Egr-1 siRNA抑制吗啡戒断后PC12细胞Egr-1基因表达及细胞凋亡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     长期使用阿片类药物可以影响大脑多方面的功能并引起耐受、依赖和成瘾,最终导致身心健康损害和社会活动障碍,对人体和社会造成不可估量的损失。由于绝大多数成瘾患者仍得不到充分有效的治疗,因此探索阿片类药物成瘾的中枢机制,将有助于提高戒毒治疗效果,最终根除成瘾并能预防成瘾的复发。但令人遗憾的是,药物依赖和成瘾的机制仍不清楚。
     吗啡慢性处理和吗啡戒断可以引起神经细胞的结构损伤以及诱导神经细胞凋亡,神经细胞凋亡可引起的脑内神经细胞基因异常表达、神经细胞的功能减退以及神经可塑性变化。而目前研究表明,脑内神经细胞基因异常表达,神经细胞功能减退,以及神经可塑性变化可能是阿片类药成瘾发生的主要原因之一。因此,慢性吗啡处理或吗啡戒断后细胞凋亡可能参与了阿片类药物依赖和成瘾。
     Egr-1基因又称为zif268、NGFI-A和Krox-24,属于即刻-早期基因类,编码转录因子蛋白EGR-1,在大脑神经元内有着广泛的表达。EGR-1蛋白作为转录因子,调控着诸多靶基因的表达,并且作为神经细胞内可诱导的转录因子,EGR-1蛋白通过调控其它基因,从而参与中枢神经系统的可塑性变化。有研究表明,Egr-1基因参与细胞的凋亡和几种药物的成瘾,但尚不清楚其是否也参与了阿片类药物成瘾以及具体机制。
     本实验首先观察不同浓度谷氨酸、吗啡、咪达唑仑、氯胺酮和纳络酮等药物对Egr-1基因表达的影响,探讨Egr-1基因表达的药理学机制。接着设计3条针对Egr-1 mRNA的siRNA,并甲基化siRNA加强其稳定性,然后通过转染PC12细胞和C6细胞,筛选出有效的siRNA。最后,把判定有效的甲基化siRNA转染到吗啡慢性处理的PC12细胞,观察其对吗啡急性戒断后细胞凋亡有无抑制效果。
     本论文的内容分3个部分。
     第一部分不同药物对Egr-1基因表达的影响目的探讨引起Egr-1基因表达的机制
     方法采用单层细胞培养法,将大鼠PC12细胞或C6脑胶质瘤细胞株置于含10%胎牛血清和5%的马血清的DMEM-F12培养液中(含50U/ml青霉素和50 ug/ml链霉素),在5 %CO2孵箱37℃静置培养。观察0~10000μmol/L谷氨酸,以及0~1000μmol/L吗啡、咪达唑仑和纳络酮对PC12细胞或C6细胞Egr-1基因表达的影响,并判断诱导Egr-1基因表达的最佳谷氨酸浓度。另外,还观察吗啡、丙泊酚、氯胺酮和咪达唑仑对谷氨酸引起的Egr-1基因表达的影响。采用免疫组织化学方法在倒置显微镜和荧光显微镜观察EGR-1蛋白染色,Western-Blot显示EGR-1蛋白表达丰度。
     结果在1~10000μmol/L的谷氨酸过刺激下,均可见EGR-1蛋白染色阳性,并且随着谷氨酸的浓度增加,免疫荧光细胞密度增加,荧光也越强,但达到1mmol/L以后,荧光细胞密度明显减少,荧光强度也有所下降。0~100μmol/L浓度吗啡作用下未见明显EGR-1蛋白染色阳性的细胞,而1000μmol/L时有少量EGR-1蛋白染色阳性的细胞。不同浓度的纳络酮作用下并未见EGR-1蛋白染色阳性的细胞。咪达唑仑100μmol/L以下时,未见明显EGR-1蛋白阳性染色,而达到100μmol/L时,出现了EGR-1蛋白染色阳性细胞。咪达唑仑、丙泊酚、氯胺酮和吗啡处理后,100μmol/L谷氨酸刺激下后的PC12细胞EGR-1蛋白染色阳性的细胞密度和荧光强度不同程度的下降; Western-Blot显示EGR-1蛋白表达丰度分别下降约70.2%,51.8%,84.6%和31.1%。结论低浓度急性吗啡和咪达唑仑处理并不诱导Egr-1基因的表达,而高浓度可引起Egr-1基因表达。谷氨酸能诱导Egr-1基因表达,其中以浓度100μmol/L最为明显。氯胺酮、吗啡、咪达唑仑和丙泊酚均能不同程度抑制谷氨酸引起的Egr-1基因表达。
     第二部分Egr-1 siRNA对Egr-1基因表达的抑制
     目的设计并筛选出高效能的抑制Egr-1基因表达的siRNA。
     方法设计并合成3条甲基化Egr-1siRNA, siRNA-Ⅰ:正义链(5'-3') CCAACAGUGGCAACACUUU dTdT,反义链(3'-5')dTdT GGUUGUCACCGUUGUGAAA;siRNA-Ⅱ:正义链(5'-3') GACUUAAAGGCUCUUAAUA dTdT,反义链(3'-5'):dTdT -CUGAAUUUCCGAGAAUUAU;siRNA-Ⅲ:正义链(5'-3') GGACAAGAAAGCAGACAAA dTdT,反义链(3'-5')dTdT CCUGUUCUUUCGUCUGUUU。转染不同浓度的FAM-siRNA到PC12细胞,在倒置显微镜和荧光显微镜下观察转染效果。转染不同浓度EGFP–siRNA到含有pEGFP的PC12细胞,观察荧光抑制的情况。根据前面实验结果,50nM的siRNA-Ⅰ、Ⅱ、Ⅲ转染到PC12和C6细胞,在谷氨酸刺激下,通过Western-blot分析和RT-PCR判断Egr-1基因表达变化。
     结果FAM-siRNA达50nM后,转染率已达80%~90%,随着浓度进一步增大,转染率和荧光强度并没有进一步提高。50nmol/L EGFP-siRNA抑制转染pEGFP-C1PC12细胞EGFP表达最为明显。Western-Blot显示50nM甲基化siRNA-Ⅰ、Ⅱ、Ⅲ可使PC12细胞EGR-1蛋白表达分别下降约85%、30%和78%;C6细胞EGR-1蛋白表达分别下降约90%、47%和85%。RT-PCR结果显示siRNA-Ⅰ、Ⅱ、Ⅲ分别下降PC12细胞Egr-1 mRNA数量的89%、47%和86%,C6细胞的92%、50%和85%。结论siRNA-Ⅰ和siRNA-Ⅲ可以充分下调细胞内Egr-1的表达,为实验需要的甲基化siRNA;FAM-siRNA和EGFP-siRNA可在检测转染效率的同时优化实验条件。
     第三部分Egr-1 siRNA对吗啡戒断引起细胞凋亡的抑制作用及其机制研究
     目的观察Egr-1 siRNA抑制吗啡戒断引起细胞凋亡的作用,探讨吗啡成瘾机制及治疗方法。
     方法PC12细胞中加入100μmol/L吗啡, 48小时后给予10μmol/L纳络酮拮抗,利用倒置显微镜观测各组细胞形态及数量,然后EGR-1蛋白免疫荧光染色。接着转染50nM siRNAⅠ和siRNA-Ⅲ到PC12细胞,并设置N-siRNA-Ⅰ和N-siRNA-Ⅲ为对照以及阴性对照和阳性对照。同时慢性吗啡(100μmol/L)处理PC12细胞48小时,加入10μmol/L纳络酮,用MTT比色法观察PC12细胞的损害,应用FITC-AnnexinⅤ/PI流式凋亡检测试剂盒检测细胞凋亡率。
     结果慢性吗啡处理组PC12细胞未见明显的荧光染色。吗啡慢性处理并急性戒断后1小时,即出现EGR-1蛋白阳性染色,但8小时后荧光染色细胞密度开始减少;24小时后光学显微镜观察细胞折光性能力减弱,细胞中颗粒增多,细胞皱缩,核固缩并断裂成数个,以及染色质凝集,大小不等的圆形颗粒及凋亡小体的形成。MTT法观察siRNA-Ⅰ和siRNA-Ⅲ能明显增加吗啡慢性处理急性戒断后细胞的存活率,差异有显著性意义(p<0.05);同时还观察到慢性吗啡处理组与空白对照组比较,生存率明显下降,差异有显著性意义(p<0.05);吗啡急性戒断24小时后,siRNA-Ⅰ和siRNA-Ⅲ分别能抑制27.7%和30.9%的细胞损害。与N-siRNA对照相比,流式细胞检测结果发现转染siRNA-Ⅰ和siRNA-Ⅲ的PC12细胞在吗啡急性戒断后,细胞凋亡水平分别下降了26.5%和20.3%。
     结论Egr-1基因参与吗啡慢性处理和急性戒断后的细胞凋亡;下调Egr-1基因的表达,可降低吗啡戒断后细胞凋亡的发生率。
     全文总结
     1.EAAs、NMDA受体、GABAA受体、吗啡受体均参与调节Egr-1基因表达。
     2.Egr-1基因参与吗啡慢性处理和急性戒断后的细胞凋亡。
     3.下调Egr-1基因表达,可降低吗啡戒断后细胞凋亡的发生率。
     4.Egr-1基因表达参与了阿片类药物的依赖和成瘾,具体机制可能与Egr-1基因表达增加诱发细胞凋亡有关。
Background
     Chronic opiate applications lead to long-term impacts on many functions of the brain and induce tolerance, dependence and addiction. Addiction continues to exact enormous human and financial costs on society, but available treatments remain inadequate for most people. By analogy with other medical disorders, an improved understanding of the biological basis of addiction will lead to more effective treatments and eventually to cures and preventive measures. But it is regrettable that mechanisms of dependence and addiction are still not understood.
     Previous research suggested that the abnormal gene expression in brain, impairment of neuronal cells and changes in the plasticity of neuron may play important roles in the development of opiate addiction. And chronic morphine treatment and morphine withdrawal cause apoptosis and injury of neuronal cells and other cells. So the neuronal injuries and impairments and changes in neuroplasticity in certain brain regions following chronic opiate treatment and opiate withdrawal could caused by apoptosis and have been implicated in the development of opioid dependence and addiction.
     Egr-1, also called zif268, nerve growth factor-induced gene A (NGFI-A), belongs to the category of immediate early genes (IEG). It codes for a transcription factor protein, named EGR-1. Acting as a transcription factor, EGR-1 directly controls expression of other genes, which makes this protein an important object of studies aimed at understanding the orchestration of neuronal responses to a variety of stimuli. Specifically expressed in brain, Egr-1 can mediate cellular apoptosis and is involved in several drugs addiction. But it is unclear that Egr-1 is implicated in apoptosis resulted from chronic opiate treatment and opiate withdrawal, and the development of opioid addiction. The present study investigated the effect of acute morphine, glutamic acid, and midazolam administration, and chronic opiate treatment and opiate withdrawal on expression of Egr-1 in PC12 cells and C6 cells. Moreover, we design three Egr-1 siRNAs, and determine their functionality in PC12 cells and C6 cells. At last, selected potent Egr-1 siRNAs were transfected into PC12 cells. We study whether Egr-1siRNAs can inhibit cellular apoptosis and injuries following chronic opiate treatment and opiate withdrawal.
     In this paper, the study was separated into three parts.
     Part one The effect of different drugs on the expression of Egr-1. Aim To explore the effects of different drugs on levels of Egr-1 gene expression in PC12 cells or C6 cells.
     Methods PC12 cells and Rat C6 glioma cells were seeded onto a 60-mm culture dish at a density of 1.5–2×106 cells/dish, and maintained in 5 ml of DMEM supplemented with 10% heat-inactivated fetal calf serum and 5% horse serum, 50 units/ml of penicillin, 50μg/ml of streptomycin at 37°C for 48 h in a humidified incubator containing 95% air–5% CO2 atmosphere. In the experiments testing whether glutamine acid, morphine, naloxone, and midazolam can induce EGR-1 protein expression, we treated the cells with 0-10000μM of glutamine acid, and 0-1000μM of morphine, naloxone, and midazolam. In the experiments testing the effects of pretreatment with morphine, naloxone, and midazolam were also present during treatment of the cells with glutamine acid. Immunocytochemical stain and western blot was used to detect the expression of Egr-1 gene.
     Results EGR-1 protein staining were observed at 1-10000μM glutamine acid, and the optimal inducing concentration was 100μM. Furthermore, midazalam and morphine can induce expression of Egr-1 gene at a concentration more than 100μM and 1000μM respectively. Pretreatment of PC12 cells with 10μM midazolam, 100μM propofol, 100μM ketamine and 100μM morphine, the expression level of EGR-1 protein induced by glutamine acid significantly declined.
     Conclusion Glutamine acid can induce expression of Egr-1 gene, but the level of Egr-1 gene expression induced by midazalam and morphine is determined by the concentrations of them. Moreover, midazolam, propofol, ketamine and morphine also could inhibit glutamine acid induced -EGR-1 protein expression.
     Part two Inhibition of Egr-1 gene expression by Egr-1 siRNA. Aim To design Egr-1 siRNAs for selecting potent siRNAs and facilitating functional gene knockdown studies.
     Methods Three Egr-1 siRNAs were designed and synthesized, siRNA-Ⅰ: sense, (5'-3') CCAACAGUGGCAACACUUUdTdT, antisense, (3'-5')dTdTGGUUGUCAC -CGU UG UGAAA; siRNA-Ⅱ:sense, (5'-3') GACUUAAAGGCUCUUAAUA dTdT; antisense, (3'-5')dTdT CUGAAUUUCCGAGAAUUAU; siRNA-Ⅲ: sense, (5'-3') GGAC AAGAAA GCAGACAAA dTdT, antisense, (3'-5')dTdTCCUGUUCUUUCGU–CUGUUU. In order to enhance serum and intracellular stability of siRNA, end modification of three terminal by chemical modifications were performed, such as 2’-OMe substitutions. Transfections of different concentrations of FAM-siRNA were performed with Lipofectamine TM 2000.
     Threir transfection efficiency were determined by immunocytochemistry. In addition, 0-100μM EGFP–siRNAs were used to optimized transfection and test procedures in 6-well plates. Following transfection of three designed siRNA into PC12 cells and C6 cells at a concentration of 50nM, the level of glutamine acid induced-Egr-1 mRNA and EGR-1 protein were observed 48 later by RT-PCR and western-blot respectively.
     Results Transfection efficiencies of FAM- siRNAs were 80%-90% at a concentration of 50nM, and increasing the concentration did not improve transfection effiencies. Two hours after transfection of EGFP–siRNAs into PC12 cells with pEGFP-C1, the suppressing expression of green fluorescence protein was observed. In addition, EGFP–siRNA had the most potent efficiency of inhibition at 50nM. 48 houes after siRNAⅠ,Ⅱ,Ⅲwere deliveried into PC12 cells and C6 cells, the levels of Egr-1 mRNA and EGR-1 protein induced by glutamine acid had reduced 89%, 47%, 86% and 85%, 30%, 78% in PC12 cells repectively. And in C6 cells, the reducing levels were 92%, 50%, 85% and 90%, 47%, 85% repectively.
     Conclusion siRNAⅠ,Ⅲare able to down-regulate the expression of Egr-1 gene, and can be used to facilitate functional gene knockdown studies. In addition, EGFP-siRNA and FAM- siRNA can be used to determine the transfection efficiencies and optimized experimental procedures.
     Part three The effect of Egr-1 siRNAs on cellular injuries and apoptosis following morphine withdrawal.
     Aim To study the effect of Egr-1 siRNAs on cellular injuries and apoptosis following opiate withdrawal, and explore the mechanism of morphine addiction.
     Methods After the cells were treated with 100μmol/ L morphine for 48 h, 10μmol/ L naloxone was used to produce acute withdrawal. The invert microscope was applied to observe morphology of the cells, and EGR-1 protein was detected by immunocytochemistry. Following transfection of siRNA, PC12 cells were treated with morphine for 48 h. After acute withdrawal with naloxone, thiazolyl blue tetrazolium bromide (MTT) assays were used to detect the proliferation of the cells and cells apoptosis were determined by AnnexinⅤ/PI flow cytometry.
     Results Under invert microscope, the forms of cells were irregular and spindle, the chromatin concentrated into masses, the apoptosis bodies were formed 24h after morphine withdral. EGR-1 protein expression was appeared at 1h after withdrawal, reached peak at 8h and was detected even at 24h. MTT assays founded that mortality declined significantly (p<0.05 ), and apoptosis of PC12 cells who transfected siRNAⅠ,Ⅲreduced 26.5% and 20.3% respectively.
     Conclusion Egr-1 gene is involved in apoptosis after chronic morphine treatment and acute morphine withidrawal. Down-regluation of Egr-1 gene can reduce apoptosis of cells induced by opiate withdrawal.
     Summary
     1. Glutamine acid could induce expression of Egr-1 gene, and midazalam, morphine, propofol and ketamine could inhibit its expression.
     2. The designed siRNAⅠ,Ⅲcan down-regulate the expression of Egr-1 gene in PC12cells and C6 cells.
     3. Egr-1 gene is involved in apoptosis after chronic morphine treatment and morphine withidrawal.
     4. Down-regulation of Egr-1 gene can reduce apoptosis of cells induced by morphine withdrawal.
     5. Apoptosis following chronic opiate treatment and opiate withdrawal could be caused by Egr-1 gene and could be implicated in the development of opioid dependence and addiction.
引文
1. Childress AR, Mozley PD, McElgin W, et al. Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry, 1999, 156:11–18.
    2. Lee JL, Di Ciano P, Thomas KL, et al. Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron, 2005, 47(6):795-801.
    3. Miller CA, Marshall JF. Molecular substrates for retrieval and reconsolidation of cocaine- associated contextual memory. Neuron. 2005, 47(6):873-884.
    4. Parsons RG, Gafford GM, Baruch DE. Long-term stability of fear memory depends on the synthesis of protein but not mRNA in the amygdala. European Journal of Neuroscience, 2006, 23:1853–1859.
    5. Yasoshima Y, Sako N, Senba E, et al. Acute suppression, but not chronic genetic deficiency, of c-fos gene expression impairs long-term memory in aversive taste learning. Proc Natl Acad Sci U S A. 2006, 103(18):7106-7111.
    6. Lai WS, Ramiro LL, Yu HA, et al. Recognition of familiar individuals in golden hamsters: a new method and functional neuroanatomy. J Neurosci., 2005,25(49): 11239-11247.
    7. Kaczmarek, L. C-Fos in learning: beyond the mapping of neuronal activity. In: Kaczmarek, L., Robertson, H.A. (Eds.), Handbook of Chemical Neuroanatomy: Immediate Early Genes and Inducible Transcription Factors in Mapping of the Central Nervous System Function and Dysfunction,Elsevier,Amsterdam,2002,19:189-216.
    8. Toscano C, McGlothan J, Guilarte. Experience-dependent regulation of zif268 gene expression and spatial learning. Experimental Neurology, 2006, 200:209–215.
    9. Nader K, Schafe GE, Le Doux JE. Fear memories require protein synthesis in the amygdala for reconsolidation of retrieval. Nature, 2000, 406:722–726.
    10. Lee JL, Everitt BJ, Thomas KL. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science, 2004,304: 839–843.
    11. Malkani S, Wallace K, Donley M, et al. An egr-1 Antisense Oligodeoxynucleotide infused into the amygdala disrupts fear conditioning. Learn. Mem, 2004,11: 617-624.
    12. Bhat B, Cole A, Baraban J. Role of monoamine systems in activation of zif268 by cocaine. J Psychiatr Neurosci, 1992, 17(3):94-101.
    13. Ikemoto M, Osugi T, Wang XB, et al. Decrease in CRE binding activity by chronic morphine administration in mouse brain. Neuroreport, 1995, 6:262.
    14. Sukhatme VP, Cao X, Chang LC, et al. A Zinic finger-encoding gene co-regulated with c-fos during growth and differentiation and after cellular depolarization. Cell 53:37-43.
    15. Cole AJ, Bhat RV, Patt C, et al. Di dopamine receptor activation of multiple transcription factor genes in rat striatum. J Neurochem 1992, 58:1420-1426.
    16. Grunweller A, Wyszko E, Bieber B, et al. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res. 2003, 31, 3185–3193.
    17. Vickers, TA, Koo S, Bennett CF, et al. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J. Biol. Chem. 2003, 278:7108–7118.
    18. Scherer L, Rossi J. Approaches for the sequence-specific knockdown of mRNA. Nature biotechnology, 2003,21:1457-1465.
    19. Thomas CE, Ehrhardt A, Kay M.A. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet,2003,4(5):346-358.
    20. MittalV.Improving the efficiency of RNA interference in mammals. Nat Rev Genet, 2004, 5(5):355-365.
    1. Lau, LF, Nathans, D. Expression of a set of growth-related immediate early genes in BALB/c3T3 cells:coordinate regulation with c-fos or c-myc. Proc. Natl. Acad. Sci. U.S.A,1987,84:1182–1186.
    2. Waters CM, Hancock DC, Evan GI. Identification and characterisation of the egr-1 gene product as an inducible, short-lived, nuclear phosphoprotein. Oncogene, 1990, 5:669–674.
    3. Sukhatine VP, Cao XM, Chang LC, et al. A zinc finger encoding gene coregulated with c-fos during growth and differentiation and after cellular depolarization. Cell, 1988, 53(1):37-43.
    4. Kaczmarek, L. C-Fos in learning: beyond the mapping of neuronal activity. In: Kaczmarek L., Robertson H.A. Eds. Handbook of Chemical Neuroanatomy: Immediate Early Genes and Inducible Transcription Factors in Mapping of the Central Nervous System Function and Dysfunction. Elsevier, Amsterdam. 2002,19:189-216.
    5. Conway AM, James AB, Zang J.Regulation of neuronal cdc20 (p55cdc) expression by the plasticity-related transcription factor zif268. Synapse, 2007, 61(6):463-468.
    6. Bhat B, Cole A, Baraban J. Role of monoamine systems in activation of zif268 by cocaine. J Psychiatr Neurosci, 1992, 17(3):94-101.
    7. Nestler E.J. Molecular basis of long-term plasticity underlying addiction. Nature Reviews. Neuroscience, 2001, 2:119-128.
    8. Lee JL, Di Ciano P, Thomas KL, et al. Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron, 2005, 47(6):795-801.
    9. Brami-Cherrier K, Valjent E, Herve D, et al. Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci, 2005, 25(49):11444 -11454.
    10. Jouvert P, Revel MO, Lazaris A, et al. Activation of the cGMP pathway in dopaminergic structures reduces cocaine-induced EGR-1 expression and locomotor activity. Neurosci, 2004,24(47):10716-10725.
    11. Huang RP, Adamson ED. The phosphorylated forms of the transcription factor, Egr-1, bind to DNA more efficiently than non-phosphorylated. Biochem Biophys Res Commun, 1994,200:1271-1276.
    12. Nestler E J, Aghajanian GK. Molecular and cellular basis of addiction. Science, 1997, 278:58–63.
    13. Carter JH, Tourtellotte WG. Early growth response transcriptional regulators are dispensable for macrophage differentiation. J Immunol, 2007,178(5):3038-3047.
    14. Carey M, Smale ST. Transcriptional Regulation in Eukaryotes. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York, 2000.
    15. Ikemoto M, Osugi T, Wang XB, et al. Decrease in CRE binding activity by chronic morphine administration in mouse brain. Neuroreport, 1995,6:262-264.
    16. Bhat B, Cole A, Baraban J. Role of monoamine systems in activation of zif268 by cocaine. J Psychiatr Neurosci, 1992, 17(3):94-101.
    17. Lee JL, Di Ciano P, Thomas KL, et al. Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron, 2005,47(6):795-801.
    18. Valjent E, Aubier B, CorbilléA.G, et al. Plasticity-associated gene Krox24/Zif268 is required for long-lasting behavioral effects of cocaine. The Journal of Neuroscience, 2006, 26(18):4956-4960.
    19. CamíJ, FarréM. Mechanisms of disease:Drug Addiction. New Engl. J Med, 2003, 349(10):975-986.
    20. Mao J, Price DD, Mayer DJ. Mechanisms of hyperalgesia andmorphine tolerance:a current view of their possible interactions. Pain, 1995,62:259-274.
    21. Ghosh A, Ginty DD, Bading H, Greenberg ME. Calcium regulation of gene expression in neuronal cells. J. Neurobiol, 1994, 25:294–303.
    22. Sgambato V, Pages C, Rogard M, et al. Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J. Neurosci, 1998, 18:8814–8825.
    23. Knapska E, Kaczmarek L. A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/ TIS8/ZENK? Progress in Neurobiology, 2004,74: 183–211.
    24. Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptations mediating opioid dependence. J. Physiol. Rev, 2001, 81 (1):299-343.
    25. Snyder-Keller A, Chandra R, Lin Y, et al. Basal EGR-1 (zif268, NGFI-A, Krox-24) expression in developing striatal patches: role of dopamine and glutamate. Brain Res, 2002, 958(2):297-304.
    26. Honkaniemi J, Sharp FR. Prolonged expression of zinc finger immediate-early gene mRNAs and decreased protein synthesis following kainic acid induced seizures. Eur J Neurosci, 1999,11 (1):10-17.
    27. Beckmann AM, Davidson MS, Goodenough S, et al. Differential expression of Egr-1-like DNA-binding activities in the naive rat brain and after excitatory stimulation. J. Neurochem, 1997,69:2227-2237.
    28.郭瑞鲜,冯鉴强.兴奋性氨基酸系统在阿片耐受形成机制中的应用.解剖学研究. 2001, 23(1):65-68.
    29. Nestler EJ, Aghajanian GK. Molecular and cellular basis of addiction. Science, 1997, 278 (3): 58-63.
    30. Bhat RV, Cole AJ, Baraban JM. Chronic cocaine treatment suppresses basal expression of zif268 in rat forebrain: in situ hybridization studies. J Pharmacol Exp Ther, 1992,263(1):343-349.
    31.宋明旭,杨吉成,王蔚平.谷氨酸诱导的PC12细胞损伤的研究.苏州科技学院学报(自然科学版), 2006,23(1):62-66.
    32. Froissard P, Duval D. Cytotoxic effects of glutamic acid on PC12 cells. Neurochem Int, 1994,24(5):485-493.
    33. Fukuda K, Shoda T, Mima H, et al. Midazolam Induces Expression of c-Fos and EGR-1 by a Non-GABAergic Mechanism. Anesth Analg, 2002, 95:373–378.
    34. Feng JQ, Kendig JJ. Synergistic interactions between midazolam and alfentanil in isolated neonatal rat spinal cord. Bri J Anaesthesia, 1996,77:375-380.
    35. Feng JQ, Kendig JJ. Propofol potentiates the depressant effect of alfentanil in isolated neonatal rat spinal cord and blocks naloxone-precipitated hyperresponsiveness. Neuroscience letters, 1997,229:9-12.
    1. Waters CM, Hancock DC, Evan GI. Identification and characterisation of the egr-1 gene product as an inducible, short-lived, nuclear phosphoprotein. Oncogene,1990,5: 669–674.
    2. Chaudhuri A, Zangenehpour S, Rahbar-Dehgan F. Molecular maps of neural activity and quiescence. Acta Neurobiol. Exp,2000,60: 403-410.
    3. Carey M, Smale ST. Transcriptional Regulation in Eukaryotes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000.
    4. Sharp FR, Sagar SM, Swanson RA. Metabolic mapping with cellular resolution: c-fos vs. 2-deoxy-glucose. Crit.Rev. Neurobiol, 1993, 7:205-228.
    5. Chaudhuri A, NissanovJ,Larocque S, et al. Dual activity maps in primate visual cortex produced by different temporal patterns of zif268 mRNA and protein expression.Proc. Natl. Acad. Sci.USA, 1997,94:2671-2675.
    6. Brami-Cherrier K, Valjent E, Herve D, et al. Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci, 2005,25(49):11444 -11454.
    7. Bhat RV, Baraban JM. Activation of transcription factor genes in striatum by cocaine is mediated by blockade of both 5-HT and DA uptake. Society for Neuroscience Abstracts.
    8. Drago J, Gerfen CR, Westphal H, et al. D1 dopamine receptor-deficient mouse: Cocaine-induced regulation of immediateearly gene and substance P expression in the striatum . Neuroscience, 1996,74:813~823.
    9. Thomas KL, Arroyo M, Everitt BJ. Induction of the learning and plasticity -associated gene Zif268 following exposure to a discrete cocaine-associated stimulus. Eur. J. Neurosci, 2003,17:1964–1972.
    10.Hall J, Thomas KL, Everitt BJ. Cellular imaging of zif268 expression in thehippocampus and amygdala during contextual and cued fear memory retrieval: Selective activation of hippocampal CA1 neurons during the recall of contextual memories. J. Neurosci, 2001,21: 2186–2193.
    11.Filipkowski R.K. Inducing gene expression in barrel cortex -focus on immediate early genes. Acta Neurobiol. Exp, 2000,60: 411-418.
    12.Parsons R, Gafford G, Baruch D, et al. Long-term stability of fear memory depends on the synthesis of protein but not mRNA in the amygdale. European Journal of Neuroscience, 2006,23:1853–1859.
    13.Lee JL, Di Ciano P, Thomas KL, et al. Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron,2005,47(6):795-801.
    14.Miller CA, Marshall JF. Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron, 2005,47: 873–884.
    15.Grunweller, A. et al. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res, 2003,31:3185–3193.
    16.Vickers TA, Koo S, Bennet CF, et al. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J. Biol. Chem, 2003,278: 7108–7118.
    17.Ruiz J, Wu CH, Ito Y, et al. Design and preparation of a multimeric self cleaving hammer head ribozyme. Biotechniques, 1997, 22( 2):338-345.
    18.Rondinone CM. Ribonucleic acid interference for the identification of new targets for the treatment of metabolic diseases. Endocrinology, 2006,147(6):2650-2656.
    19.Chakraborty C. Potentiality of small interfering RNAs (siRNA) as recent therapeutic targets for gene-silencing. Curr Drug Targets, 2007,8(3):469-482.
    20.Vorhies JS, Nemunaitis J. Nonviral delivery vehicles for use in short hairpin RNA-based cancer therapies. Expert Rev Anticancer Ther, 2007,7(3):373-382.
    21.Scherer L, Rossi J. Approaches for the sequence-specific knockdown of mRNA. Naturebiotechnology,2 003,21:1457-1465.
    22.Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet, 2003,4(5):346-358.
    23.MittalV.Improving the efficiency of RNA interference in mammals. Nat Rev Genet, 2004, 5(5):355-365.
    24.周昌华综述,章崇杰审校.化学修饰小干扰RNA研究进展.国际检验医学杂志,2006,27(8):693-695.
    25.Ferrari N, Bergeron D, Tedeschi AL, et al. Characterization of antisense oligonucleotides comprising 2 -deoxy-2 -fluoro- -D-arabinonucleic acid (FANA) , specificity, potency, and duration of activity. Ann.N.Y.Acad.Sci, 2006,1082:91–102 .
    26.Allerson C, Sioufi N, Jarres R, et al. Fully 2'-modified oligonucleotide duplexes with improved in vitro potency and stabikity compared to unmodified small interfering RNA. J Med. Chem, 2005,48:901-904.
    27.王瓞,林其谁.阳离子脂质体介导基因转染的最优化条件.生命的化学, 1997, 17( 1):32-34.
    28.LI SH, Huang L. Surface-modified LPD nanoparticles for tumor targeting. Annals of the New York Academy of Sciences, 2006, 1082 (1): 1–8.
    29.Chen Stephen, Choo A, Wang N. Establishing efficient siRNA knockdown in mouse embryonic stem cells. Biotechnology Letters, 2007,29(2):261-265.
    1.Nestler EJ, Aghajanian GK. Molecular and cellular basis of addiction. Science, 1997, 278:58–63.
    2. Nestler EJ. Under siege: the brain on opiates. Neuron, 1996,16:897–900.
    3. Tapia-Arizmendi G, Garcia-Estrada J, Feria-Velasco A,et al. Structural changes in caudate nucleus, cerebral cortex and hippocampus induced by morphine:light microscopy study. Gen Pharmacol, 1987,18:321–325.
    4. Garcia-Estrada J, Tapia-Arizmendi G, Feria-Velasco A, et al. Ultrastructural alterations in caudate nucleus, cerebral cortex and hippocampus produced by morphine. Gen Pharmacol, 1988,19:841–848.
    5. Sklair-Tavron L, Shi WX, Lane SB, et al. Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proc Natl Acad Sci USA, 1996,93 :11202–11207.
    6. Robinson TE, Kolb B. Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse, 1999,33:160–162.
    7. Oliveira MT, Rego AC, Morgadinho MT, et al. Toxic effects of opioid and stimulant drugs on undifferentiated PC12 cells. Ann NY Acad Sci, 2002,965: 487–496.
    8. Yoshida A, Tokuyama S, Iwamura T, et al. Opioid analgesic-induced apoptosis and caspase-independent cell death in human lung carcinoma A549 cells. Int J Mol Med, 2000, 6:329–335.
    9. Singhal P, Kapasi A, Reddy K, et al. Opiates promote T cell apoptosis through JNK and caspase pathway. Adv Exp Med Biol, 2001,493:127–135.
    10. Wang J, Charbon eau R, Balasubramanian S, et al. Morphine modulates lymph node-derived T lymphocyte function: role of caspase-3, -8, and nitric oxide. J Leukoc Biol, 2001,70:527–536.
    11. Dawson G, Dawson SA, Goswami R. Chronic exposure to k-opioids enhances thesusceptibility of immortalized neurons (F-11k7) to apoptosis inducing drugs by a mechanism that may involve ceramide. J Neuro chem, 1997, 68:2363-2370.
    12. Goswami R, Dawson SA, Dawson G. Cyclic AMP protects against stauros-porine and wortmannin-induced apoptosis and opioid-enhanced apoptosis in both embryonic and immortalized(F-11k7) neurons. J Neuro chem, 1998,70:1376 -1382.
    13.孙建新,陈哲宇,由振东,等.生物素化膜联蛋白V的构建及在细胞凋亡研究中的应用.生物化学与生物物理学报,1999,31(2):124-128.
    14. Yin DL, Mufson RA, Wang RX, et al. Fas-mediated cell death promoted by opiods. Nature, 1999, 397 (6716):218-228.
    15. Harper SJ, LoGrasso P. Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signal, 2001,13:299–310.
    16. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Genet Dev, 2002,12:14–21.
    17. Kugawa F, Ueno A, Aoki M, et al. Apoptosis of NG108-15 cells induced by buprenorphine hydrochloride occurs via the caspase-3 pathway. Biol Pharm Bull, 2000, 23(8):930-935.
    18. Kugawa F, Arae K, Ueno A, et al. Buprenorphnie hydrochloride induces apoptosis in NG108-15 nerve cells. European J Pharmacology, 1998,347:105 -112.
    19. Andersen SN,Skullerud K. Hypoxic ischaemic brain damage,especially pallidal lesions, in heroin addicts. Forensic Sci laternational, 1999,102:51-59.
    20. Buttner A, Mall G, Penning R, et al. The neuropathology of heroin abuse. Forensic Science International, 2000,113:435-442.
    21.王芳,郭晓红,杨耘,等.海洛因与吗啡依赖恒河猴的病理组织学研究.中国药物依赖性杂志,1999,8(2):98-102.
    22. Miao H, Qin BY, Yang Y, et al. Ultrastructural changes in rat locus coer uleus induced by chronic opioids. Acta Neuropathol, 1997, 94(2):109-115.
    23. Garcia-Estrada J, Tapia-Arizmendi G, Feria-Velasco A, et al. Ultra-structuralalterations in caudate nucleus,cerebral cortex and hippocampus produced by morphine. Gen Pharmacol, 1988,19(6) :841-848.
    24.沙丽君,刘文杰,龙沛然,等.海洛因致大白鼠实验模型超微结构变化.中国药物滥用防治杂志, 1998, 5:38 -40.
    25. Fan X L, Zhang J S, Zhang X Q, et al. Chronic morphine treatment and withdrawal induce up-regulation of c-jun n-terminal kinase 3 gene expression in rat brain. Neuroscience, 2003,122(4):997-1002.
    26. Nair P, Muthukkumar S, Sells SF, et al. Early growth response-1 dependent Apoptosis is mediated by p53. J Biol Chem, 1997,272(52):33056-33061.
    27. Ahmed MM, Stephen FS, Kolaparthi V, et al. Ionizing radiation-induc-ible apoptosis in the absence of p53 linked to transcription fact-or Egr-1. J Biol Chem, 1997, 272(52): 33056-33061.
    28. Woronicz J D, Calnan B, Ngo V, et al. Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature, 1994, 367 (6460): 277-281.
    29.蒙国照综述,吴名耀审阅.即刻早期基因Egr-1与肿瘤研究.国外医学分子生物学分册, 2001, 23(3):178-180.
    30. Thomas KL, Arroyo M, Everitt BJ. Induction of the learning and plasticity -associated gene Zif268 following exposure to a discrete cocaine-associated stimulus. Eur. J. Neurosci,2003,17:1964–1972.
    31. Hall J, Thomas, KL, Everitt, BJ. Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: Selective activation of hippocampal CA1 neurons during the recall of contextual memories. J. Neurosci, 2001,21: 2186–2193.
    32. Filipkowski RK. Inducing gene expression in barrel cortex -focus on immediate early genes. Acta Neurobiol. Exp, 2000,60: 411-418.
    33. Parsons R, Gafford G, Baruch D, et al. Long-term stability of fear memory depends on the synthesis of protein but not mRNA in the amygdale. European Journal ofNeuroscience, 2006,23:1853–1859.
    34. Lee JL, Di Ciano P, Thomas KL, et al. Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron, 2005,47(6):795-801.
    35. Miller C A, Marshall JF. Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron, 2005,47: 873–884.
    1.梁建辉.我国药物滥用与艾滋病防治的研究进展.中国药物依赖性杂志,2003,12(4):316-318.
    2. van Dorp EL, Yassen A, Dahan A. Naloxone treatment in opioid addiction: the risks and benefits. Expert Opin Drug Saf, 2007,6(2):125-32.
    3. McClung CA. The molecular mechanisms of morphine addiction. Rev Neurosci. 2006, 17(4):393-402.
    4. CamíJ, FarréM. Mechanisms of disease: drug addiction. N. Engl. J. Med, 2003,349(10):975-984.
    5. Bhat B, Cole A, Baraban J. Role of monoamine systems in activation of zif268 by cocaine. J Psychiatr Neurosci, 1992,17(3):94-101.
    6. Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nature Reviews. Neuroscience, 2001,2:119-128.
    7. Carroll CP, Kidorf M, Strain EC, et al. Comparison of demographic and clinical characteristics between opioid-dependent individuals admitted to a community-based treatment setting and those enrolled in a research-based treatment setting. J Subst Abuse Treat, 2007 Mar 30, [Epub ahead of print].
    8. De Jong CA, Roozen HG, van Rossum LG, et al. High abstinence rates in heroin addicts by a new comprehensive treatment approach. Am J Addict,2007,16(2): 124-130.
    9. Fattore L, Vigano D, Fadda P, et al. Bidirectional regulation of mu-opioid and CB1-cannabinoid receptor in rats self-administering heroin or WIN 55,212-2. Eur J Neurosci, 2007,25(7):2191-2200.
    10. Vorel SR, LIU X, Hayes RJ, et al. Relapse to cocaine-seeking after hippocampal burst stimulation. J. Science, 2001,292 (5519) : 1175-1178.
    11. Hellemans KG, Everitt BJ, Lee JL. Disrupting reconsolidation of conditionedwithdrawal memories in the basolateral amygdala reduces suppression of heroin seeking in rats. J Neurosci, 2006 ,26(49):12694-12699.
    12. Gago B, Fuxe K, Agnati L, et al. Dopamine D(4) receptor activation decreases the expression of mu-opioid receptors in the rat striatum. J Comp Neurol, 2007, 502(3): 358-366.
    13. Erhardt A, Sillaber I, Welt T, et al. Repetitive transcranial magnetic stimulation increases the release of dopamine in the nucleus accumbens shell of morphine- sensitized rats during abstinence. Neuropsychopharmacology, 2004,29(11):2074- 2080.
    14. Radwanska K, Caboche J, Kaczmarek L. Extracellular signal-regulated kinases (ERKs) modulate cocaine-induced gene expression in the mouse amygdala. Eur J Neurosci, 2005,22(4):939-948.
    15. Yano M, Steiner H. Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits. Neuroscience, 2005,132(3):855 -865.
    16. Childress AR, Mozley PD, McElgin W, et al. Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry, 1999,156: 11–18.
    17. Lee JL, Di Ciano P, Thomas KL, et al. Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron, 2005,47(6):795-801.
    18.周文华,张富强,刘惠芬等.海洛因复吸模型、机制和干预的研究进展.中国药物依赖性杂志,2006, 153:206-209.
    19. Helmuth L. Addiction: beyond the pleasure principle. J. Science, 2001, 294(5544):983-984.
    20. Dijkstra BA, Krabbe PF, Riezebos TG, et al. Psychometric evaluation of the Dutch version of the Subjective Opiate Withdrawal Scale (SOWS). Eur Addict Res, 2007,13(2):81-88.
    21. Welsh CJ, Liberto J. The use of medication for relapse prevention in substance dependence disorders. J Psychiatr Pract, 2001,7(1):15-31.
    22. McClung CA. The molecular mechanisms of morphine addiction. Rev Neurosci. 2006,17(4):393-402.
    23. Li Y, White FJ, Wolf ME. Pharmacological reversal of behavioral and cellular indices of cocaine sensitization in the rat. Psychopharmacology(Berl),2000,151(2-3): 175-183.
    24. Cormish JL, Kalivas PW. Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci, 2000, 20(15): RC89.
    25. Mintzer IL, Eisenberg M, Terra M, et al. Treating opioid addiction with buprenorphine-naloxone in community-based primary care settings. Ann Fam Med, 2007,5(2):146-150.
    26. Fishbein DH, Krupitsky E, Flannery BA, et al. Neurocognitive characterizations of Russian heroin addicts without a significant history of other drug use. Drug Alcohol Depend, 2007[Epub ahead of print].
    27.梁建辉,刘锐克.药物渴求对复吸行为的始动作用.中国药物滥用防治杂志, 2001, 4:31-33.
    28. Sgambato V, Pages C, Rogard M, et al. Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J. Neurosci, 1998, 18:8814–8825.
    29. Knapska E, Kaczmarek L. A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/ TIS8/ZENK? Progress in Neurobiology, 2004,74: 183–211.
    30. Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptations mediating opioid dependence. J. Physiol. Rev, 2001, 81 (1) :299-343.
    31. Nalepa I, Zelek-Molik A, Bielawski A, et al. Does the presence of morphine counteract adaptive changes in expression of G-protein alpha subunits mRNA induced by chronic morphine treatment? Pharmacol Rep, 2007,59(1):34-45.
    32. Gerra G, Leonardi C, Cortese E, et al. Human Kappa opioid receptor gene (OPRK1)polymorphism is associated with opiate addiction. Am J Med Genet B Neuropsychiatr Genetl, 2007 [Epub ahead of print]
    33. Aricioglu F, Means A, Regunathan S. Effect of agmatine on the development of morphine dependence in rats: potential role of cAMP system. Eur J Pharmacol, 2004,504(3):191-197.
    34.强文安,孙兰,胡文辉等.大剂量强啡肽A(1-17)对脊髓NMDA受体功能和一氧化氮合酶活性的影响.中国医学科学院学报,2000,22(2):134-138.
    35. Xi ZX, Stein E. Baclofen inhabits heroin Self-administration behavior and mesolimbic dopamine release. The Journal of Pharma-cology and Experimental Therapeutics. 1999, 290:1369-1374.
    36. Nugent FS, Penick EC, Kauer JA. Opioids block long-term potentiation of inhibitory synapses. Nature, 2007,446(7139):1086-90.
    37.赵敏,杨德森,郝伟,等. 5-HT2A受体基因-1438A/G多态性与海洛因依赖的关系.中国药物依赖性杂志,2000,9(4):283-284.
    38. McClung CA. The molecular mechanisms of morphine addiction.Rev Neurosci, 2006,17(4):393-402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700