MOPA结构声光调Q掺镱全光纤激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从理论和实验上对MOPA结构声光调Q掺镱全光纤激光器进行了研究并从实验上对其产生百纳秒量级超连续谱进行了研究。该MOPA结构声光调Q全光纤激光器可用作激光打标的光源,产生的超连续谱激光可用在光电对抗等领域。产生超连续谱,泵浦光通常用飞秒和皮秒脉冲,而用纳秒和连续光的研究较少,本文获得了百纳秒量级全光纤结构超连续谱激光,平均功率突破瓦级。
     首先以调Q光纤激光器的速率方程为基础,从理论上分析了泵浦功率、纤芯直径、增益光纤长度、输出透过率、光纤固有损耗对脉冲能量和脉冲宽度的影响。
     实验中,采用半导体激光器(LD)为泵浦源,掺镱光纤为增益介质,光纤光栅(FBG)为谐振腔镜、带尾纤的声光Q开关(AOM)为调制器,输出端熔接光隔离器构成了声光调Q全光纤激光器种子源。通过实验获得了重复频率10-34 kHz连续可调,中心波长1064 nm,重复频率11 kHz时,脉冲宽度150 ns;重复频率23 kHz时,脉冲宽度200 ns,3 dB谱宽2.029 nm,平均功率212 mW的种子源。种子源所得的实验结果与以速率方程为基础的理论分析相符合。
     理论分析与实验结果表明:增益光纤的长度、输出透过率等一定时,种子源输出的平均功率,随泵浦功率的增大而线性增大;泵浦功率,输出透过率一定时,存在使平均功率最大的最佳光纤长度,增益光纤长度变长或变短,平均功率都下降;增益光纤长度,泵浦功率一定时,存在使平均功率最大的最佳输出透过率,输出透过率变大或变小,平均功率均下降;泵浦功率,输出透过率一定条件下,重复频率增大或者增益光纤长度变长,脉冲宽度均增大。实验中观察到,在泵浦功率较小、重复频率较高时,输出的脉冲重复频率仅有所设置频率的1/2或者1/3,只有当泵浦功率超过一定阈值时,重复频率才能达到所设置的值。种子源输出脉冲的中心波长主要受光纤光栅的光谱特性影响,不随泵浦功率、重复频率、增益光纤长度的改变而发生明显变化。
     本文对种子源输出的激光脉冲进行了两级放大实验。一级放大器获得平均功率为3 W,重复频率10-34 kHz连续可调,中心波长为1064 nm的激光脉冲。在重复频率为11 kHz时,脉冲宽度为200 ns;重复频率为23 kHz时,脉冲宽度为250 ns,3 dB谱宽为2.322 nm。与种子源输出的激光脉冲相比,通过一级放大后,激光脉冲宽度稍有增大,3 dB谱宽稍有展宽,中心波长没有明显变化。在一级放大器输出功率为2.7 W时,把一级放大器输出激光进行二级放大。二级放大器获得了平均功率10 W,重复频率10-34 kHz连续可调,中心波长为1064 nm的激光脉冲。在重复频率为11 kHz时,脉冲宽度为250 ns;重复频率为23 kHz时,脉冲宽度为275 ns,3 dB谱宽为2.492 nm。通过二级放大后,激光脉冲宽度稍有增大,3 dB谱宽稍有展宽,中心波长没有明显变化。在放大级中,输出功率随泵浦功率增大基本线性增大。
     采用纳秒量级脉冲激光,获得全光纤超连续谱,平均功率突破瓦级,国内鲜有报道。以MOPA结构声光调Q全光纤激光器作为泵浦源,光子晶体光纤作为非线性介质,获得了百纳秒量级超连续光谱脉冲输出,光谱范围是600-1700 nm,重复频率10-34 kHz连续可调,在重复频率为23 kHz时,脉冲宽度为250 ns,平均功率为1.46 W。
This paper studies on acousto-optic Q-switched Yb3+-doped all-fiber laser in master-oscillator power amplifier (MOPA) configuration in theory and experiment and using it to generate hundred nanoseconds supercontinuum in experiment. Acousto-optic Q-switched Yb3+-doped all-fiber laser in MOPA configuration can be used as the laser source of laser marking. The supercontinuum generated by the laser can be used in the electro-optical countermeasure field and so on. To generate supercontinuum, pump sources are usually used femtosecond or picosecond pulses. Researches on using continuous laser or nanosecond pulse to generate supercontinuum are less. The paper gets all-fiber hundred nanoseconds supercontinuum laser, which average power breaks watts.
     Firstly, based on rate equation theory of the Q-switched fiber laser, pulse energy and pulse width are analyzed versus the pump power, core diameter, the gain fiber length, the output transmission, fiber intrinsic loss.
     The seed source of acousto-optic Q-switched Yb3+-doped all-fiber is using diode laser (LD) as pump source, ytterbium-doped fiber as the gain medium, fiber Bragg grating (FBG) as resonator mirrors, acousto-optic Q-switch (AOM) as a modulator in experiment. The optical isolator is used at the output. Seed source obtains the adjustable repetition rate 10-34 kHz, the center wavelength of 1064 nm laser pulse. When the repetition rate is 11 kHz, the pulse width is 150 ns. When the repetition rate is 23 kHz, the pulse width is 200 ns, the 3 dB spectral width is 2.029 nm and the average power is 212 mW. Experimental results meet the theoretical analysis based on rate equations.
     From the experimental results and the theoretical analysis, we can get the conclusion. When the length of gain fiber and the output transmission are certain, the average power of the seed source increases linearly as the pump power increasing. When pump power and the output transmission are certain, the average output power increase beginning, then reach the max, and fall finally as the gain fiber length increases. When pump power and the length of gain fiber are certain, the average output power increase beginning, then reach the max, and fall finally as the output transmission increases. When pump power and the output transmission are certain, the pulse width increases as the repetition rate increases or the length of gain fiber becomes longer. In experiments, when the pump power is small and the repetition rate is high, the repetition frequency of the output pulse is 1/2 or 1/3 of the set frequency. Only when the pump power exceeds a certain threshold, the repetition rate achieves the set value. The center wavelength of seed source output pulse is mainly affected by the spectral characteristics of fiber gratings, not with the pump power, repetition rate, length of gain fiber in change, changes significantly.
     In experiment of this paper, the output of seed source is amplified by two stage amplifier. The first stage amplifier obtains the pulses of 3 W average power, 10-34 kHz repetition rate, 1064 nm center wavelength. When the repetition rate is 11 kHz, the pulse width is 200 ns. When the repetition rate is 23 kHz, the pulse width is 250 ns, the 3 dB spectral width is 2.322 nm. Compared with seed source, the laser pulse width and 3 dB spectral width of the first stage amplifier increases slightly, the center wavelength did not change significantly. When the output power of the first stage amplifier is 2.7 W, the output pulses are put into the second stage amplifier. The second stage amplifier obtains the pulses of 10 W average power, 10-34 kHz repetition rate, 1064 nm center wavelength. When the repetition rate is 11 kHz, the pulse width is 250 ns. When the repetition rate is 23 kHz, the pulse width is 275 ns, the 3 dB spectral width is 2.492 nm. Compared with the first stage amplifier, the laser pulse width of the second stage amplifier increases slightly, the center wavelength did not change significantly. In the amplifier, the output power increases basic linearly with pump power.
     Using nanosecond pulsed laser to obtain all-fiber supercontinuum, average power breaking watts, have not been reported in the domestic. In this paper, using acousto-optic Q-switched fiber laser based on MOPA structure as the pump source, the photonic crystal fiber as the nonlinear medium, the hundred nanoseconds supercontinuum pulses are obtained. The spectral range is 600-1700 nm, continuously adjustable repetition rate is 10-34 kHz. When the repetition rate is 23 kHz, the pulse width is 250 ns and the average power is 1.46 W.
引文
1左铁钏. 21世纪的先进制造:激光技术与工程.北京:科学出版社, 2007:1-8
    2周炳琨,高以智,陈倜嵘,陈家骅.激光原理.第五版.北京:国防工业出版社, 2008:293-300
    3申人升,张玉书,杜国同.光纤激光器研究进展.半导体光电, 2009, 30(01):1-5
    4楼祺洪,杜松涛,周军.先进光纤激光技术.红外与激光工程, 2008, 37 Supplement:1-7
    5郭玉彬,霍佳雨.光纤激光器及其应用.北京:科学出版社, 2008:9-13
    6 Yanming Huo, George G. King, Peter K. Cheo. Second-Harmonic Generation Using a High-Energy and Tunable Q-Switched Multicore Fiber Laser. Photonics Technology Letters, 2004, 16(10):2224-2226
    7 Shoji Adachi, Yahei Koyamada. Analysis and Design of Q-Switched Erbium-Doped Fiber Lasers and Their Application to OTDR. Journal of Lightwave Technology, 2002, 20(08):1506-1511
    8 Shoji Adachi, Yahei Koyamada. High-performance OTDR using Q-switched erbium-doped fiber ring laser and pulse expander. OFC, 2002, 613-614
    9 I. P. Alcock, A. C. Tropper, A. I. Ferguson, D. C. Hanna. Q-switched Operation of a Neodymium-doped Monomode Fiber Laser. Electronics Letters, 1986, 22(02):84-85
    10 P. Roy, D. Pagnoux, L. Mouneu, T. Midavaine. High Efficiency 1.53μm All-Fiber Pulsed Source Based on a Q-Switched Erbium Doped Fiber Ring Laser. Electronics Letters, 1997, 33(15):1317-1318
    11 R.Paschotta, R. Haring, E.Gini, H. Melchior, U. Keller, H. L. Offerhaus, D. J. Richardson. Passively Q-Switched 0.1-mJ Fiber Laser System at 1.53μm. Optics Letters, 1999, 24(6):388-390
    12 L. Tordella, H. Djellout, B. Dussardier, A. Saissy, G. Monnom. High Repetition Rate Passively Q-Switched Nd3+:Cr4+ All-Fiber Laser. Electronics Letters, 2003, 39(18):1307-1308
    13 Peter D. Dragic. Injection-Seeded Q-Switched Fiber Ring Laser. IEEE Photonics Technology Letters, 2004, 16(8):1822-1824
    14 P. Pérez-Millán, A. Díez, M. V. Andrés, D. Zalvidea, R. Duchowicz. Q-Switched All-Fiber Laser Based on Magnetostriction Modulation of a Bragg Grating. Optics Express, 2005, 13(13):5046-5051
    15 B. Dussardier, A. Sa?ssy, L. Tordella. A Passively Q-Switched Er3+-Doped Fiber Laser Using a Co2+-Doped Fiber as Saturable Absorber. CLEO, 2005, 562
    16 Andrei A. Fotiadi, Andrei S. Kurkov, Igor M. Razdobreev. All-Fiber Passively Q-Switched Ytterbium Laser. CLEO, 2005, 515
    17 D. Sabourdy, D. Bouyge, A. Crunteanu, P. Blondy, V. Couderc, J. Lhermite, V. Kermène, ADesfarges-Berthelemot, L. Grossard, and A Barthélemy. Q-Switched Fiber Laser Based on Deformable Micro-Electro-Mechanical Mirror. CLEO, 2006, CThJ7
    18 Tommi Hakulinen, Oleg G. Okhomikov. 8ns Q-Switched Fiber Laser Using Resonant Saturable Absorber Mirror. Proc. of SPIE, 2008, 6998:6998031-6998037
    19 Jian Zhang, Jinghui Li, Xing Jiang, Xiaoming Liu, Jiangde Peng. LD Pumped Q-Switching and Self-starting Mode-Locked All Fiber Laser. Chinese Journal of Lasers, 1995, B4(03):229-234
    20 Junqiang Sun, Dexiu Huang. Investigation on Self-Q-Switched Er3+-Doped Fiber Lasers. Chinese Journal of Lasers, 1995 B4(03):211-216
    21 Ding-Wei Huang, Wen-Fung Liu, C.C.Yang, Q-Switched All-Fiber Laser with an Acoustically Modulated Fiber Attenuator, IEEE Photonics Technology Letters, 2000, 12(09):1153-1155
    22 Hongming Zhao, Qihong Lou, Jun Zhou, Fangpei Zhang, Jingxing Dong, Yunrong Wei, Libo Li, Zhijiang Wang. An Acousto-Optic Q-Switched Fiber Laser Using China-Made Double-Cladding Fiber. Chinese Optics Letters, 2007, 05(09):522-523
    23 Bo Peng, Qiang Liu, Mali Gong, Ping Yan. Acousto-Optic Q-Switched Cladding-Pumped Ytterbium-Doped Fiber Laser. Chinese Optics Letters, 2007,05(07):415-417
    24高存孝,赵卫,王屹山,朱少岚.掺Yb3+全光纤环形腔主动调Q光纤激光器.中国激光, 2008, 35(05):651-654
    25李尧,朱辰,王雄飞,林佶翔,赵鸿.百瓦级高重复频率窄脉宽光纤激光器实验研究.中国激光, 2009, 36(02):281-284
    26 Hongming Zhao, Qihong Lou, Jun Zhou, Bing He, Jingxing Dong, Yunrong Wei, Zhijiang Wang. Characteristic of Pulsed Fiber Laser Induced By Switching Time. Chinese Optics Letters, 2009, 07(02):124-126
    27杜卫冲,谭华耀,刘颂豪.一种新型的光纤光栅调Q掺Er光纤激光器.光学学报, 1997, 17(08):1077-1079
    28吕福云,樊亚仙,刘玉洁,葛春风,袁树忠.全光纤调Q激光器的实验研究.南开大学学报(自然科学版), 1999, (01):75-77
    29夏江珍,蔡海文,任虹,瞿荣辉,陈高庭,方祖捷.全光纤调Q掺铒光纤激光器的脉冲研究.光子学报, 2002, 31(08) :989-992
    30 Cun-xiao Gao, Wei Zhao, Yi-shan Wang, Shao-lan Zhu, Guo-fu Chen, Yong-gang Wang. Passive Q-Switched Fiber Laser with SESAM in Ytterbium-Doped Double-Clad Fiber. Proc. of SPIE, 2007, 6279:62794G1-62794G6
    31彭博,柳强,巩马理,闫平.全光纤对接损耗调Q激光器.中国激光, 2008, 35(03):343-346
    32王蓟,王国政,刘洋,秦丽,王立军.全光纤声光调Q铒镱共掺双包层光纤激光器.发光学报, 2008, 29(06):1018-1022
    33许党朋,李明中,王建军,张锐,林宏奂,车雅良,卢振华基于PLZT开关的全光纤单模调Q掺Yb3+光纤激光器.中国激光, 2008, 35(08): 1177-1180
    34 C. C. Renaud, J. A. Alvarez-Chavez, J. K. Sahu, J. Nilsson, D. J. Richardson, W. A. Clarkson. 7.7 mJ Pulses From a Large Core Yb-Doped Cladding Pumped Q-Switched Fiber Laser. CLEO, 2001, 219
    35 J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, H. Voelckel 100-W Average-Power, High-Energy Nanosecond Fiber Amplifier. Applied Physics (B), 2002, 75:477-479
    36 A. Piper, A. Malinowski, K. Furusawa D. J. Richardson. High-Power, High-Brightness, mJ Q-Switched Ytterbium-Doped Fiber Laser. Electronics Letters, 2004, 40(15):928-929
    37 D. Sabourdy, A. Desfarges-Berthelemot, V. Kermène, A. Barthélémy. Coherent Combining of Q-Switched Fiber Lasers. Electronics Letters, 2004, 40(20):1254-1255
    38 J. Limpert, N. Deguil-Robin, S. Petit, I. Manek-H?nninger, F. Salin, P. Rigail, C. H?lnninger, E. Mottay. Q-Switched Yb-Doped Photonic Crystal Fiber Laser Producing Sub-10 ns Pulses. CLEO, 2005, 513
    39 K. Vysniauskas, L. M. B. Hickey, S. Alam, F. Ghiringhelli, M. N. Zervas, A. Piper, B. C. Thomsen, A. Malinowski, D. J. Richardson. High Pulse Energy Q-Switched Laser in MOPA Configuration. Proc. of SPIE, 2005, 5709:329-337
    40 Ming-Yuan Cheng, Yu-Chung Chang, Almantas Galvanauskas, Pri Mamidipudi, Rupak Changkakoti, Peter Gatchell. High-Energy and High-Peak-Power Nanosecond Pulse Generation with Beam Quality Control in 200-μm Core Highly Multimode Yb-Doped Fiber Amplifiers. Optics Letters. 2005, 30(04):358-360
    41郭春雨,阮双琛,闫培光,杜晨林,周睿,刘国荣.调Q掺Yb大模面积光子晶体光纤激光器研究.深圳大学学报理工版, 2007, 24(01):79-84
    42赵宏明,楼祺洪,周军,董景星,魏运荣,王之江.不同腔结构下的声光调Q双包层光纤激光器特性研究.物理学报, 2008, 57(06):3525-3530
    43任广军,魏臻,姚建铨.调Q脉冲保偏光纤激光器的研究.物理学报, 2009, 58(02): 941-945
    44汪园香,姜培培,杨丁中,沈永行.基于MOPA结构的高功率线偏振脉冲Yb光纤激光器.红外与激光工程, 2009,38(03): 456-459
    45冯宇彤,杜松涛,杨燕,周军,陈卫标.基于LD脉冲调制的全光纤MOPA结构激光器.中国激光, 2009, 36(08):1932-1936.
    46 W.克希耐尔.固体激光工程.孙文,江泽文,程国祥译.北京:科学出版社, 2002:410-448
    47董连永,孙立萍,张志芹,王俊,魏岱,朱辉,吕福云.全光纤型调Q激光器的研究进展.激光与红外, 2006, 36(06): 423-426.
    48 Ashraf F.El-Sherif, Terence A. King, High-Energy High-Brightness Q-Switched Tm3+-Doped Fiber Laser Using an Electro-Optic Modulator. Optics Communications, 2003, 218:337-344
    49 C. J. Gaeta, M. J. F. Digonnet, H. J. Shaw. Pulse Characteristics of Q-Switched Fiber Lasers. Journal of Lightwave Technology, 1987, LT-5(12):1645-1651
    50尚连聚. LD泵浦的声光调Q掺镱全光纤激光器.天津大学博士论文. 2007:52-61
    51宁继平,张伟毅,尚连聚,范国芳,韩群,周雷.掺镱包层光纤激光器的全光纤调Q技术.中国激光, 2008, 35(04):483-487
    52黄琳,代志勇,刘永智.不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响.物理学报, 2009, 58(10):6992-6999
    53黄琳. 1.06μm调Q光纤激光器研究.电子科技大学博士论文. 2009:18-25
    54高洁丽,徐文成,陈巧红,梁湛强,刘颂豪.光纤中超连续谱的研究进展.激光与光电子学进展, 2004, 41(11):20-25
    55胡明列,王清月,栗岩峰,王专,张志刚,柴路,章若冰.飞秒激光在光子晶体光纤中产生超连续光谱机制的实验研究.物理学报, 2004, 53(12):4243-4247
    56 Yao Li, He Li, Yang Bojun. Supercontinuum Generation in Normal-dispersion Photonic Crystal Fiber Using Picosecond Pulse. Semiconductor Photonics and Technology, 2007, 13(04):256-260
    57 Xue Ping, James G Fujimoto. Ultrahigh Resolution Optical Coherence Tomography with Femtosecond Ti:Sapphire Laser and Photonic Crystal Fiber. Chinese Science Bulletin, 2008, 53(13):1963-1966
    58 Zhu Jiangfeng, Wang Peng, Han Hainian, Teng Hao, Wei Zhiyi. Experimental Study on Generation of High Energy Few Cycle Pulses with Hollow Fiber Filled with Neon. Science in China Series G, 2008, 51(05):507-511
    59谌鸿伟,陈胜平,侯静.国产光子晶体光纤实现4.6 W全光纤超连续谱输出.光学学报, 2010, 30(09):2541-2543
    60陈胜平,谌鸿伟,侯静,刘泽金. 30 W皮秒脉冲光纤激光器及高功率超连续谱的产生.中国激光, 2010, 37(08):1943-1949
    61陈胜平,王建华,谌鸿伟,陈子伦,侯静,许晓军,陈金宝,刘泽金. 35.6 W高功率高效率全光纤超连续谱光源.中国激光, 2010, 37(12):3018
    62宋锐,陈胜平,侯静,陆启生. 70 W全光纤超连续谱光源.强激光与粒子束, 2011, 23(03):569-570
    63方平,杨直,王屹山,赵卫,张挺,李成.亚纳秒光脉冲抽运光子晶体光纤产生的瓦级超连续谱.光子学报, 2010, 39(03):446-449

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700