基于胶体晶体组装制备抗反射及光伏材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有抗反射性能的结构和材料由于其潜在的广泛应用和科研前景受到人们越来越多的关注和研究。本论文中,我们利用超分子体系自组装方法,在硅片表面沉积上有序排布的胶体晶体颗粒,并通过等离子刻蚀等手段构筑亚微尺度上的有序结构,这些结构具备一定的抗反射性能。我们利用扫描电子显微镜对这些有序结构的微观形貌进行表征,并利用光谱仪测试了这些结构的反射光谱,证明其在可见光区域有明显的光吸收增强效果。之后,我们将这一方法应用于单晶硅光伏材料表面。在单晶硅表面构筑抗反射结构层,并应用传统实验室方法制备简易的光伏电池器件,检验这种光吸收增强结构是否有助于光伏电池转化效率的提升。以期待获得高性能的光伏电池及其它光学器件。
Optical anti-reflection, or in other words the loss of reflection, attract more and more attention and investigation for the potential application.In this paper, to explain the basic principles of anti-reflection, we introduce several anti-reflect phenomenon in nature. We illuminate single-layer coating, double-layer coating, multilayer coating and gradient refractive index coating theories. We particular give some way to fabricate anti-reflecting metrials. For we need to apply the anti-reflection to improve the performance of solar cells, we specially introduce the basic principle and development status. And the detailed job in this paper main contain these two aspect below.
     First, in the second part of this paper, we synthesize monic distributing polystyrene sphere in nano scale. Later we deposit the polystyrene sphere onto the surface of single crystal silicon periodically by self-assemble. We treat the polystyrene sphere as template and etch the surface of silicon by plasma instrument. To investigate the surface shape, we obtain the surface and section image by SEM. We also test the reflect property of RIE treated silicon. We find that with the increasing of etching time, the surface shape of silicon from round stage to column, and then to conical column. Contrast to the reflect spectrum of untried silicon, we found that the etched silicon can reduce the reflection significantly. Especially increase the etching time to 12min or longer, almost in entire visible light area, the reflection ratio will lower then 5%. Prove that the structure fabricated by RIE have excellent anti-reflect performance. We also fabricate large area nanoware (post) structure on the surface of silicon by wet etching way. To test the shape of nanoware (post) by SEM and obtain the reflect spectrum, we ensure that the structure was what we expected and the surface has brilliant anti-reflection performance.
     The third part of this paper mainly introduce a way to apply the anti-reflect technique to improve the performance of Photovoltaic Materials. We first establish an appropriate way to treat high conductivity single crystal silicon by RIE. Then we drop boron into structured silicon, and the P-N junction formed. After the step of plating electrode, a simple silicon solar cell formed. To test the electric performance, obtain the i-v curve, contrast to the apparatus fabricated by plat single crystal silicon, we confirm that the anti-reflection structure fabricated by RIE put up a palmary action to improve the capability of silicon Photovoltaic Materials.
     With the limit of technics, the absolute value of the Photovoltaic Materials'data not very excellent, only have a relative better value. And we expect to study a better route to amend the performance of Photovoltaic Materials.
引文
[1]A.F. Huxley, J. Exp. Biol.48 (1968) 227.
    [2]H. Tabata, S. Tanaka, J. Takimoto, H. Namiki, A. Yoshida, J. Jpn. Opt.22 (1993) 618.
    [3]R. Fujii, H. Kasukawa, K. Miyaji, N. Oshima, Zool. Sci.6 (1989) 477.
    [4]H. Ghiradella, Appl. Opt.30 (1991) 3492.
    [5]A.C. Neville, S. Caveney, Biol. Rev.44 (1969) 531.
    [6]S. Caveney, Proc. R. Soc. Lond. B 178 (1971) 205.
    [7]A.C. Neville, Biology of Fibrous Composites:Development Beyond the Cell Membrane, Cambridge University Press, London,1993.
    [8]C.H. Greenwalt, W. Brandt, D.D. Friel, Proc. Am. Philos. Soc.104 (1960) 249.
    [9]C.H. Greenwalt, Hummingbirds, Doubleday & Co., New York,1960, pp.183-200.
    [10]E.A. Monroe, S.E. Monroe, Science 159 (1968) 97.
    [11]J.V.Sanders, Nature 204 (1964) 1151.
    [12]M.J. Murray, J.V. Sanders, Philos. Mag. A 42 (1980) 721.
    [13]C.A. Murray, D.G. Grier, Am. Sci.83 (1995) 238.
    [14]J.V. Sanders, Philos. Mag. A 42 (1980) 705.
    [15]A.R. Parker, J. Opt. A:Pure Appl. Opt.2 (2000) R15.
    [16]M. Srinivasrao, Chem. Rev.99 (1999) 1935.
    [17]Lord Rayleigh, Proc. London Math. Soc. S1-11 (1879) 51.
    [18]R.N. Gupta, J. Acoust. Soc. Am.39 (1966) 255.
    [19]R. Jacobsson, in:E. Wolf (Ed.), Progress in Optics, vol.5, North-Holland, Amsterdam,1966, p.247.
    [20]R.W. Wood, Philos. Mag.47 (1899) 349.
    [21]R.W. Wood, Physical Optics, Macmillan, New York,1934, p.88.
    [22]J.A. Dobrowolski, in:M. Bass (Ed.), Optical Properties of Films and Coatings, Handbook of Optics, McGraw-Hill, New York,1995, pp.42.19-42.34.
    [23]J.A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, M. Acree, Appl. Opt.41 (2002) 3075.
    [24]H.A. Macleod, Thin Film Optical Filters,3rd Edition, Taylor & Francis, London,2001.
    [25]B. Sheldon, J.S. Haggerty, A.G. Emslie, J. Opt. Soc. Am.72 (1982) 1049.
    [26]W.H. Southwell, Opt. Lett.8 (1983) 584.
    [27]E. Spiller, I. Haller, R. Feder, J.E.E. Baglin, W.N. Hammer, Appl. Opt.19 (1980),3022.
    [28]P. Yeh, S. Sari, Appl. Opt.22 (1983) 4142.
    [29]P.G. Verly, J.A. Dobrowolski, R.R. Willey, Appl. Opt.31 (1992) 3836.
    [30]E.B. Grann, M.G. Moharam, D.A. Pommet, J. Opt. Soc. Am. A 12 (1995) 333.
    [31]W. Zhou, M. Tao, L. Chen, H. Yang, J. Appl. Phys.102 (2007) 103105.
    [32]J.Q. Xi, M.F. Schubert, J.K. Kim, E.F. Schubert, M. Chen, S.Y. Lin, W. Liu, J.A. Smart, at. Photonics 1 (2007) 176.
    [33]D. Poitras, J.A. Dobrowolski, Appl. Opt.43 (2004) 1286.
    [34]J.A. Dobrowolski, Y. Guo, T. Tiwald, P. Ma, D. Poitras, Appl. Opt.45 (2006) 1555.
    [35]A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bla" si, A. Heinzel, D. Sporn, W.Do" ll, V. Wittwer, Thin Solid Films 351 (1999) 73.
    [36]C.G. Bernhard, Endeavour 26 (1967) 79.
    [37]P.B. Clapham, M.C. Hutley, Nature 244 (1973) 281.
    [38]J.M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering, Optical Society of America, Washington DC,1989.
    [39]J.C.M. Garnett, Philos. Trans. R. Soc. London 203 (1904) 385.
    [40]J.C. Maxwell Garnett, Philos. Trans. R. Soc. London 205 (1906) 237.
    [41]D.A.G. Bruggeman, Annalen der Physik 416 (1935) 636.
    [42]D.E. Aspnes, J.B. Theeten, F. Hottier, Phys. Rev. B 20 (1979) 3292.
    [43]H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications, John Wiley& Sons, Ltd.,2007,, p.177.
    [44]F.H. Nicoll, R. C. A. Rev.6 (1942) 287.
    [45]F.H. Nicoll, F.E. Williams, J. Opt. Soc. Am.33 (1943) 434.
    [46]M.J. Minot, J. Opt. Soc. Am.66 (1976) 515.
    [47]S.F. Monaco, J. Opt. Soc. Am.51 (1961) 280.
    [48]M.J. Minot, J. Opt. Soc. Am.67 (1977) 1046.
    [49]S. Walheim, E. Scha" ffer, J. Mlynek, U. Steiner, Science 283 (1999) 520.
    [50]S.J. Wilson, M.C. Hutley, Opt. Acta 29 (1982) 993.
    [51]D.G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, Proc. R. Soc. B 273 (2006)661.
    [52]A.R. Parker, Z. Hegedus, R.A. Watts, Proc. R. Soc. B 265 (1998) 811.
    [53]J. Fraunhofer, in:F. Hommel (Ed.), Gesammelte Schriften, Munich,1887.
    [54]J.J. Steele, M.J. Brett, J. Mater. Sci.:Mater. Electron 18 (2007) 367.
    [55]S.R. Kennedy, M.J. Brett, Appl. Opt.42 (2003) 4573.
    [56]J.-Q. Xi, J.K. Kim, E.F. Schubert, D. Ye, T.-M. Lu, S.-Y. Lin, J.S. Juneja, Opt. Lett.31(2006)601.
    [57]H.Y. Chen, H.W. Lin, C.Y. Wu, W.C. Chen, J.S. Chen, S. Gwo, Opt. Express 16 (2008)8106.
    [58]W. Thei, Surf. Sci. Rep.29 (1997) 91.
    [59]P. Menna, G. Di Francia, V. La Ferrara, Sol. Energy Mater. Sol. Cells 37 (1995) 13.
    [60]C.C. Streimer, P.M. Fauchet, Appl. Phys. Lett.81 (2002) 2980.
    [61]K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, J. Zhu, Angew. Chem. Int. Ed.44 (2005)2737.
    [62]S. Koynov, M.S. Brandt, M. Stutzmann, Appl. Phys. Lett.88 (2006) 203107.
    [63]P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, M. Lemiti, Sol. Energy Mater. Sol. Cells 90 (2006) 2319.
    [64]C. Wu, C.H. Crouch, L. Zhao, J.E. Carey, R. Younkin, J.A. Levinson, E. Mazur, R.M.arrell, P. Gothoskar, A. Karger, Appl. Phys. Lett.78 (2001) 1850.
    [65]A.Y. Vorobyev, C. Guo, Phys. Rev. B 72 (2005) 195422.
    [66]Y. Vorobyev, C. Guo, Appl. Phys. Lett.92 (2008) 041914.
    [67]A.Y. Vorobyev, V.S. Makin, C. Guo, J. Appl. Phys.101 (2007) 034903.
    [68]J. Shieh, C.H. Lin, M.C. Yang, J. Phys. D:Appl. Phys.40 (2007) 2242.
    [69]H.L. Chen, S.Y. Chuang, C.H. Lin, Y.H. Lin, Opt. Express 15 (2007) 14793.
    [70]S.M. Yang, S.G. Jang, D.G. Choi, S. Kim, H.K. Yu, Small 2 (2006) 458.
    [71]Y. Kanamori, K. Hane, H. Sai, H. Yugami, Appl. Phys. Lett.78 (2001) 142.
    [72]Z. Yu, H. Gao, W. Wu, H. Ge, S.Y. Chou, J. Vac. Sci. Technol. B 21 (2003) 2874.
    [73]G.R. Lin, Y.C. Chang, E.S. Liu, H.C. Kuo, H.S. Lin, Appl. Phys. Lett.90 (2007)181923.
    [74]Y. Kanamori, M. Sasaki, K. Hane, Opt. Lett.24 (1999) 1422.
    [75]C.J. Ting, F.Y. Chang, C.F. Chen, C.P. Chou, J. Micromech. Microeng.18 (2008)075001.
    [76]Q. Chen, G. Hubbard, P.A. Shields, C. Liu,1 D.W.E. Allsopp, W.N. Wang, S. Abbott, Apl. Phys. Lett.94 (2009) 263118.
    [77]H. Ghiradella, J. Morph.202 (1989) 69.
    [78]H. Tabata, K. Kumazawa, M. Funakawa, J. Takimoto, M. Akimoto, Opt. Rev. 3(1996) 139.
    [79]P. Vukusic, J.R. Sambles, C.R. Lawrence, R.J. Wootton, Nature 410 (2001) 36.
    [80]S. Kinoshita, S. Yoshioka, Y. Fujii, N. Okamoto, Forma 17 (2002) 103.
    [81]P. Vukusic, J. Roy Sambles, Nature 424 (2003) 852.
    [82]K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, S. Matsui, Jpn. J. Appl. Phys. 44(2005) L48.
    [83]C.W. Mason, J. Phys. Chem.30 (1926) 383.
    [84]C.W. Mason, J. Phys. Chem.31 (1927) 321.
    [85]C.W. Mason, J. Phys. Chem.31 (1927) 1856.
    [86]C.G. Bernhard, W.H. Miller, Acta Physiol. Scand.56 (1962) 385.
    [87]W.H. Miller, A.R. Moller, C.G. Bernhard, in:C.G. Bernhard (Ed.), The Functional Oanisation of the Compound Eye, Pergamon Press, Oxford,1966, p. 21.
    [88]S.A. Boden, D.M. Bagnall, in:Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, Hawaii, (2006), p.1358.
    [89]A.R. Parker, H.E. Townley, Nat. Nanotech.2 (2007) 347.
    [90]G. Zhang, J. Zhang, G. Xie, Z. Liu, H. Shao, Small 2 (2006) 1440.
    [91]Y. Kanamori, M. Sasaki and K. Hane, Opt. Lett.,1999,24,1422.
    [92]Z. N. Yu, H. Gao, W. Wu, H. X. Ge and S. Y. Chou, J. Vac. Sci. Tchnol. B,2003, 21,2874.
    [93]S. Wang, X. Z. Yu and H. T. Fan, Appl. Phys. Lett.,2007,91,061105.
    [94]Kanamori, K. Hane, H. Sai and H. Yugami, Appl. Phys. Lett.,2001,78,142.
    [95]Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu,Y. K. Hsu, C. L. Pan, H. C. LO, C. H. Hsu, Y. H. Chang,C. S. Lee, K. H. Chen and L. C. Chen, Nature Nanotech.,2007,2,770.
    [96]Chen X, Chen Z, Yang B, et al. Regular patterns generated by self-organization of ammonium-modified polymer nanospheres [J]. J. Colloid. Inter. Sci.,2004,269: 79-83.
    [97]Chen X, Cui Z C, Chen Z, et al. The synthesis and characterizations of monodisperse cross-linked polymer microspheres with carboxyl on the surface [J]. Polymer,2002,43:4147-4152
    [98]World Energy Outlook 2007-China and India Insights, International Energy Agency (IEA). http://www.unep.org/geo/yearbook/yb2009/references/index. asp
    [99]Zoski C G. Handbook of Electrochemistry [M]. Elesvier, Oxford OX5 1GB, UK 2007
    [100]Perlin J. From Space to Earth:The Story of Solar Electricity [M. Harvard University Press:Cambridge, MA,2002.
    [101]Gunes S, Neugebauer H, Sariciftci N S. Conjugated Polymer-Based Organic Solar Cells. [J]. Chem. Rev.2007,107:1324.
    [102]Shrotriya V, Li G, Yao Y, et al. Accurate measurement and characterization of organic solar cells. [J]. Adv Funct Mater 2006,16:2016.
    [103]Scharber M C, Wuhlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells-Towards 10% energy-conversion efficiency. [J]. Adv Mater 2006,18:789.
    [104]Zeng L, Yi Y, Hong C, et al. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector. [J]. Appl Phys Lett 2006,89:111111.
    [105]O'Brien P G, Kherani N P, Chutinan A, et al. Silicon photovoltaics using conducting photonic crystal back-reflectors. [J]. Adv Mater 2008,20:1577.
    [106]Haase C, Stiebig H. Thin-film silicon solar cells with efficient periodic light trapping texture. [J]. Appl Phys Lett 2007,91:061116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700