电力电子变换器全数字化有源共模电磁干扰抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速功率开关器件的应用大大加快了电力电子装置的动态响应过程,降低了装置的体积与重量。然而功率器件的高速开关动作所引起电压与电流瞬变将会带来严重的电磁干扰(EMI)问题,其中共模EMI在变换器中占主要地位。国内外现已提出的共模EMI抑制方案大体分为改进PWM策略型、无源滤波型和有源/无源对消型三大类。针对目前共模EMI抑制中存在的问题,本文提出了采用全数字化并联有源共模EMI抑制技术,进行了以下六个方面的工作。
     第一,以单相全桥逆变器为例,对多桥臂开关变换器的共模EMI产生机理进行了研究,讨论了共模EMI噪声源和传播路径,指出基于噪声源串联等效电路的不足,提出了一种基于噪声源并联等效的单相全桥逆变器共模EMI等效电路。从时域和频域的角度,分析了单相全桥逆变器产生的共模电流波形与频谱特征,仿真与实验结果证明了并联等效电路的正确性。说明该等效电路适用叠加原理,能够更清晰地反映多桥臂电路中共模电流的传播机理。此外,该等效电路中每个桥臂中点的对地电容以及噪声源幅值都可以是不同的,为并联有源共模EMI抑制技术提供了理论基础,为补偿电路参数设计提供依据。
     第二,分析了单极倍频和双极性调制下单相全桥逆变器的共模电磁干扰,指出双极性SPWM调制下,单相全桥逆变器共模EMI理论上为0。但在实际装置中,由于驱动电路的传输延时不一致,导致两桥臂对角开关管驱动脉冲不能严格同步,从而使逆变器共模干扰变大。实验验证了预调整驱动脉冲沿能够有效的降低共模EMI水平,并提出了自调整驱动脉冲沿思路。对于不存在两个互补对称共模噪声源的场合,提出可以外加专门的补偿电路,实现并联有源共模EMI抑制。分析了并联有源共模EMI抑制中当补偿电流与噪声源共模电流大小相等方向相反时,补偿电路与被补偿桥臂的驱动信号延时不一致将影响共模电流抑制效果,与双极性调制下驱动脉冲延时不一致的问题具有相似性,指出共模噪声评估技术和脉冲沿闭环调整是系统中需要解决的两个主要技术。
     第三,针对数字化闭环控制系统中只需知道共模电流总体水平的变化趋势,并不需共模电流的详细频谱的情况,提出了以共模电流能量作为共模噪声的评估指标。研究了共模电流能量与全桥逆变器两桥臂对管的驱动信号延时之间的关系,结果表明共模电流能量在整个驱动信号延时时间内呈“V”字型对称衰减振荡,共模电流能量存在多个极小值。
     针对共模电流的检测问题,提出了两种方案:一是基于FPGA的共模电流检测系统,FPGA专门采样共模电流并计算共模电流能量,DSP实现变换器的控制并从FPGA读取共模电流能量,作为抑制控制系统中的反馈量;二是基于整流滤波后求能量的共模电流检测方法,通过分析整流滤波前后共模电流能量的关系说明了这种方法的可行性和有效性。此时,DSP既要控制变换器,又采集共模电流和计算共模电流能量。
     第四,根据共模电流能量与驱动信号延时之间的关系,针对大多情况下信号延时时间在±T/2(T为共模电流的振荡周期)范围内,关系曲线呈“V”型对称,提出基于局部最优搜索算法的共模电流能量搜索,同时指出当关系曲线中存在多个极小值时容易陷入局部最小值的缺陷。考虑DSP控制器中的编程实现,本文提出采用模拟退火搜索算法寻找共模电流能量的全局最小值。研究了模拟退火算法在共模电流能量和驱动脉冲延时关系曲线上的搜索过程,提出采用一种在搜索过程中保留中间最优解的改进模拟退火算法,通过仿真说明改进的模拟退火算法在搜索速度和搜索精度上的提高。
     第五,论述了数字化闭环控制的并联型共模电磁干扰抑制技术基本结构,讨论了直接并联补偿电路和间接并联补偿电路两种形式,即直接由逆变器直流母线提供以及外置低压直流电源。利用基于噪声源并联等效的共模电流模型讨论了补偿电路的输出电容和耦合电容的计算。通过实验验证了补偿电路输出电压的dv/dt以及输出电容影响着补偿电流的最大值和振荡频率。
     最后,建立了基于F2812数字化并联有源共模EMI抑制的单相半桥逆变器实验平台,通过高精密的全波整流滤波电路处理高频EMI电流,获取共模电流能量的评估指标,采用改进模拟退火搜索算法调整补偿电路驱动信号脉冲沿,实现共模电流最小能量的搜索,从而抑制EMI水平。实验结果表明了本文提出的基于模拟退火算法的数字化并联有源共模EMI抑制技术的正确性和有效性。
With the application of high-speed high-power switch devices, the dynamic performance of power electronic products has been improved and the volumes and weight have become small. However, severe electromagnetic interference (EMI) is produced due to high dv/dt and high di/dt caused by high speed switching of power devices. There are basically two types of EMI in power electronics, namely common mode EMI and differential mode EMI. Common mode EMI usually constitutes a major part in total EMI. Recently, many efficient CM EMI suppression methods have been presented. They can be categorized into three classes: modified PWM strategies, passive filters and active/passive compensatory filters. To address the problem existed in the reported common mode EMI suppression technique, a novel active common mode EMI suppression method with digital closed-loop control is proposed in this dissertation. The six main researches are listed as following:
     Firstly, common mode conducted EMI in single-phase full-bridge converter is analyzed in this dissertation, it discuss the noise source and the flowing path of common mode current. Appoint the shortcoming of common mode current equivalent circuit based on noise source in series, and propose a novel equivalent cirvuit of common mode EMI based on noise source in parallel. Conducted EMI in single-phase full-bridge is analysize and identified in time domain and frequency domain. Simulation and experimental results prove the validity of proposed common mode EMI equivalent circuit. It is conclusion the proposed equivalent model can be the same with superposition principle, can make clear the radiate mechanism of common mode current in multi-bridge converter. Moreover, the equivalent parasitic capacitance and the magnitude of noise source voltage in proposed equivalent circuit can be different. The poposed equivalent circuit based on noise source in parallel is the basis of the active common mode EMI suppression method and the design of compensating circuit.
     Secondly, compared the conducted common mode EMI in full-bridge circuit with bipolar SPWM and unipolar SPWM modulate technique. It is conclusion that the conducted common mode current with bipolar SPWM modulation technique is theoretically zero because the two legs provide perfect CM current compensation for each other. However, different transmission delays of two drive signals in bipolar SPWM modulation technique always produce large CM current in real case. Experimental results validate fine-tunning driving signals before they are transmitted can suppression the common mode EMI in full-bridge converter efficiently, then an idea of fine-tunning driving signals technique with close-loop control system is proposed.
     Aim at the conditions without two complementary common mode noise sources, an active compensatory common mode EMI suppression technique with an external compensating circuit is proposed. In active compensatory common mode EMI suppression, when the compensating current and noise source common mode current are the same maginidute and anti-phase, whether driving signals transimmission delay of compensating circuit and main bridge are the same or not will impact the effect of common mode current suppression. It is conclusion the problem of anti-phase alignment and different transmission delays of two drive signals in bipolar SPWM modulation technique are similar, whose resolving method is the same. The two key techniques in fine-tuning system of the drive signals are common mode noise evaluation index and close-loop control stratery.
     Thirdly, Due to the change direction of common mode current level is needed in digitalized close-loop control system, and not the detailed current spectrum. A common mode noise evaluation index of the‘energy’of the common mode current is adopted here. The relationship between the common mode current energy and the delay time of the drive signals on the cross of two legs is studied. The result indicates that common mode current energy has several minimum values in the range of available time delay and the curve is symmetrical damp surge in‘V’figure.
     Aim at the detecting technique of common mode current, two schemes are put forward, they are as follows: one is common mode current detecting system based on FPGA. FPGA collect the common mode current and figure out the energy specially. The main controller DSP performs the converter control and picks up the common mode current energy values from FPGA, which considered as the feedback of digitalized close-loop control system. The other detecting technique is common mode current is treated by full wave rectifier and filter circuit firstly, then figure out the energy. This scheme is proved feasibility and validity in theory. At the time, DSP not only perform the converter control but also collect common mode current and calculate its energy.
     Fourthly, there are more than one local minimums of the common mode current energy in the relationship between the energy of common mode current the delay time of drive signals. In most cases the delay time of driving signals is in the range of±T/2, in which T the oscillating period of common mode current. It is proposed a local searching algorithm to search the minimum energy of CM current in the range of±T/2 when the curve is symmetrical damp surge in‘V’figure. At the same time it is explained the local searching algorithm is easy to get trapped at local minimums when there are more than one minimums energy of CM current in the curve. Considering of the fact that searching algorithm is preformed in DSP, this dissertation adopt simulated annealing algorithm to avoid getting trapped at local minimums. Application of simulated annealing algorithm (SAA) in find the global optimal energy value of common mode current is studied, and an improved SAA is proposed. In improved SAA, the ending criterion of annealing process and sampling process is modified in order to reserve the state of‘Best So Far’and improve the searching efficient. Simulation results show that the improved SAA has been increased in searching speed and searching precision.
     Fifthly, the basic configuration of digitalized close-loop control common mode EMI suppression technique is illustrated. Two kind of push-pull compensating circuit where the DC biased voltage source is provided by DC bus voltage of converter or external electric supply is discussed. The calculating process of output capacitor and coupling capacitor in active compensating circuit by using the common mode current equivalent mode based on noise source in parrellel. Experimental results verified the dv/dt of output voltage and output capacitance in active compensating circuit affects the peal value and the osicillation frequency of compensating current.
     At last, an experimental bench of single-phase half-bridge converter consists of digitalized active EMI suppression system based on F2812. High frequency common mode current is treated by high precision full-wave rectifier and filter circuit. Driving signals of compensating circuit are pre-adjusted by close-loop control system based on improved SAA. Experimental results show that Closed-loop control system with improved SAA can regulate the delay time of compensating current and suppress the common mode current noise level effectively.
引文
[1]陈坚.电力电子学-电力电子变换和控制技术.第二版.北京:高等教育出版社, 2004
    [2]马伟明.电力电子系统中的电磁兼容.武汉:武汉水利电力大学出版社, 1999
    [3]钱照明,程肇基.电力电子系统电磁兼容设计基础及干扰抑制技术.杭州:浙江大学出版社, 2000
    [4]白同云,吕晓德.电磁兼容设计.北京:北京邮电大学出版社, 2001
    [5]陈淑凤,马蔚宇,马晓庆.电磁兼容试验技术.北京:北京邮电大学出版社, 2001
    [6] S. Qu, D. Chen. Mixed-mode EMI noise and its implications to filter design in offline switching power supplies. In: 15th Annual IEEE Applied Power Electronics Conference and Exposition, APEC2000. USA: IEEE, 6-10 Feb, 2000. 707-713
    [7] S. Qu, D. Chen. Mixed-mode EMI noise and its implications to filter design in offline switching power supplies. IEEE Transactions on Power Electronics, 2002, 17(4): 502-507
    [8] Song Qu. Non-Intrinsic Differential-Mode Noise in Switching Power Supplies and Its Implications to EMI Filter Design. [Master Thesis], Virginia: Virginia Polytechnic Institute and State University, 1999
    [9] D. B. Zhang, D. Chen, D. Sable. Non-intrinsic differential mode noise caused by ground current in an off-line power supply. In: 29th Annual IEEE Power Electronics Specialists Conference, PESC’98. USA: IEEE, 17-22 May, 1998. 1131-1133
    [10] R. Thomas, F. Li, C. Garrett. Prediction of radiated EMI from high frequency power converters. In: The Eighth International Conference on Power Electronics and Variable Speed Drives. USA: IEEE, 18-19 Sept, 2000. 80- 85
    [11]姜艳姝. PWM变频器输出共模电压抑制技术的研究: [博士学位论文].保存地点:哈尔滨工业大学图书管, 2003
    [12]裴雪军. PWM逆变器传导电磁干扰的研究: [博士学位论文].保存地点:华中科技大学图书管, 2004
    [13] Sanmin Wei, N. Zargari, Bin Wu, et al. Comparison and mitigation of common mode voltage in power converter topologies. In: 39th Annual Meeting of theIndustry-Applications-Society, IAS2004. USA: IEEE, 03-07, Oct, 2004. 1852-1857
    [14] Regue JR, Ribo M, Duran D, et al. Common and differential mode characterization of EMI power-line filters from S-parameters measurements. In: IEEE International Symposium on Electromagnetic Compatibility, ISEMC2004. USA: IEEE, 09-13, Aug, 2004. 610-615
    [15] R. Scheich, J. Roudet, S. Bigot, et al. Common mode RFI of a HF power converter: phenomenon, its modeling and its measurement. In: The Fifth European Conference on Power Electronics and Applications. USA: IEEE, 13-16 Sep, 1993. 164-169
    [16] D. B. Zhang, D. Y. Chen, M. J. Nave, et al. Measurement of noise source impedance of off-line converters. IEEE Transactions on Power Electronics, 2000, 15(5): 820-825
    [17] M. Nave. Prediction of conducted emissions in switched mode power supplies. In: IEEE National Symposium on Electromagnetic Compatibility, NSEMC1986. USA: IEEE, 20-23 May, 1986. 167-173
    [18] M. Nave. The effect of duty cycle on SMPS common mode Emissions: Theory and Experiment. In: IEEE National Symposium on Electromagnetic Compatibility, NSEMC1989. USA: IEEE, 23-25 May, 1989. 211-216
    [19] S. Guttowski, H. Jorgensen, K. Keumann. The possibilities of reducing conducted line emissions by modifying the basic parameters of voltage-fed pulsed inverters. In: 28th Annual IEEE Power Electronics Specialists Conference, PESC’97. USA: IEEE, 22-27 June, 1997. 1535-1540
    [20] Guichao Hua, Ching-Shan Leu, Yimin Jiang, et al. Novel zero-voltage-transition PWM converters. IEEE Transactions on Power Electronics, 1994, 9(2): 213-219
    [21] P. Caldeira, R. Liu, D. Dalal, et al. Comparison of EMI performance of PWM and resonant power converters. In: 24th Annual IEEE Power Electronics Specialists Conference, PESC’93. USA: IEEE, 20-24 June, 1993. 134-140
    [22] D. B. Zhang, D. Y. Chen, F. C. Lee. An experimental comparison of conducted EMI emissions between a zero voltage transition circuit and a hard switching circuit. In: 27th Annual IEEE Power Electronics Specialists Conference, PESC’96. USA: IEEE, 23-27 June, 1996. 1992-1997
    [23]刘建强,郑琼林.各种PWM控制方式下的电机共模电压比较研究.北京交通大学学报, 2005, 29(5): 98- 102
    [24] K. Frank, J. Petzodlt, H. Volker. Experiment and simulative investigations of conducted EMI performance of IGBTs for 5-10KVA converters. In: 27th AnnualIEEE Power Electronics Specialists Conference, PESC’96. USA: IEEE, 23-27 June, 1996. 1986-1991
    [25] S. I. Zverev, H. Konrad, J. Volker, et al. Influence of the gate drive techniques on the conducted EMI behavior of a power converter. In: In: 28th Annual IEEE Power Electronics Specialists Conference, PESC’97. USA: IEEE, 22-27 June, 1997. 1522-1528
    [26]和军平,陈为,姜建国.功率因数校正电路杂散磁场对传导干扰发射作用的分析研究.中国电机工程学报, 2005, 25(14): 151-157
    [27] A. Consoli, S. Musumec, G. Oriti, et al. An innovative EMI reduction design technique in power converters. IEEE Transactions on Electromagnetic Compatibility, 1996, 38(4): 567-575
    [28] Zhong Erkuan, Lipo T A. Improvement in EMC performance of inverter-fed motor drivers. IEEE Transactions on Industry Application, 1995, 31(6): 1247-1256
    [29] C. Chen. Characterizing the generation & coupling mechanisms of electromagnetic interference noise from an electric vehicle traction drive up to microwave frequencies. In: 16th Annual IEEE Applied Power Electronics Conference and Exposition, APEC2000. USA: IEEE, 6-10 Feb, 2000. 1170-1176
    [30]幸善成,吴正国.逆变器驱动电机系统中不同接地情况下的共模耦合电流路径.电机与控制应用, 2006, 33 (6): 59-62
    [31] R. Scheich, J. Roudet. EMI conducted emission in the differential mode emanating from an SCR: phenomena and noise level prediction. IEEE Transactions on Power Electronics. 1995, 10(2): 105-110
    [32] M. Nave. The effect of duty cycle on SMPS common mode Emissions: Theory and Experiment. In: IEEE National Symposium on Electromagnetic Compatibility, NSEMC1989. USA: IEEE, 23-25 May, 1989. 211-216
    [33] Li Ran, Sunil Gokani, Jon Clare. Conducted Electromagnetic Emission in Induction Motor Drive Systems Part 1: Time Domain Analysis and Identification of Dominant Modes. IEEE Transactions on Power Electronics. 1998, 13(4): 757-767
    [34] Li Ran, Sunil Gokani, Jon Clare. Conducted Electromagnetic Emission in Induction Motor Drive Systems Part 2: Frequency Domain Models. IEEE Transactions on Power Electronics, 1998, 13(4): 768-776
    [35]袁义生.功率变换器电磁干扰的建模: [博士学位论文].保存地点:浙江大学图书管, 2002
    [36]袁义生,钱照明.分析传导EMI的功率MOSFET建模.浙江大学学报(工学版), 2003, 37(2): 198-202
    [37] Xuejun Pei, Jian Xiong, Yong Kang, et al. Analysis and Suppression of conducted EMI Emission in PWM inverter. In: IEEE International Electric Machines and Drives Conference, IEMDC'03. USA: IEEE, 1-4 June, 2003. 1787-1792
    [38] Xuejun Pei, Jian Xiong, Yong Kang, et al. Conducted EMI emission in PWM Inverter. In: 4th International Power Electronics and Motion Control Conference, IPEMC2004. USA: IEEE, 14-16 Aug, 2004. 630-635
    [39]裴雪军,康勇,熊健,等. PWM逆变器共模传导电磁干扰的预测.中国电机工程学报, 2004, 24(8): 83-88
    [40] Xuejun Pei, Kai Zhang, Yong Kang, et al. Prediction of common mode conducted EMI in single phase PWM inverter. In: 35th Annual Power Electronics Specialists Conference, PESC 04. USA: IEEE, 20-25 June, 2004. 3060-3065
    [41] Xuejun Pei, Kai Zhang, Yong Kang, et al. Analytical estimation of common mode conducted EMI in PWM inverter. In: 26th Annual International Telecommunications Energy Conference, INTELEC2004. USA: IEEE, 19-23 Sept, 2004. 569-574
    [42] Xuejun Pei, Kai Zhang, Yong Kang, et al. Analytical estimation of common mode conducted EMI in PWM inverter. In: 39th Annual Meeting Industry Applications Conference, IAS2004. USA: IEEE, 3-7 Oct, 2004. 2651 -2656
    [43]和军平,姜建国.离线式PWM开关电源传导电磁干扰的分析研究.中国电机工程学报, 2003, 23(6): 91-05
    [44] He Junping, Jiang Jianguo. A comprehensive analysis method of conducted EMI of an off-line converter. In: 3rd International Symposium on Electromagnetic Compatibility, ISEMC2002. USA: IEEE, 21-24 May, 2002. 529-532
    [45]和军平,姜建国,陈为.离线式PWM变换器电磁干扰传播通道模型的研究.电工技术学报, 2004, 19(4): 56-60
    [46] Junping He, Jianguo Jiang, Jiangjiang Huang, et al. Model of EMI coupling paths for an off-line power converter. In: 19th Annual IEEE Applied Power Electronics Conference and Exposition, APEC'04. USA: IEEE, 22-26 Feb, 2004. 708-713
    [47] Xin Wu, N. K. Poon, C. M. Lee, et al. A Study of Common Mode Noise in Switching Power Supply from a Current Balancing Viewpoint. In: In: The 3rd IEEE International conference on Power Electronics and Drive System, PEDS’99. USA: IEEE, 27-29 July, 1999. 621-625
    [48] Chingchi Chen. Novel EMC Debugging Methodologies for High-Power Converters. In: IEEE International Symposium on Electromagnetic Compatibility, ISEMC2000. USA: IEEE, 21-25 Aug, 2000. 385-390
    [49] D. H. Liu, J. G. Jiang, Z. M. Zhao. A Systematic Approach to Analyze EMI in Control Circuit of Power Electronic Equipment. In: 16th Annual IEEE Applied Power Electronics Conference and Exposition, APEC2001. USA: IEEE, 4-8 March, 2001. 208~212
    [50]陈斌,姜建国,孙旭东. PWM逆变器-感应电机驱动系统中接地电流EMI问题的研究.中国电机工程学报, 2003, 23(2): 58~62
    [51] Q. Liu, D. Wang, F. Boroyevich. Frequency-domain EMI noise emission characterization of switching power modules in converter systems. In: 20th Annual IEEE Applied Power Electronics Conference and Exposition, APEC2005. USA: IEEE, 6-10 March, 2005. 787-792
    [52] T. Halkosaari, H. Tuusa. Reduction of conducted emissions and motor bearing currents in current source PWM inverter drives. In: 30th Annual IEEE Power Electronics Specialists Conference, PESC99. USA: IEEE, 27 June-1 July, 1999. 959-964
    [53]孟进,马伟明,刘德志,等.交流发电机整流系统传导电磁干扰的时域模型与仿真分析.中国电机工程学报, 2002, 22(6): 75-79
    [54]孟进,马伟明,刘德志,等.交流发电机整流系统传导干扰测试与仿真.华北电力大学学报, 2002, 29(4): 11-14
    [55] Meng Jin, Ma Weiming, Liu Dezhi. Modeling and simulation of conducted electromagnetic emissions prediction in AC generator rectifier systems. In: 3rd International Symposium on Electromagnetic Compatibility, ISEMC2002. USA: IEEE, 21-24 May, 2002. 557-560
    [56]单潮龙,马伟明,王铁军,等.挂接三相逆变器的直流电网共模传导干扰研究.中国电机工程学报, 2003, 23(4): 134-139
    [57]孟进,马伟明,张磊,等.开关电源变换器传导干扰分析及建模方法.中国电机工程学报, 2005, 25(5): 49-06
    [58] Meng Jin, Ma Weiming. A New Technique for Modeling and Analysis of Mixed-Mode Conducted EMI Noise. IEEE Transactions on Power Electronics, 2004, 19(6): 1679-1687
    [59]张磊,马伟明.三相可控整流桥系统共模干扰研究.中国电机工程学报, 2005, 25(2): 40-43
    [60] C. Winterhalter, R. Kerkman, D. Schlegel, et al. The effect of circuit parasitic impedance on the performance of IGBTs in voltage source inverters. In: 16th Annual IEEE Applied Power Electronics Conference and Exposition, APEC2001. USA: IEEE, 4-8 March, 2001. 995-1001
    [61] Chingchi Chen. Characterization of power electronics EMI emission. In: IEEE International Symposium on Electromagnetic Compatibility, EMC2003. USA: IEEE, 18-22 Aug, 2003. 553-557
    [62]刘佳,穆新华,杨志勇.全桥变换器中寄生参数对传导EMI的影响.南京航空航天大学学报, 2003, 35(2): 137-142
    [63]穆新华,杨志勇开关电源中印刷电路板寄生参数对传导电磁干扰影响的研究.中国电机工程学报, 2004, 24(11): 121-125
    [64] Huibin Zhu, Jih-Sheng Lai, R Allen, et al. Modeling-based Examination of Conducted EMI Emissions from Hard-and Soft-Switching PWM Inverters. IEEE Transactions on Industry Application, 2001, 37(5): 1383-1393
    [65] Chingchi Chen. Characterizing the Generation & coupling Mechanisms of Electromagnetic Interference Noise from an Electric Vehicle Traction Drive up to Microwave Frequencies. In: 15th Annual IEEE Applied Power Electronics Conference and Exposition, APEC2000. USA: IEEE, 6-10 Feb, 2000. 1170-1177
    [66]程汉湘,尹项根,王志华,等.变频调速中的共模电压分析.电气传动, 2002, 2002(6): 3-9
    [67]姜艳姝,徐殿国,刘宇,等. PWM驱动系统中感应电动机共模模型的研究.中国电机工程学报, 2004, 24(12): 149-155
    [68] Qian Liu, Fred Wang, Dushan Boroyevich. Model Conducted EMI Emission of Switching Modules for Converter System EMI Characterization and Prediction. In: 39th IAS Annual Meeting on Industry Applications Conference, IAS2004. USA: IEEE, 3-7 Oct, 2004. 1817-1823
    [69] R. Zhang, X. Wu, T. Wang. Analysis of common mode EMI for three-phase voltage source converters. In: 34th Annual Power Electronics Specialist Conference, PESC '03. USA: IEEE, 15-19 June, 2003. 1510-1515
    [70] Y. S. Lai. Investigations into the Effects of PWM Techniques on Common Mode Voltage for Inverter-Controlled Induction Motor Drives. In: Power EngineeringSociety 1999 Winter Meeting, PESW1999. USA: IEEE, 31 Jan. -4 Feb, 1999. 35-40
    [71] Yen-Shin Lai, Fu-San Shyu. Optimal Common-Mode Voltage Reduction PWM Technique for Inverter Control with Consideration of the Dead-Time Effects—Part I: Basic Development. IEEE Transaction on Industry Application, 2004, 40(6): 1605-1612
    [72] Yen-Shin Lai, Po-Sheng Chen, Hsiang-Kuo Lee, et al. Optimal Common-Mode Voltage Reduction PWM Technique for Inverter Control with Consideration of the Dead-Time Effects—Part II: Applications to IM Drives with Diode Front End. IEEE Transaction on Industry Application, 2004, 40(6): 1613-1620
    [73] M. Cacciato, A. Consoli, G. Scarcella, et al. Reduction of Common-Mode Currents in PWM Inverter Motor Drives. IEEE Transaction on Industry Applications, 1999, 35(2): 469-476
    [74] H. D. Lee, S. K. Sul. Common-Mode Voltage Reduction Method Modifying the Distribution of Zero-Voltage Vector in PWM Converter/Inverter Systems. IEEE Transaction on Industry Applications, 2001, 37(6): 1732-1738
    [75] H. J. Kim, H. D. Lee, S. K. Sul. A New PWM Strategy for Common-Mode Voltage Reduction in Neutral-Point-Clamped Inverter-Fed AC Motor Drives. IEEE Transaction on Industry Applications, 2001, 37(6): 1840-1845
    [76] H. J. Cha, P. Enjeti. An Approach to Reduce Common-Mode Voltage in Matrix Converter. IEEE Transaction on Industry Applications, 2003, 39(4): 1151-1159
    [77]王斌,李兴源, K Khamlichi Drissi.双随机调制技术及其功率谱密度特性分析.中国电机工程学报, 2004, 24(4): 97-101
    [78] E. Un, A. M. Hava. Performance analysis and comparison of reduced common mode voltage PWM and standard PWM techniques for three-phase voltage source inverters. In: The Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, APEC '06. USA: IEEE, 19-23 March, 2006. 303-309
    [79] A. K. Gupta, A. M. Khambadkone. A space vector PWM Scheme to Reduce Common Mode Voltage for a Cascaded Multilevel Inverter. In: 37th IEEE Power Electronics Specialists Conference, PESC '06. USA: IEEE, 18-22 June, 2006. 1-7
    [80] A. V. Jouanne, P. Enjeti, W. Gray. Application Issues for PWM Adjustable Speed AC Motor Drives. IEEE Industry Applications Magazine, 1996, 2(5): 10-18
    [81]和军平,姜建国,陈斌.电力电子装置传导电磁干扰特性测量的新方法.电力电子技术, 2001, 35(5): 32-35
    [82]和军平,陈为,姜建国.开关电源共模传导干扰模型的研究.中国电机工程学报, 2005, 25(8): 50-55
    [83] H. Akagi, H. Hasegawa, T. Doumoto. Design and performance of a passive EMI filter for use with a voltage-source PWM inverter having sinusoidal output voltage and zero common-mode voltage. In: 33rd Annual Power Electronics Specialists Conference, PESC’02. USA: IEEE, 23-27 June, 2002. 1543-1550
    [84]裴雪军,张凯,康勇,等. PWM逆变器共模干扰电流的衰减和抑制.中国电机工程学报, 2004, 24(11): 80-84
    [85] Hongfei Ma, Dianguo Xu, Xiyou Chen, et al. A New Common-Mode Sinusoidal Inverter Output Filter. In: 33rd Annual IEEE Power Electronics Specialists Conference, PESC’02. USA: IEEE, 23-27 June, 2002. 858-862
    [86]陈希有,徐殿国,马洪飞,等.兼有共模电压抑制作用的逆变器输出无源滤波器.电工技术学报, 2002, 17(6): 38-42
    [87]张舟云,徐国卿,沈祥林.无源滤波器在开关电源中的应用分析.电力电子技术, 2004, 38(5): 45-48
    [88] A. von Jouanne, H. Zhang, A. K. Wallace. An evaluation of mitigation techniques for bearing currents, EMI and overvoltages in ASD applications. IEEE Transactions on Industry Applications, 1998, 34(5): 1113-1122
    [89] D. B. Zhang, D. Y. Chen, D. Sable. A new method to characterize EMI filters. In: The Thirteenth Annual Proceedings of Applied Power Electronics Conference and Exposition, APEC'98. USA: IEEE, 15-19 Feb, 1998. 929-933
    [90] E. Zhong, T. A. Lipo. Improvements in EMC Performance of Inverter-Fed Motor Drives. IEEE Transaction on Industry Application, 1995, 31(6): 1247-1256
    [91] S. Ogasawara, H. Akagi. Modeling and Damping of High-Frequency Leakage Currents in PWM Inverter-fed AC Motor Drive Systems. IEEE Transaction on Industry Applications, 1996, 32(5): 1105-1114
    [92] D. Rendusara, P. Enjeti. An Improved Inverter Output Filter Configuration Reduces Common and Differential Modes dv/dt at the Motor Terminals in PWM Drive Systems. IEEE Transaction on Power Electronics, 1998, 13(6): 1135-1143
    [93] Y. Murai, T. Kubota, Y. Kawase. Leakage Current Reduction for a High-Frequency Carrier Inverter Feeding an Induction Motor. IEEE Transaction on Industry Application, 1992, 28(4): 858-863
    [94] B. Choi, B. H. Cho. Intermediate line filter design to meet both impedancecompatibility and EMI specifications. IEEE Transactions on Power Electronics, 1995, 10(5): 583–588
    [95] F. Y. Shih, D. Y. Chen, Y. P. Wu, et al. A procedure for designing EMI filters for AC line applications. IEEE Transactions on Power Electronics, 1996, 11(1): 170-181
    [96] M. M. Swamy, K. Yamada, T. Kume. Common mode current attenuation techniques for use with PWM drives. IEEE Transactions on Power Electronics, 2001, 16(2): 248-255
    [97] A. L. Julian, G. Oriti, T. A. Lipo. Elimination of Common Mode Voltage in Three Phase Sinusoidal Power Converters. IEEE Transactions on Power Electronics, 1999, 14(5): 982-989
    [98] G. Oriti, A. L. Julian, T. A. Lipo. A New Space Vector Modulation Strategy for Common Mode Voltage Reduction. In: 28th Annual IEEE Power Electronics Specialists Conference, PESC’97. USA: IEEE, 22-27 June, 1997. 1541-1546
    [99] A. V. Jouanne, H. Zhang. A dual-bridge Inverter Approach to Eliminating Common mode Voltages and Bearing and Leakage Currents. In: 28th Annual IEEE Power Electronics Specialists Conference, PESC’97. USA: IEEE, 22-27 June, 1997. 1276-1280
    [100] H. Zhang, A. V. Jouanne. Suppressing Common-Mode Conducted EMI Generated by PWM Drive Systems Using a Dual-Bridge Inverter. In: The Thirteenth Annual Applied Power Electronics Conference and Exposition, APEC'98. USA: IEEE, 15-19 Feb, 1998. 1017-1020
    [101] M. R. Baiju, K. K. Mohapatra, R. S. Kanchan, et al. A dual Two-Level Inverter Scheme with Common Mode Voltage Elimination for an Induction Motor Drive. IEEE Transactions on Power Electronics 2004, 19(3): 794-805
    [102] Y. Murai, T. Kubota, Y. Kawase. Leakage Current Reduction for a High-Frequency Carrier Inverter Feeding an Induction Motor. IEEE Transactions on Industry Application, 1992, 28(4): 858-863
    [103] M. M. Swamy, K. Yamada, T. J. Kume. Common Mode Current Attenuation Techniques for Use with PWM Drives. IEEE Transactions on Power Electronics, 2001, 16(2): 248-255
    [104] S. Ogasawara, H. Ayano, H. Akagi. An Active Circuit for Cancellation of Common-Mode Voltage Generated by a PWM Inverter. IEEE Transactions on Power Electronics, 1998, 13(5): 835-841
    [105] S. Ogasawara, H. Akagi. Circuit Configurations and Performance of the ActiveCommon-Noise Canceller for Reduction of Common-Mode Voltage Generated by Voltage-Source PWM Inverters. In: 35th IAS Annual Meeting on Industry Applications Conference, IAS2000. USA: IEEE, 8-12 Oct, 2000. 1482-1488
    [106]姜艳姝,刘宇,徐殿国,等. PWM变频器输出共模电压及其抑制技术的研究.中国电机工程学报, 2005, 25(9): 47-53
    [107] Y. Q. Xiang. A Novel Active Common-Mode-Voltage Compensator (ACCom) for Bearing Current Reduction of PWM VSI-Fed Induction Motors”, In: The Thirteenth Annual Applied Power Electronics Conference and Exposition, APEC'98. USA: IEEE, 15-19 Feb, 1998. 1003-1009
    [108]姜艳姝,徐殿国,陈希有,等.一种新颖的用于消除PWM逆变器输出共模电压的有源滤波器.中国电机工程学报, 2002, 22(10): 125-129
    [109] Jiang Yanshu, Xu Dianguo, Chen Xiyou. Analysis and Design of a feed-forward-type active filter to eliminate common-mode voltage generated by a PWM inverter. In: 28th Annual Conference of the Industrial Electronics Society, IECON’02. USA: IEEE, 5-8 Nov. 2002. 771-775
    [110] Xin Wu, M. H. Pong, Z. Y. Lu, et al. Novel Boost PFC with Low Common Mode EMI: Modeling and Design. In: 16th Annual IEEE Applied Power Electronics Conference and Exposition, APEC2000. USA: IEEE, 6-10 Feb, 2000. 178-181
    [111] Wu Xin, C. M. Lee, M. H. Pong, et al. A Study of Common Mode Noise in Switching Power Supply from a Current Balancing Viewpoint. In: The 3rd IEEE International conference on Power Electronics and Drive System, PEDS’99. USA: IEEE, 27-29 July, 1999. 621-625
    [112] D. Cochrane, D. Chen, D. Boroyevich. Passive Cancellation of Common-Mode Noise in Power Electronic Circuits. IEEE Transactions on Power Electronics, 2003, 18(3): 756-763
    [113] I. Takahashi, A. Ogata, H. Kanazawa, et al. Active EMI Filter for Switching Noise of High Frequency Inverters. In: Proceedings of the Power Conversion Conference, PCCON1997. USA: IEEE, 3-6 August, 1997. 331-334
    [114] Y. C. Son, S. K. Sul. A Novel Active Common-Mode EMI Filter for PWM Inverter. In: 17th Annual IEEE Applied Power Electronics Conference and Exposition, APEC2002. USA: IEEE, 10-14 March, 2002. 545-549
    [115] Y. C. Son, S. K. Sul. Conducted EMI in PWM Inverter for Household Electric Appliance. IEEE Transactions on Industry Applications, 2002, 38(5): 1371-1380
    [116] Yo-Chan Son, Seung-Ki Sul. A New Active Common-Mode EMI Filter for PWM Inverter. IEEE Transactions on Power Electronics, 2003, 18(6): 1309-1314
    [117]袁义生,钱照明.功率变换器动态节点电位平衡共模EMI抑制技术.浙江大学学报(工学版), 2003. 37(1): 108-111
    [118] He Junping, Jiang Jianguo, Chen Wei. Identification and Model of Near Field Magnetic Coupling in a PFC Converter. In: IEEE 36th Power Electronics Specialists Conference, PESC '05. USA: IEEE, 12-16 Jun, 2005. 323-327
    [119]和军平,陈为,姜建国.电源线EMI滤波器内部杂散电磁耦合及其作用.电工技术学报, 2006, 21(10): 12-17
    [120] Junping He, Wei Chen, Jianguo Jiang. Identification and improvement of stray coupling effect in an L-C-L common mode EMI filter. In: The 2006 International Power Electronics and Motion Control Conference, IPEMC2006. USA: IEEE, 13-16 August, 2006. 1987-1991
    [121]刘萍,沙斐.共模骚扰的成因与对策.继电器, 2002, 30(11): 41-47
    [122]姜保军,孙力,孙亚秀,等.电机驱动系统传导EMI的抑制方法.电气传动, 2006, 36(5): 9-13
    [123] Baojun Jiang, Li Sun, Yaxiu Sun, et al. Study on Common Mode Current Suppression Method in Motor System. In: The Sixth World Congress on Intelligent Control and Automation, WCICA2006. USA: IEEE, 21-23 June, 2006. 8108–8112
    [124]邓重一.电磁兼容测试技术选析.电力自动化设备, 2005, 25(8): 92-95
    [125]邓重一,欧伟明.基于虚拟仪器的电磁干扰自动测试系统.传感器技术, 2005, 24(10): 51-54
    [126]和军平,姜建国,陈斌.电力电子装置传导电磁干扰特性测量的新方法.电力电子技术, 2001, 35(5): 32-35
    [127]马宁,陈莉.电磁干扰滤波器磁芯的选择设计.现代雷达, 2006, 28(7): 92-95
    [128] Jim Maroney. The Use of Scanning Receivers in EMI Compliance Measurements. 1999 International Symposium on Electromagnetic Compatibility, 17-21 may, 1999. Tokyo, Japanese. pp. 791
    [129]朱志宇,张冰,刘维亭.基于多分辨小波分析的船舶电磁兼容测试技术研究.中国航海, 2005, 64(3): 81-83
    [130]沈雪梅,赵阳,李世锦,等.传导性电磁干扰噪声分离网络识别特性的实验与仿真研究.南京师范大学学报(工程技术版), 2005, 5(3): 16-19
    [131] P. R. Willcock, J. A. Ferreira, et al. A Probe for Measuring the Propogation of Conducted EMI in Power Converters. IEEE IAS'2000, pp. 3091-3096
    [132] L. Ran, J. C. Clare, et al. Measurement of Conducted Electromagnetic Emission in PWM motor Drive Systems Without the Need for an LISN. IEEE trans. EMC, 1999, 41(l): pp50-55
    [133]陈锋,曾岳南,暨绵浩,等.传导EMI的测试.电子质量, 2006, 8: 70-72
    [134]杨玉君,程君实,易忠亮,等.传导干扰测试系统的设计与实现.自动化仪表, 2003, 24(8): 19-22
    [135]罗萍,李肇基,陈光偊.一种新的传导型共模/差模EMI分离测试网络.电子测量与仪器学报, 2006, 20(1): 64-67
    [136] Leopoldo Rossetto, Simone Buso, Giorgio Spiazzi. Conducted EMI Issues in a 600-W Single-Phase Boost PFC Design. IEEE Transactions on Industry Application, 2000, 36(2): 578-585
    [137] Huibin Zhu, Jih-Sheng Lai, Chingchi Chen. Analysis of Conducted EMI Emissions from PWM Inverter Based on Empirical Models and Comparative Experiments. In: 30th Annual IEEE Power Electronics Specialists Conference, PESC’99. USA: IEEE, 27 June-1 July, 1999. 861-867
    [138]咸哲龙,钟玉林,孙旭东,等.用于传导电磁干扰分析的接地回路模型与参数.中国电机工程学报, 2005, 25(7): 156-161
    [139] Jim Maroney. The use of scanning receiver in EMI compliance measurements. In: 1999 International Symposium on Electromagnetic Compatibility. USA: IEEE, 17-21 May, 1999. 791
    [140]苏奎峰. TMS320F2812原理与开发.北京:电子工业出版社, 2005
    [141]吴继华,王诚. Altera FPGA/CPLD设计.北京:人民邮电出版社, 2005
    [142]张明. Verilog HDL实用教程.成都:电子科技大学出版社, 1999
    [143]王凌.智能优化算法及其应用.北京:清华大学出版社, 2001
    [144] L. Lawhite, M. F. Schlecht. Design of active ripple filters for power circuits operating in the 1–10MHz range. IEEE Transactions on Power Electronics, 1988, 3(7): 310-317
    [145] Mingjuan Zhu, D. J. Perreault, V. Caliskan, et al. Design and evaluation of Feedforward Active ripple filters. IEEE Transactions on Power Electronics, 2005, 20(2): 276-285
    [146] N. K. Poon, J. C. P. Liu, C. K. Tse, et al. Techniques for input ripple currentcancellation: classification and implementation [in SMPS]. IEEE Transactions on Power Electronics, 2000, 15(6): 1144-1152
    [147]张卫宁. TMS320C28x系列DSP的CPU与外设(上,下).北京:清华大学出版社, 2004
    [148]刘和平,张卫宁,刘林,等. TMS320C28x系列DSP指令和编程指南.北京:清华大学出版社, 2004
    [149]周运斌.单相逆变器共模EMI分析及有源抑制技术研究: [硕士学位论文].保存地点:华中科技大学图书管, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700