银屑病细胞因子异常表达及相关药物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从研究银屑病皮损角质形成细胞过度增殖、新生血管和炎症细胞的浸润角度,采用免疫组织化学、抗体夹心酶联免疫吸附和流失细胞分析仪等方法,检测各类粘附分子和VEGF的表达。选择血管内皮细胞(HUVEC)原代培养和角质形成细胞的永生化细胞株HaCaT的基础上,以MTT比色法研究伊曲替酸对HUVEC和HaCaT增殖的调控作用,并通过流式细胞技术检测各个细胞周期的变化。依据中医辨证论治自组复方中药“七皮饮”治疗银屑病,采用抗体夹心酶联免疫吸附方法,检测治疗前后γ-IFN和VCAM-1。结果如下:
     采用免疫组织化学和抗体夹心酶联免疫吸附等方法,检测银屑病患者皮损组织和血清各类粘附分子和VEGF的表达,运用统计学手段分析实验结果,获得银屑病皮损组织中检测分子强弱排序为VCAM-1> PECAM-1> ICAM-1> VEGF> LFA-1> VLA-4> Mac-1。表明银屑病皮损真皮乳头毛细血管扩张、迂曲、通透性增加和血管内皮细胞增生与细胞因子密切相关程度。PECAM-1,可以作为银屑病皮损真皮乳头血管增生的敏感性标记。建立VCAM-1和ICAM-1判别诊治银屑病结果的敏感度和特异度实验室指标。本实验结果为治疗银屑病提供药物的作用靶点;为临床判别银屑病发生、发展和转归的判别指标,及用于研究治疗银屑病药物的药理作用的判别指标。
     采用免疫组织化学和流失细胞分析仪等方法,检测到进行期银屑病患者皮损CLA和E选择素的表达均呈强阳性,而非皮区和正常皮肤表达微量。证明银屑病皮损中有大量记忆的CLA+T细胞。检测到进展期银屑病患者外周血中CLA+ CD3+T、CLA+ CD4+T和CLA+ CD8+T细胞表达明显高于正常人和静止期患者。进一步表明进行期银屑病患者血循环中,有大量被激活的记忆CLA+ T细胞。这些记忆CLA+ T细胞不断定位向皮肤归巢,引发一系列细胞免疫异常,最终导致银屑病皮损发生。通过体外模拟感染刺激使记忆的CLA+T细胞增殖,更进一步证实CLA+T细胞是引起银屑病发生和加重的重要途径。选择阻断记忆CLA+ T细胞定位向皮肤归巢为药物作用靶点,将是开发治疗银屑病新药的又一有效途径。。
     以MTT比色法和流式细胞技术检测伊曲替酸对HUVEC和HaCaT增殖和细胞周期调控,结果发现伊曲替酸对内皮细胞的调控为先增殖后抑制的趋势,对角质形成细胞株HaCaT是直接抑制的作用,其作用都与药物浓度和作用时间相关。另外,伊曲替酸使内皮细胞的周期阻滞于G1期,而HaCaT的周期被阻滞于S期,对细胞周期的影响同样与药物浓度和作用时间相关。运用抗体夹心酶联免疫吸附检测复方中药“七皮饮”对银屑病患者外周血中的γ-IFN和VCAM-1的含量表达的作用。结果表现减少其表达量。表明“七皮饮”不仅抑制表皮角质形成细胞过度增殖,而且还可以抑制真皮微血管新生,降低血管的通透性。发现“七皮饮”具有抑制角质形成细胞增殖增值率,使细胞阻滞在G1期。其中的地骨皮具有促进细胞增殖,而桑白皮则抑制细胞增殖,显示了君药二者的一促一抑,相生相克。“七皮饮”即表现出抑制细胞的作用又不至于过分的抑制细胞的生长,从中西医结合的角度达到治疗的目的。进一步证明复方中药方具有多靶点、多层次的药理作用。
At the point of keratinocytic proliferation, angiogenesis and invasion of inflammatory cell in psoriatic lesions, the adhesion molecules, VEGF, lymphocyte-associated antigen (CLA) in lesions and peripheral bloods from patients with psoriasis were detected by immunohistochemistory, Enzyme linked immunoabsorbent assay(ELISA) and flow cytometric analysis. we investigated the modulation of acitretin to the proliferation of endothelial cell keratinocyte line HaCaT by immunohistochemistory and MTT method; we measured the variation of acitretin to the cell cycle of endothelial cell and HaCaT with the flow cytometric method, According to the tradition Chinese medicine we composed a complex herbs of“QiPiYin”to treat psoriasis, then detected the content of VCAM-1 and IFN-γby Enzyme linked immunoabsorbent assay(ELISA) before and after treating. The results showed as the following:
     ①By using statistical analysis , the results show that the intensity of each expression: VCAM-1> PECAM-1> ICAM-1> VEGF> LFA-1> VLA-4> Mac-1. PECAM-1 is the sensitive sign of the blood vessel proliferation of dermis layer in psoriatic lesions.②Increased VCAM-1 in serum set up the sensitive and special mark of laboratory to distinguish diagnosis and treatment of psoriatic.③The results shows that in psoriatic skin lesions the expression of CLA and its ligand E-selectin was strongly positive, that in peripheral blood CLA on CD4+、CD8+、CD3+T cell from progressive phase patients was much higher than that from static phase psoriatic patients and also higher than health controls. Compared with health controls, only the frequency of CLA+CD8+T cells was increased in static phase psoriatic patients.④HUVEC reacted to acitretin treatment with a double direction of modulation. Along with the gradually increased concentrations, the endothelial cell proliferation rates were enhanced earlier with a peak effect, and then were inhibited. HaCaT reacted with an obviously inhibitory effect. In a time-course study, the effect of acitretin on cell proliferation was notable gradually.⑤HUVEC and HaCaT cell cycle modulations to acitretin were different completely. The drug induced G1-phase arrest of endothelial cell, and S-phase arrest of HaCaT.⑥The heat blood type psoriasis showed to improve sing and reduce PASI score in lesions and decline sVCAM-1 and sIFN-γcontent in serum psoriasis patient by intervened Chinese traditional herbs—“QiPiYin”. Chinese Wolfberry Root-bark can promote the proliferation of HaCaT . White Mulberry Root-bark,Cortex Moutan,Areca Peel,Silktree Albizia Bark,Dictamni Cortex,Dried Tangerine Peel and“QiPiYin”can inhibit the proliferation of HaCaT. And with the increasing of concentration,the effect was enhanced.The inhibitive action of“QiPiYin”on HaCaT was the best. Further study by DNA flow cytometric analysis revealed that“QiPiYin”could alter the distribution of HaCaT cell cycle obviously. which shown that the cell percentage of HaCaT in G_0/G_1 phase increased and those in S phase decreased.
引文
[1] Elangbam CS, Qualls CWJ, Dahlgren RR. Cell adhesion molecules—update. Vet Pathol. 1997,34:61-73
    [2] Tedder TF,Steeber DA,Chen A,Engel P. The selectins:vascular adhesion molecules. Fed Am Soc Exp Biol. 1995,9(10):866-73
    [3] Karyn Yonekawa, Harlan JM. Targeting leukocyte intergins in human diseases. Journal of Leukocyte Biology. 2005, 77:129-140
    [4] Carlos TM,Harlan JM. Leukocyte-endothelial adhesion molecules. Blood. 1994, 84(7): 2068-2101
    [5] Waldorf HA,Walsh LJ,Schechter NM,Murphy GF. Early cellular events in evolving cutaneous delayed hypersensitivity in humans. Am J Pathol. 1991,138(2):477-86
    [6] Albelda, S. M., Smith ,C.W., Ward ,P. A. Adhesion molecules and inflammatory injury. FASEB J.1994,8:504-512
    [7] Carlos TM, Schwartz BR, Kovach NL et al. Vascular cell adhesion molecule-1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. Blood. 1990, 76(5):965-70
    [8] DeLisser,H.M., Newan,P.J., Albelda,S.M. Platelet endothelial cell adhesion molecule(31). In Current Topics Microbiology and Immunology. 1993,184:37-45
    [9] Mahooti, S., Graesser, D., Patil, S., et al. PECAM-1 (CD31) expression modulates bleed ing time in vivo. Am J Pathol. 2002,157:75-81
    [10] Vaporciyan AA,Delisser HM, Yan HC,et al. Involvement of platelet-endothelial cell adhesion molecules-1 in neutrophil recruitment in vivo. Science. 1993,262:1580-2
    [11] Andrew JE Seely, Jose L Pascual, Nicolas V Christou. Science review:Cell membrane expression (connectivity) regulates neutrophil delivery,function and clearance. Critical Care. 2003,7:291-307
    [12] John M.Harlan, Robert K.Winn. Leukocyte-endothelial interactions:Clinical trials of anti-adhesion therapy. Crit Care Med.2002,30(5):214-219
    [13] Onuma S. Immunohistochemical studies of infiltrating cells in early and chronic lesions of psoriasis. J Dermatol. 1994,21(4):223-32
    [14] Muller WA,Weigl SA,Deng X, et al. PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med. 1993,178(2):449-60
    [15] Mclntyre TM, Prescott SM, Weyrich AS, et al. Cell-cell interactions:leukocyte-endothelial interactions. Current Opinion in Hematology. 2003,10:150-158
    [16] Sxott R.A.Walsh, Neil H.Shear. Psoriasis and the new biologic agents:interrupting a T-AP dance. CMAJ. 2004,170:1933-1941
    [17] Krueger JG.The immunologic basis for the treatment of psoriasis with new biologic agents. J Am Acad Dermatol. 2002,46:1-23
    [18] Brian J.Nickoloff, Frank O.Nestle. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J.Clin.Invest. 2004,113:1664-1675
    [19] Helena Yusuf-Makagiansar, Meagan E.Anderson, Tatyana V.Yakovleva, et al. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a Therapeutic Approach to Inflammation and Autoimmune Diseases. Medicinal Research Reviews. 2002,22(2):146-167
    [20] Godic A. New approaches to psoriasis treatment. Acta Dermatoven APA. 2004,13:50-57
    [21] L S Winterfield, A Menter, K Gordon, et al. Psoriasis treatment:current and emerging directed therapies. Ann Rheum Dis. 2005,64:87-90
    [22] Simmons DL. Anti-adhesion therapies. Curr Opin Pharmacol 2005,5(4)398-404
    [23] Friedrich M, Bock D, Philipp S et al. Pan-selenctin antagonism improves psoriasis manifestation mice and man. Dermatol Res. 2006,297(8):345-351
    [24] Boehncke W-H, Schon MP, Giromolomi G, et al. Leulocyte extravasation as a target for anti-inflammatory therapy- Which molecule to choose? Experimental Dermatology. 2005,14:70-80
    [25] Servitje O, Bordas X, Seron D, et al. Changes in T-cell phenotype and adhesion molecules expression in psoriatic lesions after low-dose cyclosporine therapy. Journal of cutaneous pathology. 1996,23:431-436
    [26] Yamasaki E, Soma Y, Kawa Y, et al. Methotrexate inhibits proliferation and regulation of the expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 by cultured human umbilicalvein endothelial cells. British Journal of Dermatology. 2003,149:30-38
    [27] Yazici AC, Tursen U, Apa DD et al. The change in expression of ICAM-3,Ki-67,PCNA,andCD31 in psoriatic lesions before and after methotrexatetreatment. Arch Dermatol Res 2005,297(6)249-255
    [28] J. E. Gudjonsson, A. Johnston, H. Sigmundsdottir & H. Valdimarsson Immunopathogenic mechanisms in psoriasis. Clin Exp Immunol 2004;135:1-8
    [29] Morel P, Revillard JP, Nicolas JF et al. Anti-CD4 monoclonal antibody therapy in severe psoriasis. J Autoimmun 1992; 5: 46577.
    [30] Lone Skov, MD; Knud Kragballe, MD; Claus Zachariae, MD; et al. HuMax-CD4: A Fully Human Monoclonal Anti-CD4 Antibody for the Treatment of Psoriasis Vulgaris. Arch Dermatol, Nov 2003; 139: 1433 – 1439
    [31] Ellis CN, Gorsulowsky DC, Hamilton TA et al. Cyclosporine improves psoriasis in a double-blind study. J Am Med Assoc 1986; 256: 31106.
    [32] Todd R. Coven; Frank P. Murphy; Patricia Gilleaudeau; Irma Cardinale; et al. Trimethylpsoralen Bath PUVA Is a Remittive Treatment for Psoriasis Vulgaris: Evidence That Epidermal Immunocytes Are Direct Therapeutic Targets. Arch Dermatol. 1998;134:1263-1268.
    [33] Maki Ozawa, Katalin Ferenczi, Toyoko Kikuchi, Irma Cardinale, et al. 312-nanometer Ultraviolet B Light (Narrow-Band UVB) Induces Apoptosis of T Cells within Psoriatic Lesions. J. Exp. Med., Feb 1999; 189: 711 – 718
    [34] T. R. Coven; L.H. Burack; R. Gilleaudeau; M. Keogh; M. Ozawa; J. G. Krueger Narrowband UV-B produces superior clinical and histopathological resolution of moderate-to-severe psoriasis in patients compared with broadband UV-B. Arch Dermatol. 1997;133:1514-1522
    [35] Johnston A, Gudjonsson JE, Sigmundsdottir H, Ludviksson BR, Valdimarsson H. The anti-inflammatory action of methotrexate is not mediated by lymphocyte apoptosis, but by the suppression of activation and adhesion molecules. Clin Immunol. 2005 Feb;114(2):154-63.
    [36] Rentenaar RJ, Heydendael VM, van Diepen FN, et al.Systemic treatment with either cyclosporin A or methotrexate does not influence the T helper 1/T helper 2 balance in psoriatic patients. J Clin Immunol. 2004 Jul;24(4):361-9.
    [37] Skov L, Baadsgaard O. Bacterial superantigens and inflammatory skin diseases. Clin Exp Dermatol. 2000 Jan;25(1):57-61.
    [38] K. Ferenczi, L. Burack, M. Pope, J. G. Krueger and L. M. Austin .CD69, HLA-DR and the IL-2R Identify Persistently Activated T Cells in Psoriasis Vulgaris Lesional Skin: Blood and Skin Comparisons by Flow Cytometry. Journal of Autoimmunity 2000;14:63-78
    [39] Fischer T, Schworer H, Vente C et al. Clinical improvement of HIV-associated psoriasis parallels a reduction of HIV viral load induced by effective antiretroviral therapy. AIDS 1999; 13: 628-9.
    [40] Hideaki Sugiyama, Rolland Gyulai, Eiko Toichi, Edina Garaczi, Shinji Shimada, et al. Dysfunctional Blood and Target Tissue CD4+CD25high Regulatory T Cells in Psoriasis: Mechanism Underlying Unrestrained Pathogenic Effector T Cell Proliferation. J. Immunol., Jan 2005; 174: 164 – 173
    [41] Kursar M, Bonhagen K, Fensterle J et al. Regulatory CD4+CD25+T cells restrict memory CD8+ T cell responses. J Exp Med 2002; 196: 1585-92.
    [42] Dickoloff BJ, Wrone-Smith T. Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am J Pathol 1999; 155: 145-58
    [43] Gr?ne A. Keratinocytes and cytokines. Vet Immunol Immunopathol 2002; 88: 1-12.
    [44] Tan JT, Ernst B, Kieper WC et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J Exp Med 2002; 195: 1523-32.
    [45] Prinz JC, Gross B, Vollmer S et al. T cell clones from psoriasis skin lesions can promote keratinocyte proliferation in vitro via secreted products. Eur J Immunol 1994; 24: 593-8
    [46] Quin JZ, Chaturvedi V, Denning MF et al. Role of NF-kappaB in the apoptotic-resistant phenotype of keratinocytes. J Biol Chem 1999; 274: 37957-64.
    [47] Craig L. Leonardi, M.D., Jerold L. Powers, M.D., et al. Etanercept as Monotherapy in Patients with Psoriasis. N Engl J Med 2003; 349:2014-2022
    [48] Schopf RE, Aust H, Knop J. Treatment of psoriasis with the chimeric monoclonal antibody against tumor necrosis factor alpha, infliximab. J Am Acad Dermatol 2002; 46: 886-91.
    [49] Schon MP, Ruzicka T. Psoriasis: the plot thickens Nat Immunol 2001; 2: 91.
    [50] Mora JR, von Andrian UH. Retinoic acid: an educational "vitamin elixir" for gut-seeking T cells. Immunity. 2004 Oct;21(4):458-60.
    [51] Campbell JJ, Brightling CE, Symon FA, et al. Expression of chemokine receptors by lung Tcells from normol and asthmatic subjects. J Immunol 2001;166:2842-8
    [52] von Andrian U. H., Mackay C. R. Advances in Immunology: T-Cell Function and Migration — Two Sides of the Same Coin. N Engl J Med 2000; 343:1020-1034,
    [53] Kieffer JD, Fuhlbrigge RC, Armerding D, et al. Neutrophils, monocytes, and dendritic cells express the same specialized form of PSGL-1 as do skin-homing memory T cells: cutaneous lymphocyte antigen. Biochem Biophys Res Commun. 2001; Jul 20;285(3):577-87
    [54] Dieter Armerding Thomas S.Kupper, Functional cutaneous lymphocyte antigen can be induced in essentially all peripheral blood T lymphocytes.Int Arch Allergy Immunol 1999;119:212-222
    [55] Fumiaki Nakayama, Yuichi Teraki, Takashi Kudo, et al. Expression of Cutaneous Lymphocyte-Associated Antigen Regulated by a Set of Glycosyltransferases in Human T Cells: Involvement of 1,3-Fucosyltransferase VII and 1,4-Galactosyltransferase I. J Invest Dermatology 2000;115:299-306.
    [56] Glennda Smithson, Clare E. Rogers, Peter L., et al. Fuc-TVII Is Required for T Helper 1 and T Cytotoxic 1 Lymphocyte Selectin Ligand Expression and Recruitment in Inflammation, and Together with Fuc-TIV Regulates Naive T Cell Trafficking to Lymph Nodes. J. Exp. Med., Aug 2001; 194: 601 - 614.
    [57] Yoshiko Mizukawa, Kenya Shitara, Yoshimi Yamazaki, et al. Immunohistochemical Detection of Skin-Homing T Cells Expressing Fucosyltransferase Ⅶ(Fuc-TⅦ)In Vitro and In Situ. Lab Invest 2001;81:771-773.
    [58] Yoshiko Mizukawa, Kenya Shitara, Yoshimi Yamazaki, et al. Development and Characterization of a Monoclonal Antibody Specific for Fucosyltransferase VII (Fuc-TVII): Discordant Expression of CLA and Fuc-TVII in Peripheral CD4+ and CD8+ T Cells . J Invest Dermatol 2001;117:743-747.
    [59] Jones,S.M., Dixey,J., Hsll,N.D. et al. Expression of cutaneous lymphocyte antigen and its counter-receptor E-selectin in the skin and joins of patients with psoriatic arthritis. Br. J. Rheumatol.1997;36:748-757
    [60] Teraki Y, Miyake A, Takebayashi R, et al. In vivo evidence for close association of CLA expression and E-selectin binding by T cells in the inflamed skin. J Dermatol Sci. 2004 Oct;36(1):63-5.
    [61] Thornhill, M. H., and D. O. Haskard. IL-4 regulates endothelial cell activation by IL-1, tumor necrosis factor, or IFN-. J. Immunol.1990; 145: 865-872
    [62] Bennett, B. L., R. Cruz, R. G. Lacson, and A. M. Manning. Interleukin-4 suppression of tumor necrosis factor alpha-stimulated E-selectin gene transcription is mediated by STAT6 antagonism of NF-kappaB. J. Biol. Chem.1997 272: 10212-10219
    [63] Ni Z, Campbell JJ, Niehans G et al. The monoclonal antibody CHO-131 indentifies a subset of cutaneous lymphocyte-associated antigen T cell enriched in P-selectin-binding cell. J Immunol. 2006,177(7)4742-4748
    [64] Zollner TM, Asadullah K. Selectin and selectin ligand binding: a bittersweet attraction. J Clin Invest 2003; 112:980-3
    [65] Robert C. Fuhlbrigge, Sandra L. King, Charles J. Dimitroff, et al. Direct Real-Time Observation of E- and P-Selectin-Mediated Rolling on Cutaneous Lymphocyte-Associated Antigen Immobilized on Western Blots J Immunol 2002 168: 5645-5651.
    [66] Susan Hudak, Michael Hagen, Ying Liu, et al. Immune Surveillance and Effector Functions of CCR10+ Skin Homing T Cells J Immunol 2002,169: 1189-1196
    [67] Sigmundsdottir H, Gudionssan JE, Jansdattir I, et al. The frequency of CLA+CD8+T cells in the blood of psoriasis patients correlates closely with the severity of their disease. Clin Exp Immunol 2001;126:365-9
    [68] Teraki Y, Miyake A, Takebayashi R, et al. Homing receptor and chemokine receptor on intraepidermal T cells in psoriasis vulgaris. Clin Exp Dermatol 2004 Nov;29(6):658-63.
    [69] James B. Rottman, Tammy L. Smith, Kenneth G. Ganley, et al. Potential Role of the Chemokine Receptors CXCR3, CCR4, and the Integrin E?7 in the Pathogenesis of Psoriasis Vulgaris Lab. Invest. 2001; 81: 335-347
    [70] Bernhard Homey, Marie-Caroline Dieu-Nosjean, Andrea Wiesenborn, et al. Up-Regulation of Immunol 2000 ;164: 6621-6632
    [71] Teraki Y, Miyake A, Takebayashi R, Shiohara T. Homing receptor and chemokine receptoron intraepidermal T cells in psoriasis vulgaris. Clin Exp Dermatol. 2004 Nov;29(6):658-63
    [72] Ellis C. N., Krueger G. G. et al. Treatment of Chronic Plaque Psoriasis by Selective Targeting of Memory Effector T Lymphocytes. N Engl J Med 2001; 345:248-255
    [73] Biedermann T. Lametschwandtner G Tangemann K et al. IL-12 instructs skin homing of human Th2 cell. J Immunol. 2006,177(6)3763-3770
    [74] Sigmundsdottir H, Johnston A, Gudjonsson JE, et al. Methotrexate markedly reduces the expression of vascular E-selectin, cutaneous lymphocyte-associated antigen and the numbers of mononuclear leucocytes in psoriatic skin. Exp Dermatol. 2004 Jul;13(7):426-34.
    [75] Schon MP; Krahn T; Schon M; Rodriguez ML, et al. Efomycine M, a new specific inhibitor of selectin, impairs leukocyteadhesion and alleviates cutaneous inflammation. Nat Med 2002;8:366-372.
    [76] Chamian F, Lowes MA, Lin SL, Lee E, et al. Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2075-80.
    [77] Langley R, Gupta AK, Poulin Y, Guenther L, Barber K, Gulliver W, Lynde C. The use of alefacept in the treatment of psoriasis. J Cutan Med Surg. 2004 Aug;8 Suppl:14-8.
    [78] Lebwohl M., Tyring S. K., Hamilton T. K., et al. A Novel Targeted T-Cell Modulator, Efalizumab, for Plaque Psoriasis. N Engl J Med 2003; 349:2004-2013,
    [79] Dimitroff CJ, Bernacki RJ, Sackstein R. Glycosylation-dependent inhibition of cutaneous lymphocyte-associated antigen expression: implications in modulating lymphocyte migration to skin. Blood 2003; 10:602-10
    [80] Brian J. Nickoloff and Frank O. Nestle Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities J. Clin. Invest. 2004 113:1664-1675
    [81] Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987,235:442-447
    [82] Rogers MS, D’Amato RJ. The effect of genetic diversity on angiogenesis. Exp Cell Res 2006, 312(5)561-574 83] Bhushan M, Young HS, Brenchley PE. Recent advances in cutaneous angiogenesis. Br J Dermatol. 2002,147:4118-25
    [84] Gordon MS. Vascular endothelial growth factor as a targer for antiangiogenic therapy. J ClinOncol. 2000,18:45S-6S
    [85] Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res. 2000,55:15-35
    [86] Szekanecz, Zoltan, Halloran, et al. Mediators of Angiogenesis: The Role of Cellular Adhesion Molecules. FCCA. 1999,58:73-93
    [87] Injune Kim, Sang-ok Moon, Sung Hoon Kim, et al. Vascular Endothelial Growth Factor Expression of Intercellular Adhesion Molecule-1(ICAM-1), Vascular Cell Adhesion Molecule 1(VCAM-1),and E-selectin through Nuclear Factor-kB Activation in Endothelial Cells. J. Biol. Chem. 2001,276:7614-7620
    [88] Klagsbrun M, D’Amore PA. Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Re 1996,7:259-270
    [89] Dvorak HF. Vascular permeability factor/Vascular endothelial growth factor:A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy.JCO. 2002, 20:4368-4380
    [90] Rosren Lee S. Clinical experience with angiogenesis signaling inhibitors:focus on vascular endothelial growth factor(VEGF) blockers. Cancer Control. 2002,9:36-44
    [91] Roselyne Binetruy-Tournaire, caroline Demangel, Bernard Malavaud, et al. Identification of a peptide blocking vascular endothelial growth factor(VEGF)-mediated angiogenesis. EMBO. 2000,19:1525-1530
    [92] Ferrara N. Role of vascular endothelial growth gactor in regulation of physiological angiogenesis. Am J Physiol Cell Pyhsiol. 2001,280:1358-1366
    [93] Wober M, Siedel C, Schrama D et al. Expression pattern of the lymphatic and vascular markers VEGFR-3 and CD31 does not predict reglional lymph node metastasis in cutaneous melanoma. Dermatol Res. 2006,297(8):352-357
    [94] Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 2005,9(4)777-794
    [95] Detmar M. The role of VEGF and the rombospondins in skin angiogenesis. 2000, 24:78- 84
    [96] Creamer D, Allen M.H, Sousa A, et al. localization of endothelial proliferation and microvascular expansion in active plaque psoriasis. British Journal of Dermatology. 1997,136:859-865
    [97] Hern S, Allen M.H, Sousa A.R, et al. Immunohistochemical evaluation of psoriatic plaques following selective photothermolysis of the superficial capillaries. British Journal of Dermatology. 2001,145:45-53
    [98] Rheum DJ, Ritchlin C,FitzGerald O. Immunopathology of psoriasis and psoriatic arthritis. Ann. Rheum. Dis. 2005,64:26-29
    [99] Detmar M, Brown LF,Schon MP, et al. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol. 1998,111:1-6
    [100] Xia YP, Li B,Hylton D, et al. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood.2003,102:161-168
    [101] Sunita Hern, Anthony W.B.Stanton, Russell Mellor, et al. Control of cutaneous blood vessels in psoriatic plaques. The Journal Of Investigative Dermatology. 1999,113:127- 132
    [102] Michael Detmar,Lawrence F.Brown,Kevin P.Claffey, et al. Overexpression of Vascular Permeability Factor/Vascular Endothelial Growth Factor and its Receptors in Psoriasis. J.Exp.Med. 1994,180:1141-1146
    [103] Creamer D, Allen M, Jaggar R, et al. Mediation of systemic vascular huperpermeability in psoriasis by circulating vascular endothelial growth factor. Arch Dermatol. 2002,138(6): 791-6
    [104] James C, Yang MD, Leah Haworth BSN, et al. A Randomized Trial of Bevacizumab, an Anti–Vascular Endothelial Growth Factor Antibody, for Metastatic Renal Cancer. N.Engl.J.Med. 2003, 349(5): 427-434
    [105] Drosou A, Kirsner RS, Welsh E, et al. Use of infliximab, an anti-tumor necrosis alpha antibody, for inflammatory dermatoses. J Cutan Med Surg. 2003, 7(5):382-6.
    [106] Reichrath J, Mittmann M, Kamradt J, et al. Expression of retinoid-X receptors(-α, -β, -γ) and retinoic acid receptors(-α, -β, -γ) in normal human skin: an immunohistological evaluation. Histochem J. 1997, 29:127-133
    [107] Karlsson T, Rollman O, Vahlquist A, et al. Immunoflurescence localization of nuclear retinoid receptor in psoriasis versus normal human skin. Acta Derm Venereol. 2004, (84):363-369
    [108] Lansink M, Koolwijk P, Van Hinsbergh V, et al. Effect of steroid hormones and retinoids on the formation of capillary-like tubular structures of human microvascular endothelial cells in fibrin matrices is related to urokinase expression. Blood. 1998(92):927-938
    [109] Diaz BV, Lenoir MC, Ladoux MC, et al. Regulation of vascular endothelial growth factor expression in human keratinocytes by retinoids. J Bio. Chem. 2000, 275:642-650
    [110] Pakala R, Benedict CR. Modulation of endothelial cell proliferation by retinoid x receptor agonists. Eur J Phar. 1999, 385:255-261
    [111] Lai L, Bohnsack BL, Niederreither K, et al. Retinoic acid regulates endothelial cell proliferation during vasculogenesis. Development. 2003, 130(26):6465-6474.
    [112] Pili R, Kruszewsiki MP, Hager BW, et al. Combination of phenylbutyrate and 13-cis retinoic acid inhibits prostate tumor growth and angiogenesis. Can Res. 2001, 61:1477-1485
    [113] Gaetano C, Catalano A, Illi B, et al. Retinoids induce fibroblast growth factor-2 production in endothelial cells via retinoic acid receptor α activation and stimulate angiogenesis in vitro and in vivo. Circ Res. 2001, 88:38-47
    [114] Neuville P, Yan Z, Gildlof A, et al. Retinoic acid regulates arterial smooth muscle cell proliferation and phenotypic feature in vivo and in vitro throug an RARα-dependent signaling pathway. Arteroscler Thromb Vasc Biol. 1999, 19:1430-1436
    [115] Sanrat JH. Retinoids and psoriasis: novel issues in retinoid pharmacology and implications for psoriasis treatment. J Am Acad Dermatol. 1999, 41:S2-6
    [116] Ekholm SV, Reed SI. Regulation of G(1) cyclin-dependent kinases in the mammaliam cell cycle. Curr Opin Cell Biol. 2000, 12:676-684
    [117] Ribatti D, Alessandri G, Baronio M, et al. Inhibition of neuroblatoma-induced angiogenesis by fenretinide. Int J Cancer. 2001, 94:314-321
    [118] Wanner R, Henseleit-Walter U, Witting B, et al. Proliferation-dependent induction of apoptosis by the retinoid CD437 in p53-mutated keratinocyte. J Mol Med. 2002, 80:61-67
    [119] Rottman JB,Smith TL,Ganley KG, et al. Potential role of the chemokine receptors CXCR3,CCR4,and the integrin αEβ7 in the pathogenesis of psoriasis vulgaris. Laboratory Investigation. 2001,81:335-347
    [120] Detmar .The role of VEGF and thrombospondins in skin angiogenesis. J Dermatol Sci. 2000, 1:78-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700