但是差别无显著性(P﹥0.05)。
     与FDR组和对照组比较,T2DM组BMI、腰围、WHR、SBP、DBP、TG、Homa-IR、NEFA等显著性升高(P <0.05或P <0.01),Homa-β显著降低(P <0.01)。与FDR组相比较,T2DM组hsCRP水平显著升高(P <0.05)。
     排除年龄、性别和BMI的影响后, T2DM组OGTT各时点血糖及血清皮质醇、空腹胰岛素(FINS)、餐后30min胰岛素、餐后1h胰岛素、血糖曲线下面积(AUCG)、皮质醇曲线下面积等较FDR组和对照组显著性升高(P <0.05或P <0.01)。FDR组各时点皮质醇水平较对照组有升高趋势,但差别无显著性(P >0.05)。FDR组按糖耐量状态亚组分析显示糖耐量正常(NGT)亚组和糖调节受损(IGR)亚组皮质醇水平与对照组差别亦无显著性(P>0.05)。
     亚组分析显示2型糖尿病组空腹血糖(FPG)、AUCG、Homa-IR水平越高,其空腹皮质醇水平也越高。相关分析显示:对照组空腹皮质醇与各指标无明显相关;FDR组空腹皮质醇与FPG明显相关,r=0.167(P<0.05);2型糖尿病组空腹皮质醇与年龄、FPG、Homa-β明显相关(r分别为-0.213、0.407、-0.28, P均<0.05)。多元逐步回归分析显示:FINS是影响正常对照组空腹皮质醇水平独立的危险因素;FPG、餐后2小时血糖是影响FDR组空腹皮质醇水平的独立危险因素;FPG是影响T2DM组空腹皮质醇水平独立的危险因素。
     结论T2DM及相关的代谢疾病如肥胖、高血压、脂代谢紊乱有明显的家族聚集性。T2DM家系中非糖尿病一级亲属已经表现出程度不同的代谢紊乱。T2DM患者存在一定的HPA轴功能亢进,遗传易感性对皮质醇水平影响不大。血糖是影响T2DM家系成员空腹皮质醇水平的独立相关因素。皮质醇参与2型糖尿病的胰岛素抵抗的机制还有待进一步研究。
    
     第二部分11β-HSD1基因多态性与2型糖尿病的关联分析
     目的探讨11β-羟基类固醇脱氢酶1型(11β-HSD1)基因多态性与重庆地区汉族人群T2DM和相关代谢指标的关系。
     方法选取重庆地区无亲缘关系的T2DM患者247例(病例组)、正常对照128例(对照组),采用聚合酶链反应-限制性片段长度多态性(PCR-RFLP)的方法,对11β-HSD1基因(HSD11B1)内含子4区域rs1474655和内含子3区域rs12086634的单核苷酸多态性(SNP)位点进行基因分型。
     结果(1)HSD11B1多态性位点rs1474655和rs12086634三种基因型频率分布在正常对照和糖尿病组间无显著性差异(x2值分别为0.963,2.125,P值均>0.05),rs1474655和rs12086634等位基因频率差别无显著性(x2值分别为0.845,1.017,P值均>0.05)。(2)正常对照组rs1474655位点GC+CC基因型与GG基因型各代谢指标差别无显著性(P>0.05),T2DM组rs1474655位点GG基因型HDL-C水平低于GC+CC基因型(P<0.05)。(3)正常对照组rs12086634位点TT基因型和GT基因型Homa-IR水平显著高于GG基因型(P<0.05),T2DM组rs12086634位点TT基因型FPG、Homa-IR水平显著高于GG基因型和GT基因型(P<0.05)。
     结论重庆地区汉族人群HSD11B1多态性位点rs1474655与2型糖尿病无关联,重庆地区汉族人群T2DM组rs12086634位点TT基因型与高血糖及胰岛素抵抗相关。
PARTⅠSTUDY ON THE CHANGE OF SERUM CORTISOL LEVELS & RELATED METABOLISM FACTORS IN TYPE 2 DIABETIC PEDIGREES
     Objective To study the change of serum cortisol level and its related factors in oral glucose tolerance test (OGTT) in members of type 2 diabetic pedigrees, and to discuss the effect of hypothalamo-pituitary-adrenal (HPA) axis on the development of type 2 diabetes mellitus (T2DM).
     Methods (1)Survey was conducted in T2DM pedigrees from Chongqing Han population, and glucose tolerance status was judged according to the OGTT results. Except the T2DM who have received therapy, the second degree relatives and spouses who had diabetic relatives or who was diabetic patient. All subjects were divided into three groups: T2DM group, first degree relatives (FDR) group and normal control group. 357 subjects (171 male and 186 female) from 114 pedigrees were enrolled. 97 of them were T2DM, 201 of them were FDR, and 59 of them were normal controls.(2)Anthropometric parameters, blood pressure,serum lipid profile, high-sensitivity C-reactive protein (hsCRP), nonesterified fatty acid (NEFA) were examined. Plasma glucose, insulin and serum cortisol levels in OGTT were measured.(3)Compare the anthropometric parameters, blood pressure, serum lipids, hsCRP and NEFA of three groups, and compare the plasma glucose, insulin, serum cortisol levels in OGTT. Analyse the changes of cortisol and the relationship between metabolism parameters.
     Results After adjusted for age, body mass index (BMI), waist circumferences and waist-to-hip ratio (WHR) in the FDR group were higher than those in controls, but there were no satistic difference between two groups (P>0.05). After adjusted for age and BMI, the level of systolic blood pressure (SBP) was higher than that in control group(P <0.05), Homeostasis model assessment for beta cell function (Homa-β) was lower than that in control group(P <0.05). FDR group had higher diastolic blood pressure (DBP), triglyceride(TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), Homeostasis model assessment index for insulin resistance (Homa-IR), hsCRP, NEFA and lower high-density lipoprotein cholesterol (HDL-C) than control group, but there were no satistical significance (P>0.05).
     T2DM group had higher BMI, waist circumference, WHR, SBP, DBP, TG, Homa-IR, NEFA and lower Homa-βthan FDR group and control group (P <0.01). Comparing with the FDR group, T2DM group had higher hsCRP level (P <0.05).
     After adjusted for age, sex and BMI, plasma glucose and serum cortisol of the four time points in OGTT, fasting insulin (FINS), insulin of 30 minutes after meal, insulin of 1 hour after meal, glucose area under the curve (AUCG), cortisol area under the curve in the T2DM group were higher than those in the FDR group and control group (P <0.05 or P <0.01 ). FDR group had higher cortisol levels of the four time points in OGTT than those of control group, but the difference was not statistically significant(P>0.05). Subset analysis of FDR group showed that cortisol level of normal glucose tolerance (NGT) subgroup and impaired glucose regulation (IGR) subgroup was not statistically significant higher than that of control group(P>0.05).
     Subset analysis showed those who had higher fasting plasma glucose (FPG), AUCG or Homa-IR in T2DM group had higher fasting serum cortisol level. Correlation analysis showed that: fasting serum cortisol did not related with any other factors in the control group; in the FDR group, fasting serum cortisol correlated with the FPG, r = 0.167(P<0.05),and in T2DM group fasting serum cortisol correlated with the age, FPG, and Homa-β(r respectively -0.213, 0.407, -0.28, P<0.05). Multiple stepwise regression analysis showed FINS was independent risk factor affecting fasting serum cortisol level of control group; FPG and plasma glucose of 2 hours after meal were independent risk factors affecting fasting serum cortisol level in FDR group; and in T2DM group, FPG level was the independent risk factor affecting fasting serum cortisol level.
     Conclusion There is significant familial aggregation of T2DM and related metabolic diseases such as obesity, hypertension, dyslipidemia.There are more or less metabolic abnormalities in the non-diabetic FDR. T2DM patients had a certain accentuation HPA axis, genetic susceptibility had little effect on cortisol level. Plasma glucose is a independent relevant factor affecting the fasting serum cortisol level of T2DM family members. The mechanism that cortisol involved in the insulin resistance of type 2 diabetes still needs to be further studied.
     PARTⅡTHE ASSOCIATION BETWEEN THE POLYMORPHISMS OF 11Β-HSD1 GENE AND TYPE 2 DIABETES MELLITUS
     Objective To study the association of 11β-Hydroxysteroid dehydro -genase Type 1 (11β-HSD1) gene polymorphism with T2DM and related metabolic factors in Han population in Chongqing.
     Methods In study, 247 T2DM (case group) and 128 normal controls (control group) unrelated were enrolled. A single nucleotide polymorphism (SNP) of rs1474655 in the intron 4 region and rs12086634 in the intron 3 region of 11β-HSD1 gene (HSD11B1) were genotyped by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) in all the subjects enrolled.
     Results (1)The distribution rates of rs1474655 genotype and rs 12086634 genotype in case group were the same as those in the control group (x 2 =0.963,x 2 =2.125 respectively, both P>0.05), and the allele frequency of rs1474655 and rs 12086634 had no significant difference between two groups (x2 =0.845,x2 =1.017 respectively, both P>0.05 ). (2)All metabolic factors in GC+CC genotype group were not significantly different from those in GG genotype of rs1474655 in control group (P> 0.05). HDL-C level in GG genotype of rs1474655 was lower than that in GC+CC genotype in case group. (3)TT genotype and GT genotype of rs12086634 had significantly higher Homa-IR level than that of GG genotype in control group (P<0.05). TT genotype of rs12086634 had significantly higher FPG and Homa-IR levels than those of GT genotype and GG genotype in case group (P<0.05).
     Conclusion The polymorphism of rs1474655 in HSD11B1 was not associated with T2DM in Han population in Chongqing. TT geneotype of rs12086634 in HSD11B1 related with higher plasma glucose and insulin resistance in T2DM group.
引文
[1]Putignano P, Pecori Giraldi F and Cavagnini F. Tissue-specific dysregulation of 11beta-hydroxysteroid dehydrogenase type 1 and pathogenesis of the metabolic syndrome[J]. J Endocrinol Invest. 2004,27(10):969-974.
    [2]Chan O, Inouye K, Riddell M C,et a1.Diabetes and the hypothalamo-pituitary-adren -al(HPA)axis[J]. MinervaEndocrinol. 2003,28(2):87-102.
    [3]王晓辉, 田浩明. 2 型糖尿病患者血浆皮质醇,游离脂肪酸水平和胰岛素抵抗[J].中华内分泌代谢杂志. 2004,20(3):210—211.
    [4]陈燕, 徐卓华和蒋文. 2 型糖尿病患者血清皮质醇浓度的变化[J]. 安徽医科大学学报. 2001,36(2):129-130..
    [5]Andrew R, Westerbacka J, Wahren J, et al. The contribution of visceral adipose tissue to splanchnic cortisol production in healthy humans[J]. Diabetes. 2005,54(5):1364- 1370.
    [6]Rask E, Olsson T, Soderberg S, et al. Tissue-specific dysregulation of cortisol metabolism in human obesity[J]. J Clin Endocrinol Metab. 2001,86(3):1418-1421.
    [7]Abdallah BM, Beck-Nielsen H and Gaster M. Increased expression of 11beta-hydrox -ysteroid dehydrogenase type 1 in type 2 diabetic myotubes[J]. Eur J Clin Invest, 2005,35(10):627-634.
    [8]张爱萍, 张木勋, 张建华等. 2 型糖尿病大鼠胰岛 11β-类固醇脱氢酶 1 型的表达对 β 细胞功能的影响[J]. 中华内分泌代谢杂志. 2006,22(6):586-587.
    [9]Nair S, Lee YH, Lindsay RS, et al. 11β-Hydroxysteroid dehydrogenase Type 1: genetic polymorphisms are associated with Type 2 diabetes in Pima Indians independently of obesity and expression in adipocyte and muscle[J]. Diabetologia. 2004,47(6):1088–1095.
    [10]San Millan JL, Botella-Carretero JL, Alvarez-Blasco F, et al. A study of the hexose-6-phosphate dehydrogenase gene R453Q and 11beta-hydroxysteroid dehydrogenase type 1 gene 83557insA polymorphisms in the polycystic ovary syndrome[J]. J Clin Endocrinol Metab. 2005,90(7):4157-4162.
    [1]Zietz B, Herfarth H, Paul G, et a1. Adiponectin represents an independent cardiovascular risk factor predicting serum HDL-cholesterol levels in type 2 diabetes[J]. FEBS Lett. 2003,545(2-3):103-104.
    [2]李全民, 张素华, 任伟等. 糖尿病家系非糖尿病一级亲属脂代谢紊乱和胰岛素抵抗调查[J]. 中国临床康复. 2005,9(7):156-157.
    [3]杨秀真, 邢云英, 李永红. 胰岛素抵抗与原发性高血压的关系探讨[J]. 中国误诊学杂志. 2003,3(12):1824—1825.
    [4]李全民, 张素华, 任伟等. 糖尿病家系一级亲属胰岛素抵抗和胰岛细胞功能变化[J]. 中国误诊学杂志. 2004,4(12):2036—2037.
    [5]Shaw JT, Purdie DM, Neil HA, et al. The relative risks of hiperglycaemia,obesity and dyslipidaemia in the relatives of patients with type Ⅱ diabetes mellitus[J]. Diabetologia. 1999,42(1):24-27.
    [6]Marin P, DarinN, Amemiya T, et al . Cortisol secretion in relation to body fat discribution in obese premenopausal women[J]. Metabolism. 1992,41(8):882-886.
    [7]Chan O, Inouye K, Riddell MC, et a1.Diabetes and the hypothalamo-pituitary-adren -al(HPA)axis[J]. MinervaEndocrinol, 2003,28(2):87-102.
    [8]王晓辉,田浩明. 2 型糖尿病患者血浆皮质醇, 游离脂肪酸水平和胰岛素抵抗[J].中华内分泌代谢杂志. 2004,20(3):210-211.
    [9]Jessop DS, Dallman MF, Fleming D, et a1. Resistance to glucocorticoid feedback in obesity[J]. J Clin Endocrinol Metab. 2001,86(9):4109-4114.
    [10]Ohmanns KM, Dodt B, Schuhes B, et a1. Cortisol correlates with metabolic disturbances in a population study of type 2 diabetic patients[J]. Eur J Endocrinol. 2006,154(2):325-331.
    [11]Andrews RC, Herlihy O, Livingstone DE, et al. Abnormal cortisol metabolism and tissue sensitivity to cortisol in patients with glucose intolerance[J]. J Clin Endocrino -l Metab. 2002,87(12):5587-5593.
    [12]Lee ZS, Chan JS, Yeung VT, et al. Plasma insulin,growth hormone, cortisol,and central obesity among young Chinese type 2 diabetic patients[J]. Diabetes Care. 1999,22(9):1450-1457.
    [13]陈燕, 徐卓华和蒋文. 2 型糖尿病患者血清皮质醇浓度的变化[J]. 安徽医科大学学报. 2001,36(2):129-130.
    [14]Glumer C, Jorgensen T and Borch-Johnsen K. Prevalences of diabetes and impaired glucose regulation in a Danish population:the Inter99 study [J]. Diabetes Care. 2003,26(8):2335-2340.
    [15]Nauck MA, Meier JJ, Wolfersdorff AV, et al. A 25-year follow-up study of glucose tolerance in first-degree relatives of type 2 diabetic patients:association of impaired or diabetic glucose tolerance with other components of the metabolic synodrome[J]. Acta Diabetol. 2003,40(4):163-172.
    [16]Bener A, Zirie M and Al-Rikabi A. Genetics, obesity, and environmental risk factors associated with type 2 diabetes[J]. Groat Med J. 2005,46(2):302-307.
    [17]Rosmond R. Stress induced disturbances of the HPA axis:a pathway to Type 2 diabetes[J]. Med Sci Monit. 2003,9(2):RA35-39.
    [18]Takeda E, Arai H, Yamamoto H, et al. Control of oxidative stress and metabolic homeostasis by the suppression of postprandial hyperglycemia[J]. J Med Invest. 2005,52Suppl:259-265.
    [19]Goth M, Hubina E and Korbonits M. Correlations between the hypothalamo-pituitar -y-adrenal axis and the metabolic syndrome[J]. Orv Hetil. 2005,146(2):51-55.
    [20]Lindmark S, Buren J and Eriksson JW. Insulin resistance, endocrine function and adipokines in type 2 diabetes patients at different glycaemic levels: potential impact for glucotoxicity in vivo[J]. Clin Endocrinol(Oxf). 2006,65(3):301-309.
    [21]Bruehl H, Rueger M, Dziobek I, et al. Hypothalamic-pituitary-adrenal axis dysregu -lation and memory impairments in type 2 diabetes[J]. J Clin Endocrinol Metab. 2007,92(7):2439-2445.
    [22]Nyholm B, Nielsen MF, Kristensen K, et al. Evidence of increased visceral obesity and reduced physical fitness in healthy insulin-resistant first-degree relatives of type 2 diabetic patients[J]. Eur J Endocrinol. 2004,150(2):207-214.
    [23]Phillips DI, Barker DJ, Fall CH, et al. Elevated plasm cortisol concent rations: a link between low birth weight and the insulin resistance syndrome[J]. J Clin Endocrinol Melab. 1998,83(3):757-760.
    [24]Stolk RP, Lamberts SW, deJong FH,et al. Gender differences in the associations between cortisol and insulin inhealthy subjects[J]. J Endocrinol. 1996,149(2):313- 318.
    [25]Rosmond R. The glucocorticoid receptor gene and its association to metabolic syndrome[J]. Obes Res. 2002,10(10):1078-1086.
    [26]Bodnoff SR, Humphreys AG, Lehman JC, et a1. Enduring effects of chronic corticosterone treatment on spatial learning,synaptic plasticity and hippoeampal meuropathology in young and mid-aged rats[J]. J Neurosci. 1995,15(1):61-69.
    [1]O′Rahilly S, Barroso I and Wareham NJ. Genetic factors in type 2 diabetes :the end of the beginning [J]? Science. 2005,307(5708):370-373.
    [2]Bujalska IJ, Kumar S, Hewison M, et al. Differentiation of adipose stromal cells: the roles of glucocorticoid and beta-hydroxysteroid hydrogenase[J]. Endocrinology. 1999, 140(7):3188-3196.
    [3]Napolitano A, Voice MW, Edwards CR, et al. 11Beta-hydroxysteroid dehydrogenase 1 in adipocytes: expression is differentiation-dependent and hormonally regulated[J]. J Steroid Biochem MolBiol. 1998,64(5-6): 251-260.
    [4]Ricketts ML, Verhaeg JM, Bujalska I, et al. Immunohistochemical localization of type 1 11beta-hydroxysteroid dehydrogenase in human tissues[J]. J Clin Endocrinol Metab. 1998,83(4):1325-1335.
    [5]Whorwood CB, Donovan SJ, Wood PJ, et al. Regulation of glucocorticoid receptor alpha and beta isoformsand type I 11beta-hydroxysteroid dehydrogenaseexpression in human skeletal muscle cells: a key role inthe pathogenesis of insulin resistance[J]? J Clin Endocrinol Metab. 2001,86(5):2296-2308.
    [6]Abdallah BM, Beck-Nielsen H and Gaster M. Increased expression of 11beta-hydro -xysteroid dehydrogenase type 1 in type 2 diabetic myotubes[J]. Eur J Clin Invest. 2005,35(10):627-634.
    [7]Valsamakis G, Anwar A, Tomlinson JW, et al. 11beta-hydroxysteroid dehydrogenase type 1 activity in lean and obese males with type 2 diabetes mellitus[J]. J Clin Endo -crinol Metab. 2004,89(9):4755-4761.
    [8]Alberts P, Ronquist-Nii Y, Larsson C, et al. Effect of high fat diet on KKAy and ob/ob mouse liver and adipose tissue corticosterone and 11-beta dehydrocorticost -rone concentrations[J]. Horm Metab Res. 2005,37(7):402-407.
    [9]张爱萍, 张木勋, 张建华等. 2 型糖尿病大鼠胰岛 11β-类固醇脱氢酶 1 型的表达对 β 细胞功能的影响[J]. 中华内分泌代谢杂志. 2006,22(6),586-587.
    [10]Liu Y, Nakagawa Y, Wang Y, et al. Increased glucocorticoid receptor and 11{beta}- hydroxysteroid dehydrogenase type 1 expression in hepatocytes may contribute to the phenotype of type 2 diabetes in db/db mice[J]. Diabetes. 2005,54(1):32-40.
    [11]Nair S, Lee YH, Lindsay RS, et al. 11beta-Hydroxysteroid dehydrogenase Type 1: genetic polymorphisms are associated with Type 2 diabetes in Pima Indiansindependently of obesity and expression in adipocyte and muscle[J]. Diabetologia. 2004,47(6):1088-1095.
    [12]San Millán JL, Botella-Carretero JI, Alvarez-Blasco F, et al. A study of the hexose-6-phosphate dehydrogenase gene R453Q and 11beta-hydroxysteroid dehydrogenase type 1 gene 83557insA polymorphisms in the polycystic ovary syndrome[J]. J Clin Endocrinol Metab. 2005,90(7):4157-4162.
    [13]Desbriere R, Vuaroqueaux V, Achard V, et al. 11beta-hydroxysteroid dehydrogenase type 1 mRNA is increased in both visceral and subcutaneous adipose tissue of obese patients[J]. Obesity(Silver Spring). 2006,14(5):794-798.
    [14]Seckl JR, Walker BR. Minireview: 11beta-hydroxysteroid dehydrogenase type 1-a tissue-specific amplifier of glucocorticoid action[J]. Endocrinology. 2001,142(4): 1371-1376.
    [15]Andrews RC, Herlihy O, Livingstone DE, et al. Abnormal cortisol metabolism and tissue sensitivity to cortisol in patients with glucose intolerance[J]. J Clin Endocrinol Metab. 2002,87(12):5587-5593.
    [16]Draper N, Walker EA, Bujalska IJ, et al. Mutations inthe genes encoding 11beta- hydroxysteroid dehydrogenasetype 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency[J]. Nat Genet . 2003,34(4):434-439.
    [17]Yoshida S, Kajimoto Y, Ymuda T, et a1. PDX-1 induces diferentiation of intestinal epithelioid IEC-6 into insulin-producing cells[J]. Diabetes. 2002,51(8):2505-2513.
    [18]Kojima H, Nakamum T, Fujita Y, et a1. Combined expression of Pancreaticduoden -al homeobox 1 and islet factor 1 induces immature enterocyte to produce insulin[J]. Diabetes, 2002,51(5):398-1408.
    [19]Wang H, MaecMer P, Ritz-Laser B, et a1. Pdx 1 levd defines pancreatic gene expression pattern and cell lineage differentiation[J]. J Biol Chem. 2001,276(27): 25279-25286.
    [20]Draper N, Echwald SM, Lavery GG, et al. Association studies between microsatelli- ite markers within the gene encoding human 11beta-hydroxysteroid ehydrogenase type 1 and body mass index, waist to hip ratio, and glucocorticoid metabolism[J]. J Clin Endocrinol Metab. 2002,87(11):4984–4990.
    [21]Robitaille J, Brouillette C, Houde A, et al. Molecular screening of the 11beta-HSD1 gene in men characterized by the metabolic syndrome[J]. Obes Res. 2004,12(10): 1570-1575
    [1]Kim KW, Wang Z, Busby J, et al. The role of tyrosine 177 in human 11 beta-hydroxy-steroid dehydrogenase type 1 in substrate and inhibitor binding:an unlikely hydrogen bond donor for the substrate[J]. Biochim Biophys Acta. 2006,1764(4):824-830.
    [2]Desbriere R, Vuaroqueaux V, Achard V, et al. 11beta-hydroxysteroid dehydrogenase type 1 mRNA is increased in both visceral and subcutaneous adipose tissue of obese patients[J]. Obesity(Silver Spring). 2006,14(5):794-798.
    [3]Sandeep TC, Yau JL, MacLullich AM, et al. 11beta-hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics[J]. Proc Natl Acad Sci USA. 2004, 101 (17):6734-6739.
    [4]Andrew R, Westerbacka J, Wahren J, et al. The contribution of visceral adipose tissue to splanchnic cortisol production in healthy humans[J]. Diabetes. 2005,54(5):1364- 1370
    [5]Abdallah BM, Beck-Nielsen H and Gaster M. Increased expression of 11beta-hydrox-ysteroid dehydrogenase type 1 in type 2 diabetic myotubes[J]. Eur J Clin Invest. 2005,35(10):627-634.
    [6]Valsamakis G, Anwar A, Tomlinson JW, et al. 11beta-hydroxysteroid dehydrogenase type 1 activity in lean and obese males with type 2 diabetes mellitus[J]. J Clin Endocrinol Metab. 2004,89(9):4755-4761.
    [7]Alberts P, Ronquist-Nii Y, Larsson C, et al. Effect of high fat diet on KKAy and ob/ob mouse liver and adipose tissue corticosterone and 11-beta dehydrocorticosteron -e concentrations[J]. Horm Metab Res. 2005, 37(7):402-407.
    [8]Wake DJ and Walker BR. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1in obesity[J]. Endocrine. 2006,29(1):101-108.
    [9]Hermanowski-Vosatka A, Balkovec JM, Cheng K, et al. 11beta HSD1 inhibition ame-liorates metabolic syndrome and prevents progression of atherosclerosis in mice[J]. J Exp Med. 2005,202(4):517-527.
    [10]Ortsater H,Alberts P,Warpman U,et al.Regulation of 11beta-hydroxysteroid dehydr-ogenase type 1 and glucose stimulated insulin secretion in pancreatic islets of lange-rhans[J]. Diabetes Metab Res Rev. 2005, 21(4):359-366.
    [11]Sukhija R, Kakar P, Mehta V, et al. Enhanced 11beta-hydroxysteroid dehydrogenase activity, the metabolic syndrome,and systemic hypertension[J]. Am J Cardiol. 2006,98(4):544-548.
    [12]Alberts P, Engblom L, Edling N, et al. Selective inhibition of 11 beta-hydroxysteroi -d dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice[J]. Diabetologia. 2002,45(11):1528-1532.
    [13]Andrews RC, Rooyackers O and Walker BR. Effects of the 11beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone on insulin sensitivity in men with type 2 diabetes[J]. J Clin Endocrinol Metab. 2003,88(1):285-291.
    [14]Alberts P, Nilsson C, Selen G, et al. Selective inhibition of 11 beta-hydroxysteroid dehydrogenase type 1 improves hepatic insulin sensitivity in hyperglycemic mice strains[J]. Endocrinology. 2003,144(11): 4755-4762.
    [15]Schuster D, Maurer EM, Laggner C, et al. The discovery of new 11beta-hydroxyster -oid dehydrogenase type 1 inhibitors by common feature pharmacophore modeling and virtual screening[J]. J Med Chem. 2006,49(12):3454-3466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700