芍芪多苷抗肝纤维化作用及其主要成分芍药苷抑制肝星状细胞增殖的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化是肝组织对慢性损伤的修复反应,是多种类型细胞、氧化应激、细胞因子和生长因子等一系列复杂作用的结果,以细胞外基质(extracellular matrix, ECM)成分的过度增生与异常沉积为主要特征。肝纤维化是慢性肝病重要的病理特征,也是肝硬化发生的前奏和必经的中间环节,是临床治疗慢性肝病的关键环节。近年来国内外取得广泛共识的是:肝星状细胞(hepatic stellate cell,HSC)是肝脏ECM的主要来源,是肝纤维化形成的细胞学基础,它在ECM代谢和各种细胞介质的产生过程中处于中心地位,HSC的表型激活和过度增殖是肝纤维化形成过程的关键。抗肝纤维化的治疗,国内外虽陆续有过一些报道,但因种种原因尚未找到十分理想的药物,深入了解肝纤维化分子作用机制,寻找新的抗纤维化药物具有重要理论和实际意义。
     芍芪多苷(extract from Paeonia lactiflora and Astragalus membranaceus, SQDG)是采用科学的浸提和纯化技术,由白芍和黄芪混合提取制成的质量可控的天然药物的有效部位,主要含芍药苷、黄芪甲苷等成分。本课题组前期研究发现,SQDG对四氯化碳诱导的化学性肝损伤和卡介苗加脂多糖诱导的免疫性肝损伤具有保护作用,且效果优于白芍、黄芪分别单独提取后再混合制剂(白芍总苷+黄芪总皂苷)及单独使用白芍总苷或黄芪总皂苷。本实验在以往研究基础上,采用猪血清诱导的免疫性肝纤维化模型,首先从整体水平考察了SQDG对大鼠免疫性肝纤维化的作用;体外选用HSC-T6细胞株,从细胞和分子水平进一步探讨SQDG中有效活性成分芍药苷(paeoniflorin,Pae)抑制HSC增殖的分子机制,观察Pae对重组大鼠血小板衍生生长因子-BB(recombinant rat platelet derived growth factor-BB, rrPDGF-BB)刺激HSC-T6增殖的影响;探讨G蛋白偶联的信号转导通路与ERK1/2信号通路在rrPDGF-BB刺激HSC-T6增殖中的作用及相互关系,寻找其抑制HSC增殖的作用靶点。
     目的:采用猪血清诱导的免疫性肝纤维化模型,从病理形态学、转氨酶、血清纤维化标志物、脂质过氧化等方面,明确SQDG对大鼠免疫性肝纤维化的治疗作用;以肝纤维化过程中的关键细胞-HSC为突破口,观察SQDG中主要有效成分Pae对rrPDGF-BB刺激HSC-T6增殖的影响以及环氧合酶-2(cyclooxygenase-2,COX-2)在HSC-T6增殖中的作用;探讨G蛋白偶联的信号转导通路与ERK1/2信号通路在rrPDGF-BB刺激HSC-T6增殖中的作用,探讨Pae对rrPDGF-BB刺激的HSC-T6 G蛋白的表达及ERK1/2通路活化的影响,并进一步研究两条信号通路之间的相互关系,部分阐明Pae抑制HSC增殖的分子机制。
     方法:大鼠腹腔注射猪血清建立免疫性肝纤维化模型,设立正常对照组、模型组、SQDG给药组(42.5, 85, 170mg·kg~(-1))和阳性对照秋水仙碱组(Col 0.1 mg?kg~(-1))。HE染色和Masson染色对肝脏组织作病理检查。分光光度法检测血清中转氨酶活性和肝匀浆中丙二醛(MDA)含量、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性、羟脯氨酸(Hyp)含量;放免法检测血清中透明质酸(HA)、Ⅲ型前胶原(PCⅢ)、IV型胶原(CIV)和层粘蛋白(LN)、前列腺素E2(PGE2)水平;MTT法检测HSC增殖情况;放射性免疫法测定HSC-T6 cAMP水平;采用Western blot技术检测HSC-T6中COX-2、Gαs、Gαi~(-1)、Gαi-2、Gαi-3蛋白表达和ERK1/2磷酸化水平的变化。
     结果:
     1. SQDG对猪血清诱导的免疫性肝纤维化大鼠的保护作用
     SQDG对猪血清诱导的免疫性肝纤维化大鼠具有明显的保护作用。结果表明,SQDG(85, 170mg·kg~(-1))能显著降低猪血清诱导的免疫性肝纤维化大鼠升高的肝、脾指数,对升高的血清转氨酶有降低趋势,但无显著性意义;病理组织学检查发现,SQDG可降低猪血清诱导的肝纤维化大鼠的纤维化程度,与模型组相比,纤维沉积、肝小叶的破坏等均有所减轻。SQDG还可显著降低纤维化大鼠肝组织Hyp含量,降低血清中HA、LN、PCIII和CIV含量,提示SQDG可以减少纤维化大鼠ECM的生成。
     进一步研究发现,SQDG显著降低肝纤维化大鼠肝匀浆中MDA的含量,升高抗氧化酶SOD、GSH-Px活性,改善肝脏氧化状态,还能显著降低肝纤维化大鼠血清中升高的炎性细胞因子PGE2的产生。体外分离大鼠HSC检测其增殖情况,结果表明SQDG可以显著抑制HSC的增殖,SQDG还可以明显抑制模型组肝脏升高的PDGFR-β的表达。提示:抑制氧化应激和致纤维化炎性细胞因子的产生,抑制PDGFR-β的表达从而抑制HSC增殖可能是SQDG抗肝纤维化的部分机制。
     2. SQDG对免疫性肝纤维化大鼠MAPK相关蛋白磷酸化和G蛋白表达的影响
     在猪血清诱导的免疫性肝纤维化模型大鼠中,肝组织ERK1/2、p38和JNK磷酸化程度增加,肝组织中Gαs的表达明显降低,Gαi-2和Gαi-3的表达明显增加,而Gαi~(-1)的表达没有明显变化。给予SQDG可以明显抑制免疫性肝纤维化大鼠肝组织ERK1/2、p38和JNK磷酸化程度,SQDG还可以明显促进Gαs的表达,抑制Gαi-2和Gαi-3的表达。提示影响MAPK和G蛋白通路的变化可能是SQDG发挥抗肝纤维化作用的重要机制之一。
     3. Pae对rrPDGF-BB刺激HSC-T6增殖的影响
     体外建立rrPDGF-BB诱导的HSC-T6增殖模型,结果表明Pae在12.5~200mg?L~(-1)浓度范围内明显抑制HSC-T6增殖。进一步观察COX-2在rrPDGF-BB刺激HSC-T6增殖中的作用,结果表明rrPDGF-BB刺激可引起COX-2表达量持续增加,选择性的COX-2抑制剂NS-398可以明显抑制rrPDGF-BB诱导的HSC-T6增殖。Pae(50, 100 mg·L~(-1))可以明显抑制rrPDGF-BB引起的HSC-T6 COX-2表达增加。结果提示抑制COX-2的表达可能是Pae抑制HSC-T6增殖的作用机制之一。
     4. Pae对rrPDGF-BB刺激的HSC-T6 ERK1/2信号通路活化的影响
     Western-blot检测发现,rrPDGF-BB刺激HSC-T6可引起ERK1/2的迅速磷酸化, Pae(25, 50, 100 mg·L~(-1))可以抑制rrPDGF-BB引起的HSC-T6 ERK1/2的激活,降低p-ERK1/2水平。提示抑制rrPDGF-BB刺激的HSC-T6 ERK1/2信号通路的活化是Pae抑制其增殖的主要机制之一。
     5. rrPDGF-BB刺激下HSC-T6 G蛋白-AC-cAMP通路的改变及Pae的作用
     应用Western-blot方法,检测rrPDGF-BB(50μg·L~(-1))刺激HSC-T6中G蛋白-AC-cAMP通路的改变。结果发现,rrPDGF-BB可以明显促进Gαi~(-1)和Gαi-2蛋白表达水平,但对Gαi-3和Gαs表达无明显影响。同时,rrPDGF-BB可以降低细胞内cAMP水平和PKA活性,促进HSC-T6增殖。Pae(50, 100mg?L~(-1))可明显抑制rrPDGF-BB引起的Gαi~(-1)、Gαi-2的表达升高,提高细胞内cAMP水平。且相关性与回归分析结果表明Pae抑制rrPDGF-BB刺激的HSC-T6增殖反应与其提高HSC-T6内cAMP水平密切相关。提示下调HSC-T6 Gαi蛋白的表达是Pae抑制rrPDGF-BB刺激的HSC-T6过度增殖的重要机制之一。
     6. rrPDGF-BB刺激下HSC-T6 ERK1/2信号通路与Gαi介导信号通路间的关系
     采用Gi特异性的抑制剂PT作用于HSC-T6,结果表明PT可抑制rrPDGF-BB诱导的HSC-T6的增殖及p-ERK1/2的表达,提示PT敏感的G蛋白对ERK1/2的激活具有调节作用。用MEK1/2特异性的抑制剂U0126抑制ERK1/2的激活,观察其对rrPDGF-BB刺激下HSC-T6 PT敏感的G蛋白通路的影响。结果发现,U0126对Gαi~(-1)和Gαi-2蛋白表达水平没有明显影响。rrPDGF-BB刺激的HSC-T6细胞内cAMP水平和PKA活性明显下降,在rrPDGF-BB刺激下HSC-T6中加入U0126后,对降低的cAMP水平和PKA活性没有明显的影响。提示ERK1/2可能存在于PT敏感的Gi蛋白通路的下游发挥作用。Pae可能通过下调Gαi表达,进而抑制ERK1/2的激活,发挥抑制rrPDGF-BB刺激HSC-T6异常增殖的作用。
     结论:
     1. SQDG具有明显的抗肝纤维化作用,其机制与改善肝纤维化大鼠肝脏的氧应激状态、抑制炎性细胞因子的生成、抑制HSC增殖等有关。
     2. rrPDGF-BB刺激可引起COX-2表达量持续增加,选择性的COX-2抑制剂NS-398可以明显抑制rrPDGF-BB诱导的HSC-T6增殖。SQDG主要成分Pae可以明显抑制rrPDGF-BB引起的HSC-T6 COX-2表达增加,抑制COX-2的表达可能是Pae抑制HSC-T6增殖的作用机制之一。
     3.rrPDGF-BB刺激HSC-T6可引起ERK1/2的迅速磷酸化。Pae(25, 50, 100 mg·L~(-1))可以抑制rrPDGF-BB引起的HSC-T6 ERK1/2的激活,降低p-ERK1/2水平。MEK抑制剂U0126可以抑制rrPDGF-BB引起的HSC-T6 COX-2表达增加。提示Pae可能通过抑制rrPDGF-BB刺激的HSC-T6 ERK1/2信号通路的活化,减少COX-2的表达发挥其抑制HSC-T6增殖的作用。
     4. rrPDGF-BB可以明显促进Gαi~(-1)和Gαi-2蛋白表达水平,降低细胞内cAMP水平和PKA活性,Pae可明显抑制rrPDGF-BB引起的Gαi~(-1)、Gαi-2的表达升高,且Pae抑制rrPDGF-BB刺激的HSC-T6增殖反应与其提高HSC-T6细胞内cAMP水平密切相关。Pae可能通过下调HSC-T6 Gαi蛋白偶联的信号通路抑制rrPDGF-BB刺激的HSC-T6过度增殖。
     5. Gi特异性的抑制剂PT可抑制rrPDGF-BB诱导的HSC-T6的增殖及p-ERK1/2的表达,MEK1/2特异性的抑制剂U0126对Gαi~(-1)和Gαi-2蛋白表达水平及细胞内降低的cAMP水平、PKA活性没有明显的影响。提示在HSC上,PT敏感的Gi蛋白可促进ERK1/2的激活。Pae可能通过下调Gαi的表达,抑制ERK1/2的激活,降低p-ERK1/2水平,发挥其抑制rrPDGF-BB刺激HSC-T6过度增殖的作用。
Hepatic fibrosis can be classified as a wound healing response to a variety of chronic stimuli. It is characterized by an excessive deposition of extracellular matrix proteins (ECM) of which type I collagen predominates. This excess deposition of extracellular matrix proteins disrupts the normal architecture of the liver that alters the normal function of the organ, resulting in pathophysiological damage to the organ. Hepatic stellate cell (HSC) are presently regarded as one of the key cell types involved in the progression of liver fibrosis. The activation of HSC to a proliferative, myofibroblastic phenotype plays a key role in hepatic fibrogenesis, since these cells are the principal cellular source of the excess collagen synthesis during hepatic fibrosis. Efforts have been made to search for effective anti-fibrotic agents. However, no effective antifibrotic therapies are available until now. It is hoped that understanding the molecular pathophysiology of hepatic fibrosis will lead to novel therapeutic strategies and anti-fibrotic drugs.
     SQDG is standardized extract of the Chinese herb prescription composed of Paeonia lactiflora and Astragalus membranaceus. SQDG was mainly composed of paeoniflorin and astragaloside IV etc. Our previous studies have shown that SQDG has protective effects on carbon tetrachloride (CCl4)-induced liver injury and Bacillus Calmette-Guérin (BCG) plus lipopolysaccharide (LPS) induced liver injury. To further evaluate the antifibrotic activity of SQDG, the present study was designed to investigate the effects of SQDG on porcine serum-induced liver fibrosis rats in vivo. Furthermore, the actions of SQDG on markers of oxidative stress and fibrogenesis were investigated. In addition, the effects of paeoniflorin (Pae) on the proliferation of HSC-T6 stimulated with recombinant rat platelet derived growth factor-BB (rrPDGF-BB) were evaluated in vitro. The effect and relationship between G protein-AC-cAMP signal pathway and extracellular signal-regulated protein kinase (ERK) pathways in HSC-T6 stimulated with rrPDGF-BB was also investigated. Meanwhile, the effects of Pae on the signal transduction protein were observed by Western-blot analysis.
     OBJECTIVE The animal model of porcine serum-induced liver fibrosis was used to evaluate the protective effects of SQDG according to the changes of histopathological examination, serum transaminase activities, serum fibrotic markers and lipid peroxidation. Effects of Pae on the proliferation of HSC-T6 stimulated with rrPDGF-BB and expression of cyclooxygenase-2 (COX-2) were observed. The effect and relationship between G protein-AC-cAMP signal pathway and ERK1/2 pathways in HSC-T6 stimulated with rrPDGF-BB were also investigated. To confirm the mechanisms of Pae, the effects of Pae on the signal transduction proteins were measured meanwhile.
     METHODS Rats were intraperitoneally injected with 0.5 ml of porcine serum twice a week to establish immunological liver fibrosis model. The rats were randomly divided into normal control group, liver fibrosis model group, SQDG (42.5, 85, 170mg·kg~(-1)) treated group and colchicine (0.1mg/kg) treated group. HE stain and Masson stain were used to examine the histopathological change. The activities of transaminase in serum, malondiadehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, hydroxyproline (Hyp) content in liver homogenate were assayed by spectrophotometry. The level of hyaluronic acid (HA), procollagen III (PCIII), collagen type IV (CIV), laminin (LN) and prostaglandin E2 (PGE2) in serum were determined by radioimmunoassay. The proliferation of HSC was measured by MTT assay. The level of cAMP in HSC-T6 was determined by radioimmunoassay. The expression of COX-2, G protein and ERK1/2 of HSC-T6 were detected by Western blot analysis.
     RESULTS
     1. Protective effects of SQDG on immunological hepatic fibrosis induced by porcine serum in rats
     SQDG at doses of 85 and 170mg·kg~(-1) had obvious protective effects on porcine serum-induced hepatic fibrosis in rats. SQDG treatment prevented the increase of liver and spleen indices. The results showed that the serum ALT and AST decreased by SQDG treatment, but had no significant difference compared with model group. Pathological examination showed that SQDG could remarkably alleviate the hepatic fibrosis. SQDG not only decreased the Hyp content in liver homogenates, but also decreased the elevated level of HA, LN, PCIII, CIV in serum, which indicate that SQDG decrease the ECM production of hepatic fibrosis rats.
     SQDG also ameliorated the oxidative stress state of hepatic fibrosis rats, decreased the production of MDA and enhanced the activities of antioxidative enzyme including SOD and GSH-Px. SQDG had anti-inflammatory effect on hepatic fibrosis rats, which evidenced by inhibiting the production of PGE2 in serum. Furthermore, SQDG significantly inhibited the proliferation of isolated rat HSC. Western bolt showed that SQDG could significantly decrease the elevated expression of PDGFR-βin liver tissue of fibrotic rats. The results mentioned above suggest that SQDG ameliorate oxidative state of liver, inhibite the production of inflammatory cytokines, and inhibite the proliferation of HSC, which may be part of the mechanisms of SQDG anti-fibrotic effects.
     2. Effects of SQDG on the expression of MAPK and G proteins in immunological liver fibrosis rats
     In the liver tissue of porcine serum induced liver fibrosis rat, the phosphorylation of ERK1/2, p38 and JNK were significantly increased. The expression of Gαs decreased, Gαi-2 and Gαi-3 increased significantly, but the expression of Gαi~(-1) had no significant change compared with normal rats. Treatment with SQDG could remarkably alleviated above changes. These results indicated that SQDG probabley through regulating MAPK and ERK1/2 signal transduction to exert its anti-fibrotic effects.
     3. Effect of Pae on the proliferation of HSC-T6 stimulated with rrPDGF-BB
     HSC-T6 stimulated with rrPDGF-BB (50μg?L~(-1)) was used as in vitro model to evaluate the antiproliferative effect of Pae. Pae at concentration of 12.5~200mg?L~(-1) could significantly inhibit the proliferation of HSC-T6 stimulated with rrPDGF-BB. Results showed that rrPDGF-BB induced the expression of COX-2 in HSC-T6, and NS-398 (a selective inhibitor of COX-2) had inhibitory effect on the proliferation of HSC-T6 stimulated by rrPDGF-BB. Meanwhile, Pae(50, 100 mg?L~(-1)) significantly decreased the expression of COX-2 in HSC-T6. This suggested that decrease the expression of COX-2 is one of mechanisims of Pae in inhibiting the proliferation of HSC-T6.
     4. Effect of Pae on the activation of ERK1/2 in HSC-T6 stimulated with rrPDGF-BB
     The results of Western blot showed that rrPDGF-BB induced the rapid phosphorylation of ERK1/2 in HSC-T6. Addition of Pae(25, 50, 100 mg·L~(-1)) obviously decreased the level of phosphorylated ERK1/2. Thus, inhibiting the activation of ERK1/2 stimulated by rrPDGF-BB is one of the important mechanisms of the antiproliferative effects of Pae.
     5. Changes of G protein-AC-cAMP pathways in HSC-T6 stimulated with rrPDGF-BB and the effect of Pae
     The changes of the expression of G-protein in HSC-T6 stimulated with rrPDGF-BB (50μg·L~(-1)) were detected by Western-blot. The results showed that the expression of Gαi~(-1) and Gαi-2 were remarkably increased in HSC-T6 stimulated by rrPDGF-BB, but the expression of Gαi-3 and Gαs had no significant change. Meanwhile, the level of cAMP and the activity of PKA in HSC-T6 were obviously decreased after addition of rrPDGF-BB. The expression of Gαi~(-1) and Gαi-2 were remarkably inhibited by Pae(50, 100 mg·L~(-1)), which also increased the level of cAMP in cells, and then inhibited the proliferation of HSC-T6. The correlation analysis demonstrated that the effect of Pae on inhibiting the proliferation of HSC-T6 is correlated intimately with its effect on increasing cAMP level in HSC-T6. The results above indicated that Pae probably inhibit the proliferation of HSC-T6 induced by rrPDGF-BB via Gi-AC-cAMP pathway.
     6. Relationship between ERK1/2 and Gi protein mediated signal transduction in HSC-T6 stimulated with rrPDGF-BB
     Pertussis toxin (PT), inhibiting the role of Gi protein, is used to detect the effect of PT sensitive G protein on the activation of ERK1/2 in HSC-T6 stimulated with rrPDGF-BB. The results showed that PT significantly decreased the phosphorylation of ERK1/2 and inhibited the proliferation of HSC-T6. These results suggested that PT sensitive Gi protein could regulate the activation of ERK1/2. U0126, a specific inhibitor of MEK, is used to inhibit the activation of ERK1/2 and further explore the effect of ERK1/2 on Gi protein mediated signal transduction in HSC-T6 stimulated with rrPDGF-BB. The results showed that U0126 had no obvious effects not only on the expression of Gαi~(-1) and Gαi-2, but also on the level of cAMP and the activity of PKA in HSC-T6 stimulated by rrPDGF-BB. These data indicate that PT sensitive Gi protein and PKA located upstream of ERK1/2. Pae probably through downregulating Gi-AC-cAMP pathway to inhibit the activation of ERK1/2, thus inhibit the proliferation of HSC-T6 stimulated by rrPDGF-BB.
     CONCLUSIONS
     1. SQDG has protective effect on liver fibrosis rats induced by porcine serum. The mechanisms of its anti-fibrotic effects may be associated with its action of ameliorating the oxidative stress in liver, inhibiting the production of inflammatory cytokines and inhibiting the proliferation of HSC and so on.
     2. The expression of COX-2 was constantly increased in HSC-T6 after stimulating by rrPDGF-BB. NS-398 (a selective inhibitor of COX-2) had significant inhibitory effect on the proliferation of HSC-T6 stimulated by rrPDGF-BB. Meanwhile, Pae significantly decreased the expression of COX-2 in HSC-T6. This suggested that decrease the expression of COX-2 is one of mechanisms of Pae in inhibiting the proliferation of HSC-T6.
     3. rrPDGF-BB induced the rapid phosphorylation of ERK1/2 in HSC-T6. Addition of Pae (25, 50, 100 mg·L~(-1)) obviously decreased the level of phosphorylated ERK1/2. U0126 (a specific inhibitor of MEK) significantly inhibited the expression of COX-2 in HSC-T6 stimulated by rrPDGF-BB. Thus, inhibiting the activation of ERK1/2 stimulated by rrPDGF-BB, then inhibit the expression of COX-2 in HSC-T6 is one of the important mechanisms of the antiproliferative effects of Pae.
     4. The expression of Gαi~(-1) and Gαi-2 were remarkably increased in HSC-T6 stimulated by rrPDGF-BB. Meanwhile, the level of cAMP and the activity of PKA in HSC-T6 were obviously decreased after addition of rrPDGF-BB. Pae significantly inhibited the expression of Gαi~(-1) and Gαi-2, which also increased the level of cAMP in cells, and then inhibited the proliferation of HSC-T6. The effect of Pae on inhibiting the proliferation of HSC-T6 is correlated intimately with its effect on increasing cAMP level in HSC-T6. The results suggested that Pae probably inhibit the proliferation of HSC-T6 induced by rrPDGF-BB via Gi-AC-cAMP pathway.
     5. PT significantly decreased the phosphorylation of ERK1/2 and inhibited the proliferation of HSC-T6. On the other hand, U0126 had no obvious effect not only on the expression of Gαi~(-1) and Gαi-2, but also on the level of cAMP and the activity of PKA in HSC-T6 stimulated by rrPDGF-BB. These data indicated that PT sensitive Gi protein and PKA located upstream of ERK1/2. Pae probably through downregulating Gi-AC-cAMP pathway to inhibit the activation of ERK1/2, thus inhibit the proliferation of HSC-T6 stimulated by rrPDGF-BB.
引文
1. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest, 2005; 115(2): 209-218
    2. Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin Chim Acta, 2006;364(1-2):33-60
    3. Moreira RK. Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med, 2007;131(11):1728-1734
    4. Friedman SL. Stellate cells: a moving target in hepatic fibrogenesis. Hepatology, 2004; 40(5): 1041-1043
    5. Eng FJ, Friedman SL.Fibrogenesis I. New insights into hepatic stellate cell activation: the simple becomes complex. Am J Physiol Gastrointest Liver Physiol, 2000;279(1):G7-G11
    6. Saile B, Ramadori G. Inflammation, damage repair and liver fibrosis--role of cytokines and different cell types. Z Gastroenterol, 2007;45(1):77-86
    7. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev, 2008;88(1):125-172
    8. Amakawa M, Endo Y. The motility of hepatic Ito cells can be acquired by their myofibroblastic transformation. Arch Histol Cytol, 2002;65(2):169-178
    9. Yang C, Zeisberg M, Mosterman B, Sudhakar A, Yerramalla U, Holthaus K, Xu L, Eng F, Afdhal N, Kalluri R. Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology, 2003;124(1):147-159
    10. Breitkopf K, Roeyen C, Sawitza I, Wickert L, Floege J, Gressner AM. Expression patterns of PDGF-A, -B, -C and -D and the PDGF-receptors alpha and beta in activated rat hepatic stellate cells (HSC). Cytokine, 2005;31(5):349-357
    11. Gabele E, Brenner DA, Rippe RA. Liver fibrosis: signals leading to theamplification of the fibrogenic hepatic stellate cell. Front Biosci, 2003; 8:d69-77
    12. Prosser CC, Yen RD, Wu J. Molecular therapy for hepatic injury and fibrosis: where are we? World J Gastroenterol, 2006;12(4):509-515
    13. Williams CS, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene, 1999;18(55):7908-7916
    14. Turini ME, DuBois RN. Cyclooxygenase-2: a therapeutic target. Annu Rev Med, 2002;53:35-57
    15. Kim SH, Chu HJ, Kang DH, Song GA, Cho M, Yang US, Kim HJ, Chung HY. NF-kappa B binding activity and cyclooxygenase-2 expression in persistent CCl4-treated rat liver injury. J Korean Med Sci, 2002;17(2):193-200
    16. Spitzer JA, Zheng M, Kolls JK, Vande Stouwe C, Spitzer JJ. Ethanol and LPS modulate NF-kappaB activation, inducible NO synthase and COX-2 gene expression in rat liver cells in vivo. Front Biosci, 2002;7:a99-108
    17. Cheng J, Imanishi H, Iijima H, Shimomura S, Yamamoto T, Amuro Y, Kubota A, Hada T. Expression of cyclooxygenase 2 and cytosolic phospholipase A(2) in the liver tissue of patients with chronic hepatitis and liver cirrhosis. Hepatol Res, 2002;23(3):185-195.
    18. Nieto N, Greenwel P, Friedman SL, Zhang F, Dannenberg AJ, Cederbaum AI.Ethanol and arachidonic acid increase alpha 2(I) collagen expression in rat hepatic stellate cells overexpressing cytochrome P450 2E1. Role of H2O2 and cyclooxygenase-2. J Biol Chem, 2000;275(26):20136-20145
    19. Gutierrez-Reyes G, Gutierrez-Ruiz MC, Kershenobich D. Liver fibrosis and chronic viral hepatitis. Arch Med Res, 2007;38(6):644-651
    20.尚瑞莲.肝纤维化的病因.见:权启镇,孙自勤,王要军主编.新肝脏病学,第1版,济南:山东科学技术出版社,2003:304-309
    21. Friedman SL, Bansal MB. Reversal of hepatic fibrosis-fact or fantasy? Hepatology, 2006; 43(2 Suppl 1): S82-88
    22. Luk JM, Wang X, Liu P, Wong KF, Chan KL, Tong Y, Hui CK, Lau GK, Fan ST. Traditional Chinese herbal medicines for treatment of liver fibrosis and cancer: from laboratory discovery to clinical evaluation. Liver Int, 2007;27(7):879-890
    23.李晓杰,车景超.中药抗肝纤维化研究进展.中国中医药信息杂志, 2007;14(9): 94-96
    24.胡义扬.肝纤维化的中医药治疗及其特点.中国中西医结合杂志, 2006;26(1):10-11
    25.王伯祥主编.中医肝胆病学.第1版,北京:中国医药科技出版社,1997:1~19
    26. Sun WY, Wei W, Wu L, Gui SY, Wang H. Effects and mechanisms of extract from Paeonia lactiflora and Astragalus membranaceus on liver fibrosis induced by carbon tetrachloride in rats. J Ethnopharmacol, 2007; 112(3): 514-523
    27.吴丽,魏伟,桂双英,孙妩弋.芍芪多苷对小鼠急性化学性肝损伤的保护作用.中国中药杂志, 2006;31(21):1807-1810
    28.邵芙蓉,魏伟,刘浩,孙妩弋,李响.不同方法提取的复方芍芪多苷对小鼠免疫性肝损伤保护作用比较.安徽中医学院学报, 2007;26(5):21-24
    29.胡荣昕,缪伟峰.肝纤维化动物模型的研究概况.实用肝脏病杂志, 2007;10(2):133-135
    30.赵宗江,张新雪.实验性肝纤维化动物模型研究述评.中国中西医结合消化杂志, 2007;15(3):201-203
    31. Okuno M, Akita K, Moriwaki H, Kawada N, Ikeda K, Kaneda K, Suzuki Y, Kojima S. Prevention of rat hepatic fibrosis by the protease inhibitor, camostat mesilate, via reduced generation of active TGF-beta. Gastroenterology, 2001;120(7):1784-1800
    32. Baba Y, Saeki K, Onodera T, Doi K. Serological and immunohistochemical studies on porcine-serum-induced hepatic fibrosis in rats. Exp Mol Pathol, 2005;79(3):229-235
    33. Li C, Luo J, Li L, Cheng M, Huang N, Liu J, Waalkes MP. The collagenolytic effects of the traditional Chinese medicine preparation, Han-Dan-Gan-Le, contributeto reversal of chemical-induced liver fibrosis in rats. Life Sci, 2003;72(14):1563-1571
    34. Alpini G, Phillips JO, Vroman B, LaRusso NF. Recent advances in the isolation of liver cells. Hepatology, 1994;20(2):494-514
    35. Weiskirchen R, Gressner AM. Isolation and culture of hepatic stellate cells. Methods Mol Med, 2005;117:99-113
    36. Ramm GA. Isolation and culture of rat hepatic stellate cells. J Gastroenterol Hepatol, 1998;13(8):846-851
    37. Tan Y, Lv ZP, Bai XC, Liu XY, Zhang XF. Traditional Chinese medicine Bao Gan Ning increase phosphorylation of CREB in liver fibrosis in vivo and in vitro. J Ethnopharmacol, 2006;105(1-2):69-75
    38. Fryer MW. An N-ethylmaleimide-sensitive G-protein modulates Aplysia Ca2+ channels. Neurosci Lett, 1992;146(1):84-86
    39. Zhang JP, Zhang M, Zhou JP, Liu FT, Zhou B, Xie WF, Guo C. Antifibrotic effects of matrine on in vitro and in vivo models of liver fibrosis in rats. Acta Pharmacol Sin, 2001;22(2):183-186
    40.程明亮,杨长青.肝纤维化的基础研究及临床(第二版).北京:人民卫生出版社,2002:1
    41. Baba Y, Doi K.MHC class II-related genes expression in porcine-serum-induced rat hepatic fibrosis. Exp Mol Pathol, 2004;77(3):214-221
    42. Gotardo BM, Andrade RG, Oliveira LF, Andrade ZA. Production of septal fibrosis of the liver by means of foreign protein injections into rats. Rev Soc Bras Med Trop, 2003;36(5):577-580
    43. Wang H, Wei W, Wang NP, Wu CY, Yan SX, Yue L, Zhang LL, Xu SY. Effects of total glucosides of peony on immunological hepatic fibrosis in rats. World J Gastroenterol, 2005;11(14):2124-2129
    44. Tangkijvanich P, Kongtawelert P, Pothacharoen P, Mahachai V, Suwangool P,Poovorawan Y. Serum hyaluronan: a marker of liver fibrosis in patients with chronic liver disease. Asian Pac J Allergy Immunol, 2003;21(2):115-120
    45. Zheng M, Cai W, Weng H, Liu R. Determination of serum fibrosis indexes in patients with chronic hepatitis and its significance. Chin Med J (Engl), 2003;116(3):346-349
    46. Xie SB, Yao JL, Zheng RQ, Peng XM, Gao ZL. Serum hyaluronic acid, procollagen type III and IV in histological diagnosis of liver fibrosis. Hepatobiliary Pancreat Dis Int, 2003;2(1):69-72
    47. Bolarin DM, Azinge EC. Biochemical markers, extracellular components in liver fibrosis and cirrhosis. Nig Q J Hosp Med, 2007;17(1):42-52
    48. Par A, Par G. Liver fibrosis: pathophysiology, diagnosis and treatment. Orv Hetil, 2005;146(1):3-13
    49. Attallah AM, Toson EA, Shiha GE, Omran MM, Abdel-Aziz MM, El-Dosoky I. Evaluation of serum procollagen aminoterminal propeptide III, laminin, and hydroxyproline as predictors of severe fibrosis in patients with chronic hepatitis C. J Immunoassay Immunochem, 2007;28(3):199-211
    50. Hess J, Thorens J, Pache I, Troillet FX, Moradpour D, Gonvers JJ. Auto-immune liver diseases and their treatment. Rev Med Suisse, 2005;1(3):242, 245-247
    51. Yao XX, Jiang SL, Yao DM. Current research of hepatic cirrhosis in China. World J Gastroenterol, 2005;11(5):617-622
    52. Apte M. Oxidative stress: does it 'initiate' hepatic stellate cell activation or only 'perpetuate' the process? J Gastroenterol Hepatol, 2002;17(10):1045-1048
    53. Gebhardt R. Oxidative stress, plant-derived antioxidants and liver fibrosis. Planta Med, 2002;68(4):289-296
    54. Lu G, Shimizu I, Cui X, Itonaga M, Tamaki K, Fukuno H, Inoue H, Honda H, Ito S. Antioxidant and antiapoptotic activities of idoxifene and estradiol in hepatic fibrosis in rats. Life Sci, 2004;74(7):897-907
    55. Smith WL, Langenbach R. Why there are two cyclooxygenase isozymes. J Clin Invest, 2001;107(12):1491-1495
    56. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem, 2000;69:145-182
    57. Hu KQ. Cyclooxygenase 2 (COX2)-prostanoid pathway and liver diseases. Prostaglandins Leukot Essent Fatty Acids, 2003;69(5):329-337
    58. Cervello M, Montalto G. Cyclooxygenases in hepatocellular carcinoma. World J Gastroenterol, 2006;12(32):5113-5121
    59. Wu T. Cyclooxygenase-2 in hepatocellular carcinoma. Cancer Treat Rev, 2006;32(1):28-44
    60. Nú?ez O, Fernández-Martínez A, Majano PL, Apolinario A, Gómez-Gonzalo M, Benedicto I, López-Cabrera M, BoscáL, Clemente G, García-Monzón C, Martín-Sanz P. Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins. Gut, 2004;53(11):1665-1672
    61. Ganey PE, Barton YW, Kinser S, Sneed RA, Barton CC, Roth RA. Involvement of cyclooxygenase-2 in the potentiation of allyl alcohol-induced liver injury by bacterial lipopolysaccharide. Toxicol Appl Pharmacol, 2001;174(2):113-121
    62. Hui AY, Cheng AS, Chan HL, Go MY, Chan FK, Sakata R, Ueno T, Sata M, Sung JJ. Effect of prostaglandin E2 and prostaglandin I2 on PDGF-induced proliferation of LI90, a human hepatic stellate cell line. Prostaglandins Leukot Essent Fatty Acids, 2004;71(5):329-333
    63. Roeb E, Rose-John S, Erren A, Edwards DR, Matern S, Graeve L, Heinrich PC. Tissue inhibitor of metalloproteinases-2 (TIMP-2) in rat liver cells is increased by lipopolysaccharide and prostaglandin E2. FEBS Lett, 1995;357(1):33-36
    64. Yamamoto H, Kondo M, Nakamori S, Nagano H, Wakasa K, Sugita Y, Chang-De J,Kobayashi S, Damdinsuren B, Dono K, Umeshita K, Sekimoto M, Sakon M, Matsuura N, Monden M. JTE-522, a cyclooxygenase-2 inhibitor, is an effective chemopreventive agent against rat experimental liver fibrosis. Gastroenterology, 2003;125(2):556-571
    65. PlanagumàA, Clària J, Miquel R, López-Parra M, Titos E, Masferrer JL, Arroyo V, Rodés J. The selective cyclooxygenase-2 inhibitor SC-236 reduces liver fibrosis by mechanisms involving non-parenchymal cell apoptosis and PPARgamma activation. FASEB J, 2005;19(9):1120-1122
    66. Cheng J, Imanishi H, Liu W, Iwasaki A, Ueki N, Nakamura H, Hada T. Inhibition of the expression of alpha-smooth muscle actin in human hepatic stellate cell line, LI90, by a selective cyclooxygenase 2 inhibitor, NS-398. Biochem Biophys Res Commun, 2002;297(5):1128-1134
    67. Horrillo R, PlanagumàA, González-Périz A, FerréN, Titos E, Miquel R, López-Parra M, Masferrer JL, Arroyo V, Clària J. Comparative protection against liver inflammation and fibrosis by a selective cyclooxygenase-2 inhibitor and a nonredox-type 5-lipoxygenase inhibitor. J Pharmacol Exp Ther, 2007;323(3):778-786
    68. Wallace K, Burt AD, Wright MC. Liver fibrosis. Biochem J, 2008;411(1):1-18
    69. Chan EP, Wells RG. Today's hepatic stellate cells: not your father's sternzellen. Hepatology, 2007;45(5):1326-1327
    70.辛绍杰,赵景民,王林杰,王松山.血小板衍生生长因子及其受体与病毒性肝炎肝纤维化的关系.中华实验和临床病毒学杂志, 1998;1 (1):51-54
    71. Lou SM, Li YM, Wang KM, Cai WM, Weng HL. Expression of platelet-derived growth factor-BB in liver tissues of patients with chronic hepatitis B. World J Gastroenterol, 2004;10(3):385-388
    72. Pinzani M, Gesualdo L, Sabbah GM, Abboud HE. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured ratliver fat-storing cells. J Clin Invest, 1989; 84(6):1786-1793
    73.刘学松,张锦生,张月娥.血小板衍生生长因子对大鼠肝星状细胞增殖和胶原及血小板源生长因子基因表达的影响.中华病理学杂志, 2000;29(1):27-29
    74. Alvarez RH, Kantarjian HM, Cortes JE. Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc, 2006;81(9):1241-1257
    75. Zhang BB, Cai WM, Weng HL, Hu ZR, Lu J, Zheng M, Liu RH. Diagnostic value of platelet derived growth factor-BB, transforming growth factor-beta1, matrix metalloproteinase-1, and tissue inhibitor of matrix metalloproteinase-1 in serum and peripheral blood mononuclear cells for hepatic fibrosis. World J Gastroenterol, 2003;9(11):2490-2496
    76. Lou SM, Li YM, Wang KM, Cai WM, Weng HL. Expression of platelet-derived growth factor-BB in liver tissues of patients with chronic hepatitis B. World J Gastroenterol, 2004;10(3):385-388
    77.彭小斌,张国安,刘小朋,陈紫榕,施水兰.乙型肝炎患者TNF-α和PDGF水平及其与肝纤维化的关系.胃肠病学和肝病学杂志, 2000;9(3):201-202
    78. Borkham-Kamphorst E, Stoll D, Gressner AM, Weiskirchen R. Inhibitory effect of soluble PDGF-beta receptor in culture-activated hepatic stellate cells. Biochem Biophys Res Commun, 2004; 317(2):451-462
    79. Borkham-Kamphorst E, Herrmann J, Stoll D, Treptau J, Gressner AM, Weiskirchen R. Dominant-negative soluble PDGF-beta receptor inhibits hepatic stellate cell activation and attenuates liver fibrosis. Lab Invest, 2004;84(6):766-777
    80. Borkham-Kamphorst E, Stoll D, Gressner AM, Weiskirchen R. Antisense strategy against PDGF B-chain proves effective in preventing experimental liver fibrogenesis. Biochem Biophys Res Commun, 2004; 321(2):413-423
    81. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev, 2004;15(4):255-273
    82. Cuschieri J, Maier RV. Mitogen-activated protein kinase (MAPK). Crit Care Med,2005; 33(12 Suppl):S417-9
    83. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002; 298(5600):1911-1912
    84. Hommes DW, Peppelenbosch MP, van Deventer SJ. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut, 2003;52(1):144-151
    85. Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis, 2001;21(3):397-416
    86. Qiang H, Lin Y, Zhang X, Zeng X, Shi J, Chen YX, Yang MF, Han ZG, Xie WF. Differential expression genes analyzed by cDNA array in the regulation of rat hepatic fibrogenesis. Liver Int, 2006;26(9):1126-1137
    87. Cao Q, Mak KM, Lieber CS. Leptin represses matrix metalloproteinase-1 gene expression in LX2 human hepatic stellate cells. J Hepatol, 2007;46(1):124-133.
    88. Anania FA, Womack L, Jiang M, Saxena NK. Aldehydes potentiateα2(I) collagen gene activity by JNK in hepatic stellate cells. Free Radic Biol Med, 2001;30(8):846-857
    89. Varela-Rey M, Montiel-Duarte C, Osés-Prieto JA, López-Zabalza MJ, Jaffrèzou JP, Rojkind M, Iraburu MJ. p38 MAPK mediates the regulation ofα1(I) procollagen mRNA levels by TNF-alpha and TGF-beta in a cell line of rat hepatic stellate cells. FEBS Lett, 2002;528(1-3):133-138
    90.蒋明德.肝纤维化发生中的MAPK信号传导通路.第四军医大学学报,2005;26(8):766-767
    91. Parsons CJ, Takashima M, Rippe RA. Molecular mechanisms of hepatic fibrogenesis. J Gastroenterol Hepatol, 2007;22 Suppl 1:S79-84
    92. Zhang Y, Dong C. Regulatory mechanisms of mitogen-activated kinase signaling. Cell Mol Life Sci, 2007;64(21):2771-2789
    93. Marra F, Arrighi MC, Fazi M, Caligiuri A, Pinzani M, Romanelli RG, Efsen E, LaffiG, Gentilini P. Extracellular signal-regulated kinase activation differentially regulates platelet-derived growth factor's actions in hepatic stellate cells, and is induced by in vivo liver injury in the rat. Hepatology, 1999; 30(4):951-958
    94. Pages G, Lenormand P, L'Allemain G, Chambard JC, Meloche S, Pouyssegur J. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci U S A, 1993; 90(18):8319-8323
    95. Marra F, Pinzani M, DeFranco R, Laffi G, Gentilini P. Involvement of phosphatidylinositol 3-kinase in the activation of extracellular signal-regulated kinase by PDGF in hepatic stellate cells. FEBS Lett, 1995; 376(3):141-145
    96. Reeves HL, Thompson MG, Dack CL, Burt AD, Day CP. The role of phosphatidic acid in platelet-derived growth factor-induced proliferation of rat hepatic stellate cells. Hepatology, 2000; 31(1):95-100
    97. Lu L, Wei L, Peng G, Mu Y, Wu K, Kang L, Yan X, Zhu Y, Wu J. NS3 protein of hepatitis C virus regulates cyclooxygenase-2 expression through multiple signaling pathways. Virology, 2008;371(1):61-70
    98. Wang YQ, Luk JM, Chu AC, Ikeda K, Man K, Kaneda K, Fan ST. TNP-470 blockage of VEGF synthesis is dependent on MAPK/COX-2 signaling pathway in PDGF-BB-activated hepatic stellate cells. Biochem Biophys Res Commun, 2006;341(1):239-244
    99. Sch?neberg T, Schultz G, Gudermann T. Structural basis of G protein-coupled receptor function. Mol Cell Endocrinol, 1999;151(1-2):181-193
    100. Hur EM, Kim KT. G protein-coupled receptor signalling and cross-talk: achieving rapidity and specificity. Cell Signal, 2002;14(5):397-405
    101. Seifert R, Wenzel-Seifert K. Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol, 2002;366(5):381-416
    102. Naor Z, Benard O, Seger R. Activation of MAPK Cascades by G-protein-coupledReceptors: The Case of Gonadotropin- releasing Hormone Receptor. Trends Endocrinol Metab, 2000;11(3):91-99
    103. Kataoka R, Sherlock J, Lanier SM. Signaling events initiated by transforming growth factor-β1 that require Gi alpha 1. J Biol Chem, 1993;268(26):19851-19857
    104. Vivien D, Galera P, Lebrun E, Daireaux M, Loyau G, Pujol JP. TGF-beta-induced G2/M delay in proliferating rabbit articular chondrocytes is associated with an enhancement of replication rate and a cAMP decrease: possible involvement of pertussis toxin-sensitive pathway. J Cell Physiol, 1992;150(2):291-298
    105. Steiner MS, Wand GS, Barrack ER. Effects of transforming growth factor beta 1 on the adenylyl cyclase-cAMP pathway in prostate cancer. Growth Factors, 1994;11(4):283-290
    106. Solis-Herruzo JA, Hernandez I, De la Torre P, Garcia I, Sanchez JA, Fernandez I, Castellano G, Munoz-Yague T. G proteins are involved in the suppression of collagen alpha 1 (I) gene expression in cultured rat hepatic stellate cells. Cell Signal, 1998; 10(3):173-183
    107. Hernández-Mu?oz I, de la Torre P, Sánchez-Alcázar JA, García I, Santiago E, Mu?oz-Yagüe MT, Solís-Herruzo JA. Tumor necrosis factor alpha inhibits collagen alpha 1(I) gene expression in rat hepatic stellate cells through a G protein. Gastroenterology, 1997;113(2):625-640
    108. Hamm HE. The many faces of G protein signaling. J Biol Chem, 1998;273(2):669-672
    109. Wess J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J, 1997; 11(5):346-354
    110. Stork PJ, Schmitt JM. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol, 2002; 12(6):258-266
    111. Werry TD, Sexton PM, Christopoulos A. "Ins and outs" of seven-transmembrane receptor signalling to ERK. Trends Endocrinol Metab, 2005; 16(1):26-33
    112. Chen J, Iyengar R. Suppression of Ras-induced transformation of NIH 3T3 cells by activated G alpha s. Science, 1994; 263(5151):1278-1281
    113. Conway AM, Rakhit S, Pyne S, Pyne NJ. Platelet-derived-growthfactor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxin-sensitive G-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase. Biochem J , 1999;337(Pt 2):171-177
    114. Rosenfeldt HM, Hobson JP, Maceyka M, Olivera A, Nava VE, Milstien S, Spiegel S. EDG-1 links the PDGF receptor to Src and focal adhesion kinase activation leading to lamellipodia formation and cell migration. FASEB J, 2001;15(14):2649-2659
    115. Freedman NJ, Kim LK, Murray JP, Exum ST, Brian L, Wu JH, Peepel K. Phosphorylation of the platelet-derived growth factor receptor-beta and epidermal growth factor receptor by G protein-coupled receptor kinase-2. Mechanisms for selectivity of desensitization. J Biol Chem, 2002; 277(50): 48261-48269
    116. Alderton F, Rakhit S, Kong KC, Palmer T, Sambi B, Pyne S, Pyne NJ. Tethering of the platelet-derived growth factor beta receptor to G-protein-coupled receptors. A novel platform for integrative signaling by these receptor classes in mammalian cells. J Biol Chem, 2001; 276(30):28578-28585
    117. Graves LM, Bornfeldt KE, Raines EW, Potts BC, Macdonald SG, Ross R, Krebs EG. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci U S A, 1993; 90(21):10300-10304
    118. Zhang Y, Luo Y, Zhai Q, Ma L, Dorf ME. Negative role of cAMP-dependent protein kinase A in RANTES-mediated transcription of proinflammatory mediators through Raf. FASEB J, 2003;17(6):734-736
    1. Ghosn J. Liver fibrosis and antiretroviral therapy. Clin Infect Dis, 2006;42(2):271-272
    2. Friedman SL, Bansal MB. Reversal of hepatic fibrosis - Fact or fantasy? Hepatology, 2006;43(2 Suppl 1):S82-8
    3. Friedman SL. Stellate cells: a moving target in hepatic fibrogenesis. Hepatology, 2004;40(5):1041-1043
    4. Guyot C, Lepreux S, Combe C, Doudnikoff E, Bioulac-Sage P, Balabaud C, Desmouliere A. Hepatic fibrosis and cirrhosis: the (myo)fibroblastic cell subpopulations involved. Int J Biochem Cell Biol, 2006;38(2):135-151
    5. Rippe RA, Brenner DA. From quiescence to activation: Gene regulation in hepaticstellate cells. Gastroenterology, 2004;127(4):1260-1262
    6. Hui AY, Friedman SL. Molecular basis of hepatic fibrosis. Expert Rev Mol Med, 2003;5(5):1-23
    7. Kaczynski J, Cook T, Urrutia R. Sp1- and Krüppel-like transcription factors. Genome Biol, 2003;4(2):206
    8. Black AR, Black JD, Azizkhan-Clifford J. Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol, 2001;188(2):143-160
    9. Rippe RA, Almounajed G, Brenner DA. Sp1 binding activity increases in activated Ito cells. Hepatology, 1995; 22(1):241-251
    10. Chen A, Davis BH. The DNA binding protein BTEB mediates acetaldehyde-induced, jun N-terminal-dependentα1(I) collagen gene expression in rat hepatic stellate cells. Mol Cell Biol, 2000; 20(8):2818-2826
    11. Kim Y, Ratziu V, Choi S-G, Lalazar A, Theiss G, Dang Q, Kim SJ, Friedman SL. Transcriptional activation of transforming growth factorβ1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem, 1998; 273(50): 33750-33758
    12. Yasuda K, Hirayoshi K, Hirata H, Kubota H, Hosokawa N, Nagata K. The Kruppel-like factor Zf9 and proteins in the Sp1 family regulate the expression of HSP47, a collagen-specific molecular chaperone. J Biol Chem, 2002;277(47):44613-44622
    13. Schnabl B, Hu K, Muhlbauer M, Hellerbrand C, Stefanovic B, Brenner DA, Scholmerich J. Zinc finger protein 267 is up-regulated during the activation process of human hepatic stellate cells and functions as a negative transcriptional regulator of MMP-10. Biochem Biophys Res Commun, 2005;335(1):87-96
    14. Shaulian E, Karin M. AP-1 in cell proliferation and survival. Oncogene,2001;20(19):2390-2400
    15. Takahra T, Smart DE, Oakley F, Mann DA. Induction of myofibroblast MMP-9 transcription in three-dimensional collagen I gel cultures: regulation by NF-kappaB, AP-1 and Sp1. Int J Biochem Cell Biol, 2004; 36(2):353-363
    16. Smart DE, Vincent KJ, Arthur MJ, Eickelberg O, Castellazzi M, Mann J, Mann DA. JunD regulates transcription of the tissue inhibitor of metalloproteinases-1 and interleukin-6 genes in activated hepatic stellate cells. J Biol Chem, 2001;276(26):24414-24421
    17. Bahr MJ, Vincent KJ, Arthur MJ, Fowler AV, Smart DE, Wright MC, Clark IM, Benyon RC, Iredale JP, Mann DA. Control of the tissue inhibitor of metalloproteinases-1 promoter in culture-activated rat hepatic stellate cells: regulation by activator protein-1 DNA binding proteins. Hepatology, 1999;29(3):839-848
    18. Czyz M. Specificity and selectivity of the NFkappaB response. Postepy Biochem, 2005;51(1):60-68
    19. Sun Z, Andersson R. NF-kappaB activation and inhibition: a review. Shock, 2002;18(2):99-106
    20. Gilmore TD. The Re1/NF-kappa B/I kappa B signal transduction pathway and cancer. Cancer Treat Res, 2003;115:241-265
    21. Elsharkawy AM, Wright MC, Hay RT, Arthur MJ, Hughes T, Bahr MJ, Degitz K, Mann DA. Persistent activation of nuclear factor-kappaB in cultured rat hepatic stellate cells involves the induction of potentially novel Rel-like factors and prolonged changes in the expression of IkappaB family proteins. Hepatology, 1999;30(3):761-769
    22. Lang A, Schoonhoven R, Tuvia S, Brenner DA, Rippe RA. Nuclear factor kappaB in proliferation, activation, and apoptosis in rat hepatic stellate cells. J Hepatol, 2000; 33(1):49-58
    23. Wang X, Tang X, Gong X, Albanis E, Friedman SL, Mao Z. Regulation of hepatic stellate cell activation and growth by transcription factor myocyte enhancer factor 2. Gastroenterology, 2004; 127(4):1174-1188
    24. Rippe RA, Brenner DA. From quiescence to activation: Gene regulation in hepatic stellate cells. Gastroenterology, 2004; 127(4):1260-1262
    25. Senoo H. Structure and function of hepatic stellate cells. Med Electron Microsc, 2004; 37(1):3-15
    26. Pinzani M, Gesualdo L, Sabbah GM, Abboud HE. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J Clin Invest, 1989; 84(6):1786-1793
    27. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev, 2004; 15(4):255-273
    28. Li X, Eriksson U. Novel PDGF family members: PDGF-C and PDGF-D. Cytokine Growth Factor Rev, 2003; 14(2):91-98
    29. Breitkopf K, Roeyen C, Sawitza I, Wickert L, Floege J, Gressner AM. Expression patterns of PDGF-A, -B, -C and -D and the PDGF-receptors alpha and beta in activated rat hepatic stellate cells (HSC). Cytokine, 2005; 31(5):349-357
    30. Pinzani M, Milani S, Herbst H, DeFranco R, Grappone C, Gentilini A, Caligiuri A, Pellegrini G, Ngo DV, Romanelli RG, Gentilini P. Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am J Pathol, 1996;148(3):785-800
    31. Carloni V, Pinzani M, Giusti S, Romanelli RG, Parola M, Bellomo G, Failli P, Hamilton AD, Sebti SM, Laffi G, Gentilini P. Tyrosine phosphorylation of focal adhesion kinase by PDGF is dependent on ras in human hepatic stellate cells. Hepatology, 2000; 31(1):131-140
    32. Lubman OY, Waksman G. Structural and thermodynamic basis for the interaction of the Src SH2 domain with the activated form of the PDGF beta-receptor. J Mol Biol,2003; 328(3):655-668
    33. Cuschieri J, Maier RV. Mitogen-activated protein kinase (MAPK). Crit Care Med, 2005; 33(12 Suppl):S417-9
    34. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002; 298(5600):1911-1912
    35. Gentilini A, Marra F, Gentilini P, Pinzani M. Phosphatidylinositol-3 kinase and extracellular signal-regulated kinase mediate the chemotactic and mitogenic effects of insulin-like growth factor-I in human hepatic stellate cells. J Hepatol, 2000;32(2):227-234
    36. Pinzani M, Marra F, Carloni V. Signal transduction in hepatic stellate cells. Liver, 1998; 18(1):2-13
    37. Pages G, Lenormand P, L'Allemain G, Chambard JC, Meloche S, Pouyssegur J. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci U S A, 1993; 90(18):8319-8323
    38. Marra F, Arrighi MC, Fazi M, Caligiuri A, Pinzani M, Romanelli RG, Efsen E, Laffi G, Gentilini P. Extracellular signal-regulated kinase activation differentially regulates platelet-derived growth factor's actions in hepatic stellate cells, and is induced by in vivo liver injury in the rat. Hepatology, 1999; 30(4):951-958
    39. Marra F, Pinzani M, DeFranco R, Laffi G, Gentilini P. Involvement of phosphatidylinositol 3-kinase in the activation of extracellular signal-regulated kinase by PDGF in hepatic stellate cells. FEBS Lett, 1995; 376(3):141-145
    40. Reeves HL, Thompson MG, Dack CL, Burt AD, Day CP. The role of phosphatidic acid in platelet-derived growth factor-induced proliferation of rat hepatic stellate cells. Hepatology, 2000; 31(1):95-100
    41. Schnabl B, Bradham CA, Bennett BL, Manning AM, Stefanovic B, Brenner DA. TAK1/JNK and p38 have opposite effects on rat hepatic stellate cells. Hepatology, 2001; 34(5):953-963
    42. Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S. MAPK pathways in radiation responses. Oncogene, 2003; 22(37):5885-5896
    43. Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal, 2000; 12(1):1-13
    44. Wymann MP, Marone R. Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr Opin Cell Biol, 2005;17(2):141-149
    45. Marra F, Gentilini A, Pinzani M, Choudhury GG, Parola M, Herbst H, Dianzani MU, Laffi G, Abboud HE, Gentilini P. Phosphatidylinositol 3-kinase is required for platelet-derived growth factor's actions on hepatic stellate cells. Gastroenterology, 1997; 112(4):1297-1306
    46. Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J, 2000; 346 Pt 3:561-576
    47. Toker A. Protein kinases as mediators of phosphoinositide 3-kinase signaling. Mol Pharmacol, 2000;57(4):652-658
    48. Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis, 2004; 9(6):667-676
    49. Kim AH, Khursigara G, Sun X, Franke TF, Chao MV. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol, 2001;21(3):893-901
    50. King WG, Mattaliano MD, Chan TO, Tsichlis PN, Brugge JS. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol, 1997; 17(8):4406-4418
    51. Murga C, Fukuhara S, Gutkind JS. A novel role for phosphatidylinositol 3-kinase beta in signaling from G protein-coupled receptors to Akt. J Biol Chem, 2000;275(16):12069-12073
    52. Reif S, Lang A, Lindquist JN, Yata Y, Gabele E, Scanga A, Brenner DA, Rippe RA. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling inhepatic stellate cell proliferation and type I collagen expression. J Biol Chem, 2003; 278(10):8083-8090
    53. Gabele E, Brenner DA, Rippe RA. Liver fibrosis: signals leading to the amplification of the fibrogenic hepatic stellate cell. Front Biosci, 2003; 8:d69-77
    54. Caligiuri A, De Franco RM, Romanelli RG, Gentilini A, Meucci M, Failli P, Mazzetti L, Rombouts K, Geerts A, Vanasia M, Gentilini P, Marra F, Pinzani M. Antifibrogenic effects of canrenone, an antialdosteronic drug, on human hepatic stellate cells. Gastroenterology, 2003;124(2):504-520
    55. Carloni V, Defranco RM, Caligiuri A, Gentilini A, Sciammetta SC, Baldi E, Lottini B, Gentilini P, Pinzani M. Cell adhesion regulates platelet-derived growth factor-induced MAP kinase and PI-3 kinase activation in stellate cells. Hepatology, 2002; 36(3):582-591
    56. Jones SM, Kazlauskas A. Growth-factor-dependent mitogenesis requires two distinct phases of signalling. Nat Cell Biol, 2001; 3(2):165-172
    57. Bonacchi A, Romagnani P, Romanelli RG, Efsen E, Annunziato F, Lasagni L, Francalanci M, Serio M, Laffi G, Pinzani M, Gentilini P, Marra F. Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem, 2001; 276(13):9945-9954
    58. Dufner A, Thomas G. Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res, 1999; 253(1):100-109
    59. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev, 2001; 15(7):807-826
    60. Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis, 2001; 21(3):397-416
    61. Skrtic S, Wallenius K, Gressner AM, Jansson JO. Insulin-like growth factor signaling pathways in rat hepatic stellate cells: importance for deoxyribonucleic acidsynthesis and hepatocyte growth factor production. Endocrinology, 1999;140(12):5729-5735
    62. Gabele E, Reif S, Tsukada S, Bataller R, Yata Y, Morris T, Schrum LW, Brenner DA, Rippe RA. The role of p70S6K in hepatic stellate cell collagen gene expression and cell proliferation. J Biol Chem, 2005; 280(14):13374-13382
    63. Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front Biosci, 2002; 7:d1720-1726
    64. Friedman SL. Cytokines and fibrogenesis. Semin Liver Dis, 1999;19(2):129-140
    65. Shek FW, Benyon RC. How can transforming growth factor beta be targeted usefully to combat liver fibrosis? Eur J Gastroenterol Hepatol, 2004;16(2):123-126
    66. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci, 2002; 7:d793-807
    67. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003; 113(6):685-700
    68. Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature, 1997;389(6651):631-635
    69. Inagaki Y, Truter S, Ramirez F. Transforming growth factor-beta stimulates alpha 2(I) collagen gene expression through a cis-acting element that contains an Sp1-binding site. J Biol Chem, 1994; 269(20):14828-14834
    70. Garcia-Trevijano ER, Iraburu MJ, Fontana L, Dominguez-Rosales JA, Auster A, Covarrubias-Pinedo A, Rojkind M. Transforming growth factor beta1 induces the expression of alpha1(I) procollagen mRNA by a hydrogen peroxide-C/EBPbeta-dependent mechanism in rat hepatic stellate cells. Hepatology, 1999; 29(3):960-970
    71. Leask A, Abraham DJ. The role of connective tissue growth factor, a multifunctionalmatricellular protein, in fibroblast biology. Biochem Cell Biol, 2003; 81(6):355-363
    72. Chen CC, Chen N, Lau LF. The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem, 2001;276(13):10443-10452
    73. Crean JK, Finlay D, Murphy M, Moss C, Godson C, Martin F, Brady HR. The role of p42/44 MAPK and protein kinase B in connective tissue growth factor induced extracellular matrix protein production, cell migration, and actin cytoskeletal rearrangement in human mesangial cells. J Biol Chem, 2002;277(46):44187-44194
    74. Grotendorst GR, Okochi H, Hayashi N. A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ, 1996; 7(4):469-480
    75. Williams EJ, Gaca MD, Brigstock DR, Arthur MJ, Benyon RC. Increased expression of connective tissue growth factor in fibrotic human liver and in activated hepatic stellate cells. J Hepatol, 2000;32(5):754-761
    76. Rachfal AW, Brigstock DR. Connective tissue growth factor (CTGF/CCN2) in hepatic fibrosis. Hepatol Res, 2003;26(1):1-9
    77. Reimann T, Hempel U, Krautwald S, Axmann A, Scheibe R, Seidel D, Wenzel KW. Transforming growth factor-beta1 induces activation of Ras, Raf-1, MEK and MAPK in rat hepatic stellate cells. FEBS Lett, 1997; 403(1):57-60
    78. Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem, 1999; 274(38):27161-27167
    79. Tsukada S, Westwick JK, Ikejima K, Sato N, Rippe RA. SMAD and p38 MAPK signaling pathways independently regulate alpha1(I) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells. J Biol Chem, 2005; 280(11):10055-10064
    80. Sato M, Shegogue D, Gore EA, Smith EA, McDermott PJ, Trojanowska M. Role of p38 MAPK in transforming growth factor beta stimulation of collagen production by scleroderma and healthy dermal fibroblasts. J Invest Dermatol, 2002;118(4):704-711
    81. Cao Q, Mak KM, Lieber CS. DLPC decreases TGF-beta1-induced collagen mRNA by inhibiting p38 MAPK in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol, 2002; 283(5):G1051-1061
    82. Furukawa F, Matsuzaki K, Mori S, Tahashi Y, Yoshida K, Sugano Y, Yamagata H, Matsushita M, Seki T, Inagaki Y, Nishizawa M, Fujisawa J, Inoue K. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Hepatology, 2003;38(4):879-889
    83. Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin Chim Acta, 2006; 364(1-2):33-60
    84. Marra F, DeFranco R, Grappone C, Milani S, Pastacaldi S, Pinzani M, Romanelli RG, Laffi G, Gentilini P. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am J Pathol, 1998; 152(2):423-430
    85. Schwabe RF, Schnabl B, Kweon YO, Brenner DA. CD40 activates NF-kappa B and c-Jun N-terminal kinase and enhances chemokine secretion on activated human hepatic stellate cells. J Immunol, 2001; 166(11):6812-6819
    86. Brun P, Castagliuolo I, Pinzani M, Palu G, Martines D. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol, 2005;289(3):G571-578
    87. Kisseleva T, Brenner DA. Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J Gastroenterol Hepatol, 2007;22 Suppl 1:S73-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700