环境因子对栉江珧能量收支的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年由于大量的捕捞,栉江珧野生资源锐减,引起人们的密切关注。为了给人工繁殖和养殖提供基础资料,本论文在实验室条件下,分别研究了盐度、温度和饵料浓度对栉江珧摄食、呼吸、排泄及同化等生理活动的影响,并由此估算了在不同环境条件下栉江珧的生长余力,结果如下:
     1.盐度范围为21-41时,栉江珧单位体重滤水率随盐度的增加先升高后下降,盐度31时滤水率最大(0.83 L/g/h),41时最小(0.43 L/g/h),而耗氧率和排氨率则随盐度的增加先下降后升高,盐度31时耗氧率和排氨率最小(575.82μ/g/h,152.14μg/g/h),41时最大(734.40μg/g/h,225.29μ/g/h)。同化率介于36.00-51.33%之间,盐度36时同化率最大,盐度41时同化率最小。盐度41时,栉江珧生长余力为-3.93(J/h/g),表现为负增长,盐度31时生长余力最大12.98(J/h/g)。方差分析表明,盐度26、31、36之间的生长余力无显著差异(P<0.05),表明栉江珧最适生长盐度范围为26-36。
     2.温度为18-34℃时,栉江珧单位体重滤水率介于0.28-0.82 L/g/h之间,18℃时滤水率最小,26℃时最大。当温度为18-26℃时滤水率随温度升高呈直线上升,26-30℃时则趋于平稳,之后急剧下降。在温度18-26℃范围内,耗氧率随温度升高增加迅速,26-34℃时增加缓慢,18℃时最小(260.82μg/h/g),34℃时最大(585.90μg/h/g)。温度18-34℃范围内,排氨率介于108.92-174.58μg/h/g,随温度的变化缓慢,但在22-26℃区间,随温度上升增加迅速。同化率和生长余力随温度先升后降,变化幅度小,温度22℃时,同化率最大(52.67%),34℃最小(42.33%),26℃时,生长余力最大(14.86 J/h/g),34℃时最小,且小于0(-1.94 J/h/g),表现为负增长。温度22、26和30℃两两之间生长余力无显著差异(P<0.05),表明栉江珧最适生长温度为22-30℃。
     3.在饵料浓度0.85-11.84 mg POM/L范围内,栉江珧滤水率呈下降趋势,摄食率则则呈上升趋势。排氨率和单位体重耗氧率随饵料浓度增加逐渐增大,在较低浓度区间(0.85-3.07 mg POM/L)和较高浓度区间(6.42-11.84 mg POM/L)单位体重耗氧率变化比较平缓,而在饵料浓度为(3.07-6.42 mg POM/L)时上升迅速。而同化率随饵料浓度的增加逐渐下降,低浓度(0.85-1.57 mg POM/L)时下降缓慢,超过1.57 mgPOM/L后下降迅速。生长余力随饵料浓度的增加先升高后下降,饵料浓度为0.85 mgPOM/L时生长余力最小(1.40 J/g/h),3.07 mg POM/L时最大(10.91 J/g/h),而在3.07-6.42 mg POM/L之间几乎没有变化,表明栉江珧最适投饵量介于3.07-6.42 mgPOM/L。
The fact that the wild Atrina pectinata had decreased sharply because of over-catching at recent years has caused a mass of attentions. In order to provide basic information for artificial reproduction and culture, the influences of salinity, temperature and the food concentration on filtration, respiration, excretion and assimilation efficiency of the animals were studied and the scope for growth (SFG) were estimated. The results were as follows:
     1. Within the salinity range (21-41), the filtration rate increased with the increase of salinity and reached the highest value (0.83L/g/h) at salinity 31, then decreased with the increase of salinity, and reached the minimum value (0.43 L/g/h) at 41. Both the respiration and excretion rates increased first, then decreased with the increase of salinity, and got the minimum value at 31 and the highest value at 41. The assimilation efficiencies were between 36-51.33%, and acquired the maximum value at 36, the minimum value at 41. The scope for the growth (SFG) acquired the maximum value at salinity 31, but was negative at salinity 41. The SFGs between each pair of groups had no significant difference within salinity 26-36 range, indicating that the range is best suitable for the animal.
     2. At lower temperature phase (18-26℃), the filtration rate increased with the increase of temperature linearly, then increased tardily, but decreased rapidly when over 30℃. Within the temperature range (18-34℃), the filtration rates were between 0.28 and 0.82 L/g/h, and reached the minimum value at 18℃and the maximum value at 26℃. The respiration rate increased swiftly at the range 18-26℃, but tardily at the range 26-34℃, and reached the minimum value (260.82μg/h/g) at 18℃and the maximum value (585.90μg/h/g) at 34℃. The excretion rate were between 108.92 and 174.58μg/h/g, increased slowly with the increase of temperature at the beginning, but increased rapidly when temperature increasing from 22 to 26℃. The assimilation efficiency increased first, and then decreased with the increase of temperature, reaching the minimum value (42.33%) at 34℃and the maximum value (52.67%) at 22℃. The SFG increased with temperature increasing, reached the maximum value at 26℃, then decreased and became negative (-1.94 J/h/g) at 34℃. There were no significant differences for SFG among the temperatures 22, 26 and 30℃, indicating that the temperature range 22-30℃is best suitable for the animal.
     3. Within the food concentration range (0.85-11.84 mg POM/L), the filtration rate decreased with the increase of food concentration but the ingestion rate increased. The respiration rate had the trend of increase with the food concentration increasing, and increased slowly at the lower food concentration range (0.85-3.07 mg POM/L) and higher food concentration (6.42-11.84 mg POM/L), but rapidly at the range of 3.07-6.42 mg POM/L. The excretion rate increased gradually with the increase of food concentration. The assimilation efficiency decreased slowly with the food concentration increasing from 0.85 to 1.57 mg POM/L, but decreased rapidly over 1.57 mg POM/L. The SFG increased first and decreased with the increase of food concentration, reaching the maximum value of 10.91 J/g/h at 3.07 mg POM/L and the minimum of 1.40 J/g/h at 0.85 mg POM/L, with little variation while food concentration increasing from 3.07 to 6.42 mg POM/L, indicating that the food concentration range of 3.07 - 6.42 mg POM/L is best suitable for the animal.
引文
1.包永波,尤仲杰.几种因子对海洋滤食性贝类摄食率的影响.水产养殖,2004,25(6):29-33
    2.柴雪良,方军,林志华,张炯明,单乐州.温度对美国硬壳蛤滤食率、耗氧率和排氨率的影响.海洋科学,2005,29(8):33-36
    3.常亚青,王子臣.贝类生物能量学研究进展.海洋科学,1996,6:25-30
    4.常亚青,王子臣.魁蚶耗氧率的初步研究.水产科学,1992,11(2):1-6
    5.陈锤.蛤子“吃掉”赤潮.中国水产,2000,11:57
    6.董波,李军,王海燕,薛钦昭.不同温度与饵料浓度下菲律宾蛤仔的能量收支.中国水产科学,2003,10(5):398-403
    7.董波,薛钦昭,李军.环境因子对菲律宾蛤仔摄食生理生态的影响.海洋与湖沼,2000,31(6):636-642
    8.董波,薛钦昭,李军.滤食性贝类摄食生理的研究进展.海洋科学,2000,24(7):31-34
    9.董波,薛钦昭,李军.温度对菲律宾蛤仔滤食率清滤率和吸收率的影响.海洋水产研究,2000,21(1):37-41
    10.董存有.栉江珧生态学的初步观察.四川动物,1993,12(4):29-30
    11.董志国,李家乐,李晓英,程汉良,孟学平.温度、pH和摄食作用对西施舌胃蛋白酶活力的影响.上海水产大学学报,2005,14(4):397-400
    12.樊甄姣,吴常文,皇甫淑燕.温度、盐度、pH对角蝾螺排氨率的影响.渔业现代化,2007,34(3):10-12
    13.范德明,潘鲁青,马甡,董双林.盐度和pH对缢蛏耗氧率及排氨率的影响.中国水产科学,2002,9(3):234-237
    14.范德明,潘鲁青,马甡,董双林.缢蛏滤除率与颗粒选择性的实验研究.海 洋科学,2002,26(6):1-415.范德朋,潘鲁青,肖国强,马矬,董双林.温度pH对缢蛏(Sinonovacula constricta)消化酶活力的影响.海洋湖沼通报,2003,4:69-72
    16.高如承,庄惠如,汪彦情,孙慧玲,骆轩,罗彩林.西施舌稚贝对3种微藻选择性及摄食率研究.福建师范大学学报,2007,23(1):71-73
    17.郭海燕,王昭萍,于瑞海,王芳,林志华.饵料密度、温度和体质量对大西洋浪蛤滤水率的影响.海洋科学,2005,29(8):1-3
    18.郭世茂,陈成枞,何敏璇.栉江珧人工育苗的初步研究.海洋科学,1987,1:35-39
    19.何义朝,张福绥.墨西哥湾扇贝稚贝对盐度的耐受力.海洋学报,1999,21(4):87-91
    20.江宇,陈炳能.福建沿海栉江珧的生态习性观察.福建水产,1981,1:27-29
    21.姜祖辉,王俊,唐启升.菲律宾蛤子生理生态学研究Ⅰ.温度、体重及摄食状态对耗氧率及排氨率的影响。海洋水产研究,1999,20(1):40-44
    22.颉晓勇.翡翠贻贝能量收支及养殖容量的研究.广州:暨南大学,2001
    23.金春华.温度和盐度对青蛤耗氧率和排氨率的影响.丽水学院学报,2005,27(2):46-51
    24.匡世焕,方建光,孙慧玲,方建光.桑沟湾栉孔扇贝不同季节滤水率和同化率的比较.海洋与湖沼,1996a,27(2):194-199
    25.匡世焕,孙惠玲,李峰,方建光.栉孔扇贝生殖前后的滤食和生长.海洋水产研究,1996b,17(2):80-86
    26.梁松.发展海水养殖与减轻赤潮灾害.海洋开发与管理,1997,1:33-37
    27.林笔水,何金进,韦信敏,许章程.栉江珧人工育苗的初步研究.台湾海峡,1987,6(3):261-267
    28.林笔水,吴天明.温度与盐度和缢蛏幼体生存、生长及发育的关系.水产学 报,1990,14(3):171-178
    29.林瑞才,陈敏,林笔水.温度和盐度对海湾扇贝幼虫附着及变态的影响.台湾海峡,1989,8(1):60-67
    30.林元烧,曹文清,罗文新,郭东晖,郑爱榕,黄长江.几种主要养殖贝类滤水率的研究.海洋学报,2003,25(1):86-91
    31.刘建勇,绍杰,卓健辉.盐度对方斑东风螺耗氧率和排氨率的影响.热带海洋学报,2005,24(4):35-39
    32.刘英杰.青蛤摄食生理和代谢生理以及能量收支的基础研究.青岛:中国海洋大学,2005
    33.刘雨芳.温度对无齿蚌心搏频率、心搏强度的影响.湘潭师范学院学报(自然科学版),1995,15(6):48-50
    34.吕振波,丛日祥,曲世科,邱盛尧,曲琳.栉江珧人工育苗的初步研究.齐鲁渔业,2004,21(6):36-38
    35.罗彩林,高如承,骆轩.单胞藻投饵量对西施舌稚贝摄食率的影响.福建师范大学学报(自然科学版),2005,21(4):89-91
    36.潘鲁青,范德朋,马生生,董双林.环境因子对缢蛏滤水率的影响.水产学报,2002,26(3):226-230
    37.彭建华,陈文祥,栾建国,刘家寿,程郁春.温度、pH对二种淡水贝类滤水率的影响.动物学杂志,2004,39(6):2-6
    38.邱盛尧,杨建敏,张锡佳,曲学忠,王世信,张培超,宫向红,张申,张信泽.栉江珧的繁殖生物学.水产学报,2000,24(1):28-31
    39.孙虎山,王为纲,王宜艳.温度对紫色血蛤胚胎及幼虫发育的影响.海洋湖沼通报,1997,7(2):54-58
    40.孙虎山,王晓安.紫彩血蛤鳃的组织化学和扫描电镜研究.动物学杂志,1999,34(4):9-12
    41.唐保军.环境因子和饵料对文蛤能量代谢与幼虫生长发育的影响.青岛:中国科学院海洋研究所,2005
    42.王芳,董双林,李德尚.菲律宾蛤子和栉孔扇贝的呼吸与排泄研究.水产学报,1997,21(3):252-257
    43.王芳,董双林,王涛,段铭.菲律宾蛤仔呼吸和排泄规律的研究.海洋科学,1998a,2:1-3
    44.王芳,董双林,张硕.海湾扇贝和太平洋牡蛎的食物选择性及滤除率的实验研究.海洋与湖沼,2000,31(2):139-144
    45.王芳,董双林,张硕.藻类浓度对海湾扇贝和太平洋牡蛎滤除率的影响.海洋科学,1998b,4:1-3
    46.王海涛,王世党,周维武,宋宗岩,于诗群.栉江珧室内人工育苗技术.水产养殖,2006,27(2):34-36
    47.王海燕,薛钦昭,李军.饵料浓度对菲律宾蛤仔呼吸和排泄的影响.海洋科学,2001,25(4):37-39
    48.王俊,姜祖辉,唐启升.栉孔扇贝的滤食率与同化率.中国水产科学.2001,8(4):28-31
    49.王俊,姜祖辉,唐启升.栉孔扇贝耗氧率和排氨率的研究.应用生态学报,2002,13(9):1157-1160
    50.王俊,姜祖辉,唐启升.栉孔扇贝生理能量学研究.海洋水产科学,2004,25(3):46-53
    51.王俊,姜祖辉,张波,孙耀,郭学武,唐启升.菲律宾蛤仔生理生态学研究Ⅱ.温度、饵料对同化率的影响.海洋水产研究,1999,20(2):42-46
    52.王梅芳,余祥勇,叶富良.北部湾及附近海域栉江珧性腺发育研究.广西科学,2000,(2):140-143
    53.王祯瑞.中国近海江珧科的初步研究.海洋科学集刊,1964,5:30-42
    54.王资生,彭斌.温度和规格对扁玉螺耗氧率和排氨率的影响.盐城工学院学报(自然科学版),2003,16(4):50-54
    55.文海翔.环境因子对硬壳蛤代谢与生长的影响.青岛:中国科学院海洋研究所,2004
    56.谢开恩,陈炳能,陈世杰.泉州湾栉江珧调查研究报告.福建水产科技,1980,2:10-23
    57.杨红生,张涛,王萍.温度对墨西哥湾扇贝耗氧率及排泄率的影响.海洋学报,1998,20(4):91-95
    58.杨晓新,林小涛,计新丽,许忠能,黄长江.温度、盐度和光照条件对翡翠贻贝滤水率的影响.海洋科学,2000,24(6):36-39
    59.尤仲杰,徐善良,边平江,陈坚.海水温度和盐度对泥蚶浮游幼虫和稚贝生长与存活的影响.海洋学报,2001,23(6):167-172
    60.余祥勇,王梅芳,杨书婷,桂建芳.有棘和无棘两种表型江珧同工酶差异的比较.湛江海洋大学学报,1999,19(2):5-8
    61.袁有宪,陈聚法,陈碧娟,曲克明,过峰,李秋芬,崔毅.栉孔扇贝对环境变化适应性研究-盐度、pH对存活、呼吸、摄食及消化道影响.中国水产科学,2001,7(4):73-77
    62.袁有宪,曲克明,陈聚法,陈碧娟,过峰,李秋芬,催毅.栉孔扇贝对环境变化适应性研究-温度对存活、呼吸、摄食及消化的影响.中国水产科学,2000,7(3):24-27
    63.张涛,杨红生,王萍,何义朝,张福绥.烟台四十里海湾区栉孔扇贝同化率周年变化及其与环境的关系.海洋与湖沼,2000,31(3):266-272
    64.张涛.双壳贝类同化率研究进展.海洋科学,1998,4:46-49
    65.张玺,齐钟彦,李洁民.中国北部海产经济软体动物.北京:科学出版社,1955,41-42
    66.张学雷.滤食性贝类与环境间的相互影响及其养殖容量研究.青岛:中国海洋大学,2003
    67.张媛,方建光,毛玉泽,张继红,薛素燕.温度和盐度对橄榄蚶耗氧率和排氨率的影响.中国水产,2007,14(4):690-694
    68.周维武,于瑞海.栉江珧人工升温繁殖技术要点.渔业现代化,2006,1:49-51
    69.Albentosa M,Beiras R,Perez C A.Determination of optimal thermal conditions for growth of clam(Venerupispullastra) seed.Aqucatulture,1994,126:315-328
    70.Aldridge D W,Payne B S,Miller A C.Oxygen sonsumption,nitrogenous excretion,and filtration rate of Dreissena polymorpha at acclimation temperatures between 20 and 32℃.J Fish Aquat Sci,1995,52:1761-1767
    71.Bacon G S,Macdonald B A,Ward J E.Physiological responses of infaunal Mya arenaria and epifaunal Placopecten magellanicus bivalves to variations in the concentration and quality of suspended particles I.Feeding activity and selection.J Exp Mar Biol Ecol,1998,219:105-125
    72.Barber B J,Blake N J.Substrate catabolism ralated to reproduction in the bay scallop Argopecten irradians concentricus,as determined by O/N and RQ physiological indexes.J Mar Biol,1985,87:13-18
    73.Barille L,Prou J,Heral M,Bourgrier S.No influence of food quality,but ration-dependent,retention efficiencies in the Japanese oyster Crassostrea gigas.J Exp Mar Biol Ecol,1993,171:91-106
    74.Bayne B L,Haekins A J S,Navarro E,Iglesias I P.Effects of seston concentration on feeding,digestion and growth in the mussel Mytilus edulis,Mar Ecol Prog Ser 1989,55:47-54
    75.Bayne B L,Hawloms A J S,Navarro E.Feeding and digestion by the mussel Mytilus edulis L.(Bivalvia:Mollusca) in mixture of silt and algal cells at low concentration.J Exp Mar Biol Ecol,1987,111:1-22
    76. Bayne B L, Iglesias J I P, Hawkins A J S, Navarro E, Heral M, Deslous-Paoli J M.Feeding behaviour of the mussel, Mytilus edulis. Responses to variations in quantity and organic content of the seston. J Mar Biol Ass U K, 1993, 73:813-829
    
    77. Bayne B L, Newell R C, Physiological energetics of marine molluscs. The Mollusca, 1983.4:407-515
    
    78. Bayne B L., Newell R C, Physiological energetics of marine molluscs. In:Saleuddin A S M and Wilbur K.W (eds.), New York: The Mollusca. Academic Press, 1983, 4(1): 407-515
    
    79. Bayne B L, Thomposn R J, Widdows J. Physiology: I. In: Bayne B L(Ed.),Marine Mussels: Their Ecology and Physiology. London: Cambridge Univ. Press,1976, pp.121-206
    
    80. Bayne B L, Widdows J, Worrall C. some temperature relationships in the physiology of two ecologically distinct bivalve populations. In: Vernberg F J,Calabrese A, Thurberg F P, Vernberg WB (eds) Physiological responses of marine biota to pollutants. New York: Academic Press, 1977: pp 379-400
    
    81. Beiras R, Pe'rez C A, Albentosa M. Comparison of the scope for growth performance of Ostrea edulis seed reared at different food concentrations in an open-flow system. Mar Biol, 1994, 119: 227-233
    
    82. Beiras R, Pe'rez C A, Albentosa M. Short-term and long-term alternations in the energy budget of young oyster Ostrea edulis L. in response to temperature change.J Exp Mar Biol Ecol, 1995, 186: 221-236
    
    83. Bernard F R. Nutrition of Crassostrea gigas (Thunberg, 1975): an aspect of estuarine energetics[M]. Ph. D. Thesis, University of London, 1972, 448
    
    84. Bougrier S, Geairon P, Dealous J M. Allometric relationships and effects of temperature on clearance and oxygen consumptions rates of Crassostrea gigas (Thumberg).Aquaculture, 1995, 134(2): 143-154
    85. Bougrier S, Hawkins A J S, Heral M. Preigestive selection of different microalgal mixtures in Crassastrea gigas and Mytilus edulis, analysed by flow cytometry.Aquaculture, 1997, 150: 123-134
    
    86. Bricelj V M, Malouf R E. Influence of algal and suspended sediment concentrations on the feeding physiology of the hard clam Mercenaria mercenaria. Mar Biol, 1984, 84: 155-165
    
    87. Buxton C D. Response surface analysis of the combine effects of exposure and acclimation temperature on filtration, oxygen consumption and scope for growth in the Oyster ostrea. Mar Ecol Prog Ser, 1981, 6: 73-82
    
    88. Carfoot T H. Animal energetics. New York: Academic Press, 1987: 89-172
    
    89. Clark B C. Feeding by oyster larvae: the functional response, energy budget and a comparison with mussel larvae. J Exp Mar Biol Ecol, 1990, 137: 63-77
    
    90. Clemmesen B, Jogensen C B. Energetic costs and efficiencies of ciliary feeding.Mar Biol, 1987, 94: 445-449
    
    91. Coughlan J. The estimation of filtering rate from the clearance of suspensions.Mar Biol, 1969,2:356-358
    
    92. Cranford P, Hargrave B T. In situ time-series measurement of ingestion and absorption rates of suspension-feeding bivalves: Placopecten magellanicus.Limnol Oceanogr, 1994, 39: 730-738
    
    93. Crisp D J. Methods for the study of marine benthos. Blackwell Oxford, 1971,197-279
    
    94. Davenport J, Fletcher J S. The effects of simulated estuarine mantle cavity conditions upon the activity of the frontal gill of Mytilus edulis. J Mar Biol Ass U K, 1978, 58:671-681
    
    95. Davenport J, Gruffydd L D, Beaunont A R. An apparatus to supply water of fluctuating salinity and its use in a study of the salinity tolerances of larvae of the scallops Pecten maximus L. J Mar Biol Assoc U K, 1975, 55: 391-409
    
    96. Djangmah J S, Shumway S E, Davenport J. Effects of fluctuating salinity on the behaviour of the west African blood clam Anadara senilis and on the osmotic pressure and ionic concentrations of the haemolumph. Mar Biol, 1979, 50:209-213
    
    97. Dorondi M S, Southgate P C, Lucas J S. Variation in clearance and ingestion rate by larvae of the black-lip pearl oyster {Pinctada margaritifera L.) feeding on various microalgae. Aquaculture, 2003, 9(1): 11-16
    
    98. Elliott J M. Energy losses in the waste products of brown trouts (Salmo trutta L.).J Anim Ecol, 1976, 45: 561-580
    
    99. Elvin D W. and Gonor J J. The thermal regime of an intertidal Mytilus californianus(Conrad) population on the central Oregon coast. J Exp Mar Biol Ecol, 1979,39: 265-279
    
    100.Farmer L, Reeve M R. Role of the amino acid pool of the copepod Acartia tonsa in adjustment to salinity change. Mar Biol, 1978, 48: 311-316
    
    101.Foster-Smith R L. The effect of concentraion of suspension on the filtration rates and pseudofaecal production for Mytilus edulis L., Cerastoderma edule (L.) and Venerupis Pullastra (Montagu). J Exp Mar Biol Ecol, 1975, 17: 1-22
    
    102.Gerdes D. The Pacific oyster, Crassostrea gigas. Part I . feeding behavior of larvae amd adults. Aquaculture, 1983, 31: 195-219
    
    103.Gilek M, Bjork M, Broman D, Kautsky N. The role of the blue mussel, Mytilus edulis, in the cycling of hydrophobic organic contaminants in the Baltic Sea.Ambio, 26: 202-209
    
    104.Griffiths C L, Griffiths R J. Bivalvia In: T L Pandian and E J Vernberg (Editors),Animal Energetics, vol 2, Academic press, New York, 1987, pp: 1-88
    
    105.Haven D S, Almlo R M. Aspects of biodeposition in oysters and other invertebrate filter feeders.Limnol Oceanogr.1966,11:487-498
    106.Hawkins A J S,Smith R F M,Bayne B L.Novel observations underlying fast growth of suspension-feeding shellfish in turbid environments:Mytilus edulis.Mar Ecol Prog Ser,1996,131:179-190
    107.Hawkins A J S,Widdows J,Bayne B L.The relevance of whole-body portein metabolism to measure costs of maintaince and growth in Mytilus edulis.Physiol Zool,1989,62:745-763
    108.Hutchinson S,Hawkins L E.Quantification of the physiological response of the European fiat Oyster ostrea edulis L.to temperature and salinity.J Moll Stud,1992,58:215-226
    109.Iglesias J I P,Urrutia M B,Navarro E.Measuring feeding and absorption in suspention-feeding bivalves:an appraisal of the biodeposition method.J Exp Mar Biol Ecol,1998,219:71-86
    110.Jespersen H,Olsen K.Bioenergetics in veliger larvaer of Mytilus edulis L.Ophelia,1982,21(1):101-113
    111.Jφrgensen C B,Famme P,Kristensen H S,Larsen P S,Mohlenbe F,Riisgard H U.The bivalve pump.Mar Ecol Prog Ser,1986,34:69-77
    112.Jφrgensen C B,Larsen P S,Rissgard H U.Effects of temperature on the mussel pump.Mar Ecol Prog Ser,1990,64:89-97
    113.Jφrgnsen C B,Larsen P S,Mohlenberg F,et al.,The mussel pump:properties and modeling.Mar Ecol Prog Ser,1988,45:205-216
    114.Kaspar H F,Gillespie P A,Boyer I C,MacKenzie A L.Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound,Marlborough Sounds,New Zealand.Mar Biol,1985,85:1 27-136
    115.Kinne O.Salinity-animals-inwertebrates.Mar.Ecol,1971,1:821-995
    116.MacDonald B A,Thompson R J.Influence of temperature and food availability on the ecological energetics of the giant scallop Placopecten magellanicus. III.Physiological ecology, the gametogentic cycle and scope for growth. Mar Biol,1986, 93: 37-48
    
    117.MacDonald B A, Bacon G S, Ward J E. Physiological response of infaunal (Mya arenaria) and epifaunal (Placopecten magellanicus) bivalves to variations in the concentration and quality of suspended particles: II. Absorption efficiency and scope of grow. JExp Mar Biol Ecol, 1998, 219, 127-141
    
    118.Navarro E, Iglesias J I P. Infaunal filter-feeding bivalves and the physiological response to short-term fluctuations in food availability and composition.In: Dame R.D. (Ed), Bivalve Filter feeders in Estuarine and Coastal Ecosystem Processes.Springer-Verlag, Berlin, 1993, pp. 25-55
    
    119.Navarro E, Iglesias J I P, Ortega M M. natural sediment as a food source for the cockle Cerastoderma edulis L): effects of variable particle concentration on feeding, digestion and the scope for growth. J Exp Mar Biol Ecol, 1992, 156:69-87
    
    120.Navarro E, Iglesias J I P, Ortega M M. The basis for a functional response to variable food quality and quantity in cockles Cerastoderma edule (Bivalvia,Cardiidae). Physiol Zool, 1994, 67: 468-496
    
    121.Navarro E, Iglesias J I P, Peprez C A. The effect of diets of phytoplankton and suspended bottom material on feeding and absorption of raft mussels (Mytilus galloprovincialis L).J Exp Mar Biol Ecol, 1996, 198: 175-189
    
    122.Navarro J M. The effects of salinity on the physiological ecology of Choromytilus chorus (Molina, 1782).J Exp Mar Biol Ecol, 1988, 122: 19-33
    
    123.Navarro J M, Clasing E, Urrutia G, Asencio G Stead R, Herrera C. 1993.Biochemical composition of the suspended particulate matter in a tidal flat of Southern Chile: an evaluation of its nutritive value. Estuar.Coast Shelf Sci, 37:59-73
    124.Navarro J M, Gonzalez C M. Physiological response of the Chilean scallop Argopecten purpuratus to decreasing salinities. Aquaculture, 1998, 167: 315-327
    
    125.Navarro J M, Leiva G E, Martinez G. Interaction effects of diet and temperature on the scope of growth of the scallpo Argopecten purpuratus during reproductive conditioning. J Exp Mar Biol Ecol, 2000, 247, 67-83
    
    126.Navarro J M, Widdows J. Feeding physiologyof Cerastoderma edule in response to a wide range of seston concentration. Mar Ecol Prog Ser, 1997, 152, 175-186
    
    127.Navarro J M, Winter J E. Ingestion rate, assimilation efficiency and energy balance in Mytilus chilensis in relation to body size and different algal concentration. Mar Biol, 1982, 67: 255-266
    
    128.Newell R C, Branch G M. The influence of temperature on the maintenance of metabolic energy balance in marine invertebrates. Adv. Mar Biol, 1980, 17,329-396
    
    129.Newell R C, Wildish D J, Macdonald B A. The effects of velocity and seston concenteation on the exhalant siphon area,valve gape and filtration rate of the mussel Mytilus edulis. J Exp Mar Biol Ecol, 2001, 262: 91-111
    
    130.Officer C B, Smayda T J, Mann R. Benthic filter feeding: a natural eutrophication control? Mar Ecol Prog Ser, 1982, 9: 203-210
    
    131.Palmer M E. Behavioral and rhythmic aspects of filtration, Asgopecten irradians concentricus (Say), and the oyster, Crassastrea virginica (Gmelin). J Exp Mar Biol Ecol, 1980, 45: 273-295
    
    132.Petersen J K, Mayer S, Knudsen M (?). Beat frequency of cilia in the branchial basket of the ascidian Ciona intestinalis in relation to temperature and algal cell concentration. Mar Biol, 1999, 133: 185-192
    
    133.Riisgard H U. Efficiency of particle and filtration rates in six species of northeast American bivalves. Mar Ecol Prog Ser, 1988, 45: 217-223
    134.Riisgatrd H U,RandlФv A,Kristensen P S.Rates of water processing oxygen consumption and efficiency of particle retention in veligers and young post-metamorphic M.vtilus edulis.Ophelia,1980,19:37-47
    135.Roger I E.Newell and Stephen J.Jordan.Preferential ingestion of organic material by the American oyster Crassostrea virginica.Mar Ecol Prog Ser,1983,13:47-53
    136.Saucedo E,Lucl'a O,Mario M1.Effect of temperature on oxygen consumption and ammonia excretion in the Calafia mother-of-pearl oyster,Pinctada mazatanica(Hanley,1856).Aquaculture,2004,229(4):377-387
    137.Schulte E H.Influence of algal concentration and temperature on the filtration rate of Mytilus edulis.Mar Biol,1975,30:331-341
    138.Shumway S E.Oxygen consumption in oysters:an overview.Mar Biol Lett,1982,3:1-23
    139.Shumway S E,Newell R C,Crisp D J,Cucci T L.Particle selection in filter-feeding bivalve mollusks:A new technique on an ole theme.In:Morton B.(ed.).The Bivalvia proceediings of a Memorial Symposium in Honour of Sir C M Yonge.Edinburgh.Hong Kong:Hong Kong University Press,1990,151-165
    140.Silvester N R,Sleigh M A.Hydrodynamic aspects of particle capture by Mytilus.J Mar Biol Ass UK.1984,64:859-879
    141.Soria G,Merino G,Elisabeth V B.Effect of increasing salinity on physiological response in juvenile scallops Argopecten purpuratus at two rearing temperatures.Aquaculture,2007,270(1-4):451-463
    142.Stickle W B,Sabourin T D.Effects of salinity on the respiration and ammonia rate of the common mussel,Mytilus edulis L,and the black chiton,Katherina tunicata(Wood).J Exp Mar Biol Ecol,1979,41:257-268
    143.Thompson R J,Bayne B L.Some relationships between growth,metabolism and food in the mussel,Mytilus edulis.Mar Biol,1974,27:317-326
    144. Van E S C, Griffiths C L. Physiological energetics of four south African mussel species in relation to body size, ration and temperature. Mar Biol, 1992, 101 (4):779-789
    
    145.Velasco L A, Navarro J M. Energetic balance of infaunal {Mulinia edulis king,1831) and epifaunal {Mytilus chilensis Hupe, 1854) bivalves in response to wide variations in concentration and quality of seston. J Exp Mar Biol Eco, 2003, 296:7 9-92
    
    146.Velasco L A, Navarro J M. Feeding physiology of infaumal {Mulinia edulis) and epifaunal {Mytilus chilensis) bivalves under a wide range of concentration and quality of seston. Mar Ecol Prog Ser, 2002, 240: 1 43-155
    
    147.Walne P R. Observations on the food value of seven species of algae to the larvae of Ostrea edulis. J Mar Biol Ass UK, 1963, 43: 767-784
    
    148.Ward J E, Beninger P G, Macdonald B A. Direct observations of feeding structures and mechanisms in bivalve molluscs using endoscopic examination and video image analysis. Mar Biol, 1991, 111: 287-291
    
    149.Ward J E, Macdonald B A, Thompson R J. Mechanisms of suspension feeding bin bivalves: Resolution of current controversies by means of endoscopy. Limnol Oceanogr, 1993, 38: 265-272
    
    150.Warren C E, Davis G E. Laboratory studies on the feeding bioenergtics and growth of fish [A]. The Biological Basis of Freshwater Fish Production [C].Oxford: Blackwell Scientiffic Publications, 1967. 175-214
    
    151.Widdows J. Combined effect of body size, food concentration and season on the physiology of Mytillus edulis. J Mar Biol Assoc UK, 1978, 58 (4): 109-124
    
    152.Widdows J. The effects of flutuating and abrupt changes in salinity on the performance of Mytilus edulis. in: Gray J S, Christiansen, M E. Eds.), Marine Biology of polar Regions and Effects of Stress on Marines Organism.Wiley-Interscience, 1985, 555-566
    153.Widdows J, Bayne B L.Temperature acclimation of Mytilus edulis with reference to its energy budget. J Mar Biol Assoc UK, 1971, 51: 827-843
    
    154.Widdows J, Hawkins A J S. Partitioning of rate of heat dissipation by Mytilus edulis into maintenance, feeding, and growth components. Physiol. Zool. 1989,62: 764-784
    
    155.Wieser W. Temperature relations of ectotherms: aspeculative. In: Wieser, W.(Ed), Effects of Temperature on Ectothermic Organisms. Springer-Verlag, Berlin,1973, pp.1-24
    
    156.Wilbur A E. and Hilbish T J. Physiological energetics of the ribbed mussel Geukensia demissa in response to increased temperature.J Exp Mar Biol Ecol,1989,131(2): 161-170
    
    157.Wilson J H. Particle retention and selection by larvae and spat of Ostrea edulis in algal suspensions, Mar Biol, 1980, 57: 135-145
    
    158.Winter J E. Iber den einfluβ der majrungskonzemtratopm und amder faltorem auf filttrierleistung und nahrungsausnutzung der muscheln Arctica islandica und Modiollus modiolus. Mar Biol, 1969, 4: 87-135
    
    159.Wisely B, Reid B L. Experimental feeding of Sydney Rock oysters (Crassastrea commercialis = Saccosstrea cucullata). I .Optimum particle sizes and concentrations.Aquaculture, 1978, 15: 319-331
    
    160.Wong W H, Cheung S G. Feeding rhythms of the green-lipped, Perna viridis (Linnaeus, 1758) (Bivalvia: Mytilidae) during spring and neap tidal cycles. J Exp Mar Biol Ecol, 2001: 13-36
    
    161.Yukihira H, Klumpp D W, Lucas J S. Comparative effects of microalgal species and food cencentration on suspension feeding and energy budgets of the pearl oysters Pinctada margaritifera and P.maxima (Bivalvia: Pteriidae). Mar Ecol Prog Ser 1998, 171: 71-84
    
    162.Zhuang S H, Wang Z Q. Influence of size, habitat and food concentration on the feeding ecology of the bivalve, Meretrix Linnaeus. Aquaculture, 2004, 241:689-699
    
    163.Zurburg W, Dezwaan A. The role of amino acids in anaerobiosis and osmoregulation in bivalves. J Zxp Zool, 1981, 215: 315-325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700