模板法合成聚吡咯纳米材料和器件及其电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的有序微阵列体系的制备对于规模化功能器件例如微探针、传感器和动力元件等的研制具有特别重要的意义。氧化铝有序阵列模板具有高度有序、制备工艺简单、且易于工业化生产等特点。采用氧化铝模板合成纳米材料已被视为制备纳米材料有序阵列体系最有前途的方法之一。
     导电高聚物优异的物理化学性能使其在能源(太阳能电池,二次电池)、光电子器件、电磁屏蔽、隐身技术、传感器、金属防腐、分子器件和生命科学等技术领域都有广泛的应用前景。作为一种重要的导电聚合物,聚吡咯材料具有优良的电化学可逆性,对环境稳定性高等优点,因此具有重要的应用价值。
     本文采用电沉积、化学沉积等方法结合模板技术合成聚吡咯纳米材料的有序微阵列,研究了它们的电化学性能。首次制备了纳米电容器、生物传感器阵列电极,研究了纳米聚吡咯阵列电极的光电化学性质,研究了纳米聚毗咯二极管的制备和性质,以及吡咯在纳米孔中的生长机理。所获得的主要结果和结论如下:
     1、采用二次电化学阳极氧化的方法,优化合成工艺,在草酸溶液中制备了孔径为60~80nm的厚度可控的高度有序氧化铝阵列模板。模板厚度可通过控制阳极氧化时间和在酸溶液中的浸泡时间加以控制,并探讨了孔的生长机理。
     2、利用交流电沉积的方法制备了有序聚吡咯纳米管阵列,研究结果表明:聚吡咯纳米管首先沿着管壁生长,在氧化铝模板的孔中填充是不均匀的,有的管的内径减小至10nm,有些管顶部被生长的聚吡咯所堵塞。有的即使提高电压和增加电沉积时间也不能将孔完全填满。电化学交流沉积是合成较短的纳米管状聚吡咯材料的一种好的方法。
     3、采用电化学恒电位沉积的方法在氧化铝有序阵列模板中制备了聚吡咯纳米线阵列。并研究其在模板纳米孔中的生长机理,分为成核、一维生长、二维生长和三维生长四阶段。由不同扫描速度下的循环伏安图可以发现,阴极峰电流与扫描速度呈线性关系,说明聚吡咯纳米线的电化学行为符合薄层电极的特征:0.2V以上的电位扫描区域体现了双电层电容的充放过程。通过测定不同电极电位下的交流阻抗图谱,计算出了0.4V电位下的扩散系数,ClO_4~-在聚吡咯纳米线中的扩散远高于在平面聚吡咯膜中的扩散,其反应电阻则小于平面聚毗咯电极的,提高了聚吡咯纳米线的氧化还原动力学过程。
     4、纳米聚吡咯器件的制备及表征。第一类,将恒电位电沉积制备的纳米聚吡咯线进行碱处理。碱处理使纳米聚吡咯线阵列电极的反应电流下降,材料结构发生变化。ITO/非活性纳米PPy的Ⅰ-Ⅴ特性曲线,显示了PPy电导率随所加电压的升高而增加的特点,可望用作纳米电子开关。第二类,先在氧化铝模板的孔中沉积金,再继续电沉积聚吡咯。Au/PPy和Au/非活性PPy的Ⅰ-Ⅴ特性曲线表明均显示了整流效应,可作为纳米整流器。该整流效应是由于纳米p型聚吡咯与金之间形成的异质结所引起的。
     5、采用电沉积和化学沉积的方法,用二氧化钛作隔膜成功地制备了聚吡咯纳米线阵列超电容。第一步,在AAO纳米孔的底部电沉积聚吡咯作为一个电极;第二步,继续电沉积二氧化钛作为隔膜;第三步,以过硫酸胺为氧化剂化学沉积聚吡咯作为另一个电极,制成纳米尺寸的PPy/TiO_2/PPy超电容。用钨针尖作探头,检测了纳米电容器的充放电性能。从充放曲线也证明纳米电容器组装成功,其电容值为3.5nF,且具有较好的充放电性能。
     6、纳米聚吡咯阵列电极的光电化学性质研究。在测定纳米聚吡咯阵列电极在-0.7~0.5V范围内的光电化学性质时,发现纳米聚吡咯阵列电极在此电位范围内存在明显的阴极光电流,该电流可由聚吡咯的p型半导体的性质来解释。光电流与厚度有密切的关系。存在最佳厚度,当厚度在40nm~50hm之间,有最大光电流。当厚度增加时,光电流响应减小。这是由于在厚膜中光生电子和空穴易于复合猝灭的缘故。实验还发现由于AAO模板对聚吡咯纳米线的隔离散热作用,未测到聚吡咯的阳极光电流。聚吡咯纳米线可作为纳电子线路中的纳米光电器件。
     7、用两步法在氧化铝模板中制备了聚吡咯葡萄糖生物传感器纳米阵列电极。第一步,在恒电位0.5V(vs.SCE)下,pH=6.86的含有1.5mg/ml的葡萄糖氧化酶的磷酸缓冲溶液中,将葡萄糖氧化酶电吸附进入氧化铝模板的孔中。第二步,在含有吡咯单体和葡萄糖氧化酶的溶液中共沉积形成聚吡咯葡萄糖生物传感器纳米阵列。该纳米聚吡咯葡萄糖生物传感器阵列电极对过氧化氢有好的渗透性,且使氧化电位下降至0.2V。红外光谱和TEM研究证实了葡萄糖氧化酶成功地固定在聚吡咯纳米线上,主要嵌入在聚吡咯纳米线的表面区域。两步固定法能大大提高酶在氧化铝模板孔中的固载量。聚吡咯葡萄糖生物传感器纳米阵列电极对葡萄糖的响应迅速(<15s)。随着葡萄糖检测浓度的增加,电流~葡萄糖浓度标准曲线符合Michaelis-Menten特征,米氏表观常数是5.7mM,低于普通的葡萄糖氧化酶传感器的。表明固定的葡萄糖氧化酶有更高的生物活性,对葡萄糖有更高的亲和性。在pH=6.86的磷酸缓冲溶液经过两个月的保存,生物活性仍保持在原有活性的80%。
The fabrication of ordered array nano structures are particularly important for obtaining scaled-up functional devices such as probes, sensors and micromechanical devices. One of strategies is to use Nanoporous alumina membranes with highly ordered nanochannel as template to prepare such structures on a large scale.
    Conducting polymers could be extensively used in the field of energy (photoelectrochemical cells, battery), photoelectronic device, electromagnetism materials, shield technique, sensors, corrosion-resistance of metal, molecular devices and biology science for their excellent physical properties. As one of the most important conducting polymers, PPy is reversible in electrochemical behavior and stable to environment and it can be used in many fields.
    Preparation of uniform and ordered nano-sized material make the use of the new material possible, which attracts the attention of the chemical、 physical and material science. In the paper, anodic aluminum oxide (AAO) films were used as the templates. The PPy nano-sized materials were prepared in the pores of the template through ac and dc electrochemical methods. Nano devices such as diode, supercapacitor, biosensor based on PPy nanofibers were fabricated and their electronic and electrochemical properties were studied via electrochemical methods. The main results and conclusion can be summarized as following:
    1. The anodic aluminum oxide (AAO) template with the ordered straight nano-channel has been prepared by two-step anodizing process. The length and the pore diameter ranging from 60 to 80 nm of the AAO membrane can be adjusted in oxalic acid solutions by controlling the anodizing time and dipping time in acid solution.
    2. This work demonstrates the preparation of polypyrrole nano-tubules using AAO membranes as the template by electrochemical ac method which is an easy route to proceed. The presence of hollow tubules suggests that PPy initially deposits on the surface of the inner pore walls. The relative surface coverage of the filled pores is not uniform. The diameters of some nano-pores reduced to 10nm. Some nano-pores
    were not filled completely and PPy did not stick out of membrane even by increasing the synthesis time and voltage.
    3. Polypyrrole nanofibers have been prepared by electrochemical dc method in AAO templates. The cyclic voltammgrams of a PPy nano-fiber arrays electrode at different scan rate were tested. The linear relationship between cathodic current peak and the potential sweeping rate reflects the electrochemical characteristic of thin film electrode. In the potential region higher than 0.2V the anodic current curves are paralleled with the cathodic current curves with relative high margins between. The behavior indicates that the charge and discharge of double layer capacity are the main processes in this region. The AC impedance spectrums of PPy nanofibers at different potential were also tested. The AC impedance spectrum at more positive potential accorded with the Ho model. The diffusion coefficient D of PPy nanofiber was calculated to be 2.38 × 10~(-9)cm~2s~(-1) much higher than 1.13 × 10~(-11)cm~2s~(-1) of PPy film.
    4. PPy nanofiber devices have been fabricated within two-step oxidized AAO membrane. Their electrical properties were measured using a simple way, in which an external power source and a very sharp Pt tip was used for measuring the I—V curves. The ITO/PPy nanofiber device presents a common resistance behavior. But after an alkaline treatment the ITO/ inactive PPy nanofiber device shows unusual behavior, at high voltage its conductivity becomes high. It might be used for nano-fiber switching diode. The Au/PPy or Au/ inactive PPy nanofiber devices demonstrate a rectifying behavior and might be used as nano-fiber rectifiers.
    5. The nano-supercapacitor consisted of electropolymerized PPy electrode / porous TiO_2 separator / chemical polymerized PPy electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based upon layer-by-layer synthetic strategy. It performs typical electrochemical supercapacitor behavior with good charge-discharge ability, and presents the smallest capacity of 3.5nF right now. The nano devices could be useful for the development of nano electronic devices and microelectromechanical systems (MEMS).
    6. Photoelectrochemical behavior of PPy nanofiber array electrode has been studied. The cathodic photocurrent response of PPy nanofiber array electrode has
    been observed due to the semiconductor properties of PPy nanofiber. It was found that the thickness of PPy nanofiber array electrode was very important factor. There was an optimism thickness for photocurrent response. When the length of PPy fibers was more than 1.4 μ m, no photocurrent appeared. It could be explained that for thick PPy film the photoinduced electrons and holes were easy to recombine. No anodic photocurrent was observed.
    7. Novel glucose oxidase (GOx) sensor arrays with nanoelectrode population densities of up to 1×10~(10) / cm~2 nanoelectrodes was reported. The nanoelectrode sensors, were fabricated by first electroadsorping GOD followed by electrochemical codepositing PPy and GOx within the nanopores of anodic aluminum oxide (AAO) membrane electrodes. FTIR spectrum and TEM images show that GOx enzyme clusters were intercalated in PPy nanofiber, mainly in the region close to nanofiber surface. Due to the small size of the nanofiber sensor, the sensor gave very fast response (<15 s). With the increase in glucose concentration, the response curve tends to be level off, featuring Michaelis-Menten characteristics. These features make the nanofiber sensor potentially useful for in vivo detection of glucose. The biosensor arrays also showed good stability. Amperometric measurements of lmM glucose were conducted over two monthes still with 80% of original sensitivity.
引文
[1] 张立德,牟季美.纳米材料学.辽宁:辽宁科学技术出版社,1994.
    [2] R. Kubo, A. Kawabata, S. Kobayashi. Annu. Rev. Mater. Sci., 1984, 14:14.
    [3] R. P. Feynman. Engineering and Science, Feb., 1960: 22.
    [4] H. Masuda, F. Hasegwa, S. Ono. Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid soliution. J. Electrochem. Soc., 1997, 144: L127-L130.
    [5] H. Masuda, M. Satoh. Jpn. J. Appl. Phys., 1996, 35: L126.
    [6] A. P. Li, F. Muller, A. Birner et al. J. Appl. Phys., 1998, 84: 6023.
    [7] T. P. Hoar, J. Yahalom. J. Electrochem. Soc, 1963, 110: 614.
    [8] P. E. Possion. Rev. Sci. Instrum. 1970, 41: 772.
    [9] W. D. Williams and N. Giordano. Rev. Sci. Instrum. 1984, 55: 410.
    [10] C. R. Martin, R. Parthasarathy, and V. Menon. Template synthesis of electronically conductive polymers -a new route for achieving higher electronic conductivities. Synth. Met. 1993,55-57:1165-1170.
    [11] R. P. Fleischer, P. B. Price, R. M. Walker, E. L. Hubbard. Phys. Rev. 1967, 156: 353.
    [12] W. Kautek, S. Reetz, and S. Pentzien. Electrochim. Acta, 1995, 40: 1461.
    [13] C. J. Brumlik, and C. R. Martin. Template synthesis of metal microtubules. J. Am. Chem. Soc. 1991, 113:3174-3175.
    [14] C. J. Brumlik, C. R. Martin, and K. Tokuda. Microhole array electrodes based on microporous alumina membranes. Anal. Chem. 1992, 64:1201-1203.
    [15] C. J. Brumlik, V. P. Menon, C. R. Martin. Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical and vacuum deposition techniques. J. Mater. Res., 1994, 9: 1174-1183.
    [16] C. R. Martin, R. Parthasarathy, V. Menon. Template synthesis of electronically conductive polymers-preparation of thin films. Electrochim. Acta, 1994, 39: 1309-1313.
    [17] C. R. Martin, L. S. V. Dyke, Z. H. Cai. Template synthesis-a method for enhancing the ionic and electronic conductivity in electronically conductive polymers. Electrochim. Acta, 1992, 37: 1611-1613.
    [18] V. M. Cepak, J. C.Hulteen, G. Che, K. B. Jirage, B. B. Lakshmi, E. R. Fisher, and C. R. Martin. Chemical strategies for template syntheses of composite micro and nanostructures. Chem. Mater. 1997, 9: 1065-1067.
    [19] I. F. Cheng, L. D. Whiteley, and C. R. Martin. Ultramicroelectrode ensembles. Comparison of experimental and theoretical responses and evaluation of electroanalytical detection limits. Anal. Chem. 1989, 61: 762-766.
    [20] S. De Vita and C.R.Martin. Toward colloidal dispersions of template-synthesized polypyrrole nanotubules. Chem. Mater. 1998, 10: 1738-1741.
    [21] C. A. Foss, Jr., G. L. Hornyak, J. A. Stocket, and C. R. Martin. Optical properties of composite membranes containing arrays of nanoscopic gold cylinders. J. Phys. Chem. 1992, 96: 7497.
    [22] C. A. Foss Jr., G. L. Hornyak, J. A. Stocket, and C. R. Martin. Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape. J. Phys, Chem. 1994, 98: 2963-2971.
    [23] J. C. Hulteen, K. B. Jirage, and C.R.Martin. Introducing chemical transport selectivity into gold nanotubule membranes. J. Am, Chem. Soc. 1998, 120: 6603-6604.
    [24] K. B. Jirage, J. C. Hulteen, and C. R. Martin. Effects of thiol chemisorption on the transport properties of gold nanotubule membranes. Anal. Chem. 1999, 71: 4913-4918.
    [25] B. B. Lakshmi, P. K. Dorhout, and C. R. Martin. Sol-gel template synthesis of semiconductor nanostructures. Chem. Mater. 1997, 9: 857-862.
    [26] C. R. Martin, L. S. Van Dyke, Z. Cai, and W. Liang. Template synthesis of organic microtubules. J. Am.Chem. Soc. 1990, 112: 8976-8977.
    [27] C. R. Martin. Nanomaterials: a membrane-based synthetic approach. Science, 1994,266: 1961-1966.
    [28] V. P. Menon and C.R. Martin. Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem. 1995, 67: 1920-1928.
    [29] R.V. Parthasarathy, C. R. Martin. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature, 1994, 369: 298-301.
    [30] M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin, H. Yoneyama. Template synthesis of polypyrrole-coated spinel LiMn_2O_4 nanotubules and their properties as cathode active materials for lithium batteries. J. Eoectrochem. Soc, 1997, 144(6): 1923-1927.
    [31] R. M. Penner and C. R. Martin. Preparation and electrochemical characterization of ultramicroelectrode ensembles. Anal. Chem. 1987, 59: 2625-2530.
    [32] S. A. Sapp, B. B. Lakshmi, and C. R. Martin. Template synthesis of bismuth telluride nanowires. Adv. Mater. 1999, 11: 402-404.
    [33] L. S. Van Dyke and C. R. Martin. Chemistry in adsorbed monolayers. 2. Thermal and photochemical grafting reactions at the polymer-filler interface. Langmuir 1990, 6: 1123-1132.
    [34] G. Che, K. B. Jirage E. R. Fisher, C. R. Martin. Chemical-Vapor deposition-based template synthesis of microtubular TiS_2 battery electrodes. J. Electrochem. Soc., 1997, 144:4296-4302.
    [35] R. Ferre, K. Ounadjela, J. M. George, L. Pirauz, and S. Dubois. Phys. Rev. B, 1997, 56: 14066.
    [36] L. D. De Pra, E. Ferain, R. Legras, S. D. Champagne. Fabrication of a new generation of track-etched templates and their use for the synthesis of metallic and organic nanostructures. Nuclear Instruments and Methods in Physics Research B, 2002, 196: 81-88.
    [37] L. Sun, C. L. Chien, and P. C. Searson. J. Mater. Sci. 2000, 35: 1097.
    [38] L. Sun, P. C. Searson, and C. L. Chien. Appl. Phys. Lett. 1999, 74: 2803.
    [39] H. Masuda, K. Fukuda. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 1995, 9: 1466-1468.
    [40] J. S. Beck et al. J. Am. Chem. Soc., 1992, 114: 10834.
    [41] S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia. Science, 1995, 269: 1242.
    [42] 沈钟,王果庭.胶体与表面化学.北京:化学工业出版社,1991,p305.
    [43] G. S. Attard, J. C. Glyde et al.. Nature, 1995, 378: 366.
    [44] Z. R. Tian, W. Tong, J. Y. Wang. Science, 1997, 276: 926.
    [45] P. V. Braun, R Osenar, S. I. Stupp. Nature, 1996, 280: 325.
    [46] T. Thurn-Albrecht, R. Steiner, J. DeRouchey, C. M. Stafford, E. Huang, M. Bal, M. Tuominen, C. J. Hawker, and T. P. Russell. Adv. Mater, 2000, 12: 787.
    [47] T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell. Science 2000, 290: 2126.
    [48] M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson. Science 1997, 276: 1401.
    [49] S. T. Selvan, J. P. Spatz, H.-A. Klok, M. Moller. Gold-polypyrrole core-shell particles in diblock copolymer micelles. Adv. Mater. 1998, 10: 132-134.
    [50] P. Mansky, C. K. Harrison, P. M. Chaikin, R. A. Register, and N. Yao. Appl. Phys. Lett, 1996, 68: 2586.
    [51] B. H. Hong, S. C. Bae, C.-W. Lee, S. Jeong, and K. S. Kim, Science, 2001, 294: 348.
    [52] R. J. Tonucci, B. L, Justus, A. J. Campillo, and C. E. Ford. Science, 1992, 258: 783.
    [53] M. H. Huang, A. Choudrey, and P. Yang. Chem. Commun, 2000: 1063.
    [54] C. M. Yang, H. S. Sheu, and K. J. Chao. Adv. Funct. Mater, 2002, 12: 143.
    [55] B. Ye, M. Trudeau, and D. Antonelli. Adv. Mater, 2001, 13: 29.
    [56] J. C.-A. Foss, G. L. Hornyak, J. A. Stockert, et al. J. Phys. Chem., 1994, 98: 2963.
    [57] S. K. Chakarvarti, J. Vetter, J. Micromech. Microeng., 1993, 3: 57.
    [58] S. K. Chakarvarti, J. Vetter, J. Micromech. J. Nucl. Instrum. Methods. Phys, Res. B, 1991, 62: 109.
    [59] M. Nishizawa, V. P. Mewon, C. R. Martin. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science, 1995, 268: 700-702.
    [60] R. V. Parthasarathy, K. L. N. Phani, C. R. Martin. Template synthesis of graphitic nanotubules. Adv. Mater., 1995, 7: 896-897.
    [61] R. V. Parthasarathy, C. R. Martin. Template-synthesized polyaniline microtubules. Chem. Mater., 1994, 6:1627-1632.
    [62] C. R. Martin. Membrane-based synthesis of nanomaterials, special issue on nanostructured materials. Chem. Mater. 1996, 8:1739-1746.
    [63] 王银海,牟季美,蔡维理,石刚.交流电在Al_2O_3模板中沉积金属机理探讨.物理化学学报,2001,17(2):116-118.
    [64] K. H. Lee, H. Y. Lee, W. Y. Jeung. Magnetic properties and crystal structures of self-ordered ferromagnetic nanowires by ac electroforming, J. Applied Physics, 2002, 91: 8513-8515.
    [65] T. Ito, H. Shirakawa, S. Ikeda. J. Polym. Sci. Polym. Lett. Ed. I974, 12: 11.
    [66] C. K. Chiang et al. J. Chem. Phys. 1978, 69: 5098.
    [67] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger. J. Chem. Soc. Chem. Commun, 1977: 578.
    [68] C. K. Chiang, M. J. Cohen, A. F. Garito, A. J. Heeger, C. M. Mikulski, A. G. MacDiarmid. Solid State Commun., 1976, 18: 1451.
    [69] W. P. Su, J. R. Schrieffer, A. J. Heeger. Phys. Rev. Lett, 1979, 42: 1698.
    [70] W. P. Su, J. R. Schrieffer, A. J. Heeger. Phys. Rev. B 1980, 22: 2099.
    [71] A. J. Heeger, S. Kivelson, J. R. Schrieffer, W. P. Su. Rev. Mod. Phys., 1988, 60: 781.
    [72] A. Dall'Olio, Y. Dascola, V. Varacca, V. Bocchi. C. R. Acad. Sci. Ser. C 1968, 267: 433.
    [73] A. F. Diaz, K. K. Kanazawa, G. P. Gardini. J. Chem. Soc. Chem. Commun. 1979: 635.
    [74] M. C. Lonergan. A tunable diode based on an inorganic semiconductor/conjugated polymer interface. Science, 1997, 278:2103-2106.
    [75] K. Araya, A. Mukoh, T. Narahara, H. Shirakawa, Chem. Lett., 1984, 7:1141.
    [76] K. Akagi, S. Katayama, H. Shirakawa, K. Araya, A. Mukoh, T. Narahara. Synth. Met., 1987, 17: 241.
    [77] K. Akagi, G. Piao, S. Kaneko, K. Sakamaki, H. Shirakawa, M. Kyotani. Science, 1998, 282: 1683.
    [78] J. M. Shaw, P. M. Seidler. IBM J. Res. Dev., 2001, 45: 3.
    [79] G.Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger. Science, 1995, 270: 1789.
    [80] L. Chen, D. W. McBranch, H.-L. Wang, R. Helgeson, F. Wudl, D. G. Whitten. Proc. Natl. Acad. Sci.U.S.A., 1999, 96: 12287.
    [81] A.G. Macdiarmid, Angew. Chem. Int. Ed., 2001, 40: 2581.
    [82] 万梅香,李永舫.有机固体.朱道本,王佛松主编.上海:上海科学技术出版社,1999年.
    [83] 万梅香.高技术有机高分子材料进展.黄维恒,闻建勋主编.北京:化学工业出版社,1994:188-222.
    [84] S. Panero, P. Prosperi, B. Scrosati. Characteristics of electrochemically synthesized polymer electrodes in lithium cells-Ⅳ. Effects of the synthesis conditions on the performance of polypyrrole. Electrochimica Acta, 1987, 32(10): 1465-1468.
    [85] Meixiang Wan, W. X. Zhou, J. C. Li. Composite of polyaniline containing iron oxides with nanometer size. Synth. Met. 1996, 78 (1): 27-31.
    [86] H. V. Shurmer and J. W. Gardner. Sens. Actuat. B 1992,8:1.
    [87] F. T. A. Vork, B. C. A. M. Schuenmans, E. Barendrecht. Electrochim Acta. 1990, 35: 567.
    [88] L. Wang, X. Li, Y. Yang. Preparation, properties and applications of polypyrroles. Reactive & Functional polymers, 2001, 47: 125-139.
    [89] T. V. Vemitskaya, O. N. Efimov. Russ. Chem. Rev. 1997, 66: 443.
    [90] G. P. Evans, Adv. Electrochem. Sci. Eng, 1990, 1: 1.
    [91] G. P. Gardini, Adv. Heterrocyclic Chem., 1973, 15: 67.
    [92] K. K. Kanzawa, A. F. Diaz, R. H. Geiss etc. J. Chem. Soc. Chem. Commun., 1979: 854.
    [93] K. K. Kanzawa, A. F. Diaz, W. D. Gill, P. M. Grant, G. B. Street, G. P. Gardini, J. F. Kwak. Synth. Met., 1980, 1: 329.
    [94] A. F. Diaz, J. I. Castillo, J. A. Logan, W. Lee. Electrochemistry of conducting polypyrrole films. J. Electroanal. Chem., 1981, 129:115-132.
    [95] P. Novak. Electrochim. Acta, 1992, 2: 1227.
    [96] M. Biswas, A. Roy, J. Appl. Polym. Sci. 1994, 51: 1575.
    [97] Y. Lu, G. Shi, C. Li, Y. Liang, J. Appl. Polym. Sci. 1998, 70: 2169.
    [98] R. Ansari, G. G. Wallace, Polymer, 1994, 35: 2372.
    [99] H. Munstedt, H. Naarmann, G. Kohler, Mol. Cryst. Liquid Cryst. 1985, 2: 129.
    [100] H. Munstedt. Polymer, 1986, 27: 899.
    [101] Y. Kudoh, S. Tsuchiya, T. Kojima, M. Fukuyama, S. Yoshlmura. Synth. Met. 1991, 41-43: 1133.
    [102] P. Audebert, P. Aldebert, N. Girault. Synth. Met. 1993, 58: 251.
    [103] J. Y. Lee, D. Y. Kim, C. Y. Kim. Synthesis of soluble polypyrrole of the doped state in organic solvents. Synth. Met. 1995, 74 (2): 103-106.
    [104] J. Y. Lee, K. T. Song, S. Y. Kim, Y. C. Kim, D. Y. Kim, C. Y. Kim. Synth. Met. 1994, 84: 137.
    [105] J. C. Vidal, E. Garcia, J.R. Castillo. Anal. Chim. Acta, 1999, 1-3: 213.
    [106] T. E. Campbell, A. J. Hodgson, G. G. Wallace. Electroanalysis, 1999, 4: 215.
    [107] D. Kincal, A. Kamer, A. D. Child, J. R. Reynold. Synth. Met, 1998, 32: 53.
    [108] N. T. Kemp, G. U. Flanagan, A. B. Kaiser, H. J. Trodahl, B. Chapman, A. C. Partridge, R. G. Buckley. Temperature-dependent conductivity of conducting polymers exposed to gases. Synth. Met. 1999, 101 (1-3): 434-435.
    [109] N. C. Foulds, C. R. Lowe. Anal. Chem., 1988, 60: 2473.
    [110] H. Shirakawa, S. Okada, M. Aizawa, J. Yoshitake, S. Suzaki. Synth. Met., 1981, 4: 43.
    [111] C. Jerome, D. Labaye, I. Bodart, R. Jerome. Electrosynthesis of polyacrylic/polypyrrole composites: Formation of polypyrrole wires, Synth. Met. 1999, 101 (1-3): 3-4.
    [112] E. Smela, J. Micromech. Microeneg. 1999, 1: 1.
    [113] 季锐,徐友龙.聚吡咯固体电解电容器.电子元件与材料,1999,18(4):4-6.
    [114] 徐友龙,王杰,秦继伟.影响聚吡咯铝电解电容器漏电流的因素及改进 措施.西安交通大学学报,2002,36(3):300-304.
    [115] M. Gazard, J. C. Dubois, M. Champagne, F. Gamier, G. Tourillon, J. Phys. Colleque, 1983, 44: C3-537.
    [116] J. O. Iroh, C. Williams. Formation of thermally stable polypyrrole-naphthalene/benzene sulfonate-carbon fiber composites by an electrochemical process. Synth. Met. 1999, 99 (1): 1-8.
    [117] J. R. Reynolds, Ly Hiep, F. Selampinar, P. J. Kinlen, Polym. Prepr (Am. Chem. Soc., Div. Polym. Chem.), 1999, 1: 307.
    [118] B. Zinger, L. L. Miller, J. Amer. Chem. Soc., 1984, 106: 6861.
    [119] W. K. Lu, R. A. Elsenbaumer. Annu. Tech. Conf. Soc. Plast. Eng. 1998, 2: 1276.
    [120] P. J. Nigrey, D. Macinnes, A. G. Macdiarmiel, A. J. Heeger. J. Electrochem. Soc., 1981, 128: 1651.
    [121] A. G. Macdiarmiel, S. L. Mu, N. L. D. Somasiri, W. Wu. Mol. Cryst. Liq. Cryst., 1985, 121: 187.
    [122] S. Panero, P. Prosperi, F. Bonino, B. Scrosati, Electrochim. Acta, 1987, 7: 1007.
    [123] N. Mermilliod, J. Tanguy. A study of chemically synthesized polypyrrole as electrode material for battery applications. J. Electrochem. Soc., 1986, 133(6): 1073-1079.
    [124] T. Osaka, T. Momma, K. Nishimura, S. Kakuda, T. Ishii. Application of solid polymer electrolyte to lithium/polypyrrole secondary battery system. J. Electrochem. Soc., 1994, 141(8): 1994-1998.
    [125] 吴浩青,戚小鹤.化学学报,1987,45:631.
    [126] 吴浩青,严德官.化学学报,1993,51:23.
    [127] S. Kakuda, T. Momma, T. Osaka. Ambient-temperature, Rechargeable, All-Solid lithium/polyrrole polymer battery. J. Electrochem. Soc., 1995, 142(1): L1-L2.
    [128] C. Lee, J.Y. Lee, H. Lee. Solutions and solution-cast films of conducting polymers. Synth. Met. 1997, 84 (1-3): 149-150.
    [129] W. Schuhmann, C. Kranz, H. Wohischlager, J. Strohmeier. Pulse technique for the electrochemical deposition of polymer filmw on electrode surfaces. Biosensors & Bioelectronics, 1997, 12(12): 1157-1167.
    [130] S. Panero, P. Prosperi, S. Passerini, B. Scrosati. Characteristics of electrochemically synthesized polymer electrodes:VI. Kinetics of the process of polypyrrole oxidation. J. Electrochem. Soc., 1989, 136(12): 3729-3734.
    [131] T. F. Otero, E. Angulo, Synth. Met, 1992, 51: 87.
    [132] P. A. Christensen, A. Hamnett. In situ spectroscopic investigations of the growth, electrochemical cycling and overoxidation of polypyrrole in aqueous solution. Electrochim. Acta, 1991, 36(8): 1263-1286.
    [133] P. Novak, B. Rasch, W. Vielstich,. Overoxidation of polypyrrole in propylene carbonate:An in situ FTIR study. J. Electrochem.Soc., 1991, 138(11): 3300-3304.
    [134] S. Skaarup, K. West, B. Zachau-Christiansen, T. Jacobsen, Synth. Met., 1992, 51:267.
    
    [135] Y. Furukawa, S. Tazawa, Y. Fujii, I. Harada. Synth. Met., 1988, 24: 239.
    [136] J. Bukowska, K. Jackowska. In situ raman studies of polypyrrole formation on a silver electrode. Electrochim. Acta, 1990, 35(2): 315-317.
    [137] R. Qian, J. Qiu. Poly. J., 1981,1:157.
    [138] P. Pfluger, M. Krounbi, G. B. Street, G. Weiser. J. Chem. Phys., 1993, 6: Part I.
    
    [139] T. F. Otero, C. Santamaria. Kinetics of the polypyrrole electrogeneration from aqueous solution. An ex situ microgravimetric study. Electrochim. Acta, 1992, 37(2): 297-307.
    
    [140] K. Takeshita, W. Wernet, J. Electrochim. Acta, 1994, 8: 2004.
    [141] S. Panero, P. Prosperi, B. Scrosati. Properties of electrochemically synthesized polymer electrodes- Ⅸ. The effect of surfactants on polypyrrole films. Electrochim. Acta, 1992, 37(3): 419-423.
    [142] Q. Pei, R. Qian. Electrode potentials of electronically conducting polymer polypyrrole. Electrochim. Acta, 1992, 37 (6): 1075-1081.
    [143] D. Park, Y. Shim. Degradation of electrochemically prepared polypyrrole in aqueous sulfuric acid. J. Electrochem. Soc, 1993,140(3): 609-614.
    [144] Z. H. Cai, J. Lei, W. B. Liang, V. Menon, C. R. Martin. Molecular and supermolecular origins of enhanced electronic conductivity in template-synthesized polyheterocyclic fibrils: 1. supermolecular effects. Chem. Mater., 1991,3:960-967.
    [145] R. V. Parthasarathy, C.R. Martin. Template-Synthesized Polyaniline Microtubules. Chem. Mater., 1994, 6: 1627-1632.
    [146] J. Mikat, I. Orgzall, B. Lorenz, S. Sapp, C. R. Martin, J. L. Burris, H. D. Hochheimer. High-pressure low-temperature electrical properties of template-synthesized polypyrrole at low synthesis temperature: dimensional crossover under pressure, Physica B 1999,265: 154-159.
    [147] J. Duchet, R. Legras, S. D. Champagne. Chemical synthesis of Polypyrrole:structure-properties relationship. Synthetic Metals 1998, 98: 113-122.
    
    [148] J. W. Loveland, et al. Anal. Chem, 1961, 33: 1196.
    [149] J. M. Mativetsky, W. R. Datars. Properties of alumina membrane-templated polypyrrole nanostructures. Solid State Communications, 2002, 122: 151-154.
    [150] Xiaohong Li, X. G. Zhang, Hulin Li. Preparation and characterization of Pyrrole/aniline copolymer nanofibrils using the template-synthesis method. J. Applied Polymer Science, 2001, 81: 3002-3007.
    [151] M. Ikegame, K. Tajima, T. Aida. Template synthesis of polypyrrole nanofibers insulated within one-dimensional silicate channels: hexagonal versus lamellar for recombination of ploarons into bipolarons. Angew. Chem. Int. Ed. 2003, 42:2154-2157.
    [152] L. Hao, C. Zhu, C. Chen, P. Kang, Y. Hu, W. Fan, Z. Chen. Fabrication of silica core-conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates. Synthetic Metals, 2003, 139: 391-396.
    [153] Y. Lu, A. Pich, H. Adler. Synthesis and characterization of nanometer-sized polypyrrole composites. Synthetic Metals, 2003, 135-136: 37-38.
    [154] A. Bhattacharya, K. M. Ganguly, A. De, S. Sarkar. A new conducting nanocomposite- PPy-zirconium(Ⅳ) oxide. Materials Research Bulletin, 1996, 31: 527-530.
    [155] M. G. Han, S. P. Armes. Preparation and characterization of polypyrrole-silica colloidal nanocomposites in water-methanol mixtures. J. Colloid and Interface Sci. 2003,262:418-427.
    [156] K. G. Neoh, K. K. Tan, P. L. Goh, S. W. Huang, E. T. Kang, K. L. Tan. Electroactive polymer-SiO_2 nanocomposites for metal uptake. Polymer, 1999,40:887-893.
    [157] D. P. Park, J. W. Kim, F. Liu, H. J. Choi, J. Joo. Synthesis and characterization of Polypyrrole/organoclay nanocomposite. Synthetic Metals 2003, 135-136: 713-714.
    [158] B. H. Kim, S. H. Hong, J. W. Kim, H. J. Choi, J. Joo. EPR signal of nanolayer in conducting polypyrrole(PPy) nanocomposites. Synthetic Metals, 2003, 135-136: 771-772.
    [159] H. S. Lee, J. Hong. Chemical synthesis and characterization of polypyrrole coated on porous membranes and its electrochemical stability. Synthetic Metals, 2000, 113:115-119.
    [160] S. Y. Selvan, M. Nogami. Novel gold-polypyrrole anisotropic colloids: a TEM investigation. J. Mater. Sci. Lett., 1998, 17: 1385-1388.
    [161] 郭荣,宋根萍,钱俊红,张晓红.O/W微乳液中聚吡咯超微粒子的制备.应用化学,1997,14:18-20.
    [162] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan. One-dimensional nanostructures: synthesis, characteristics and applications. Adv. Mater. 2003, 15: 353-389.
    [163] J. He, W. Chen, N.Xu, L. li, X. Li, G. Xue. SERS studies on the ordered structure of the surface of polypyrrole nanotubules. Applied Surface Science 2004, 221: 87-92.
    [164] C. J erome, S. D. Champagne, R. Legras, R. Jerome. Electrochemical synthesis of conjugated polymer wires and nanotubules. Chem. Eur. J. 2000, 6: 3089-3093.
    [165] S. D. Champagne, S. Ferain, C. J erome, R. Jerome, R.Legras. Electrochemically synthesized polypyrrole nanotubules: effects of different experimental conditions. Eur. Polym. J. 1998, 34:1767-1774.
    [166] S. D. Champagne, J. Duchet, R. Legras. Chemical and electrochemical synthesis of polypyrrole nanotubules. Synthetic Metals, 1999, 101: 20-21.
    [167] C. Shonenberger, B. M. I. can der Zande, L. G. J. Fokkink, M. Henny, C. Schmid, M. Kruger, A. Bachtold, R. Huber, H. Birk, and U. Staufer. Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology. J. Phy. Chem. B, 1997, 101: 5497-5505.
    [168] C. J erome and R. Jerome, Electrochemical synthesis of Polypyrrole nanowires, Angew. Chem. Int. Ed. 1998, 37: 2488-2490.
    [169] C. J erome, D. Labaye, I. Bodart, R. Jerome,Electrosynthesis of polyacrylic/Polypyrrole composites: formation of polypyrrole wires, Synthetic Metals, 1999, 101: 3-4.
    [170] S. Subianto, G. D. Will, S. Kokot. Templated electropolymerization of Pyrrole in a Capillary. J. Polym. Sci.: Part A: Polym. Chem., 2003, 41: 1867-1869.
    [171] J. H. Chen, Z. P. Huang, D. Z. Wang, S. X.Yang, W. Z. Li, J. G. Wen, Z. F. Ren. Electrochemical synthesis of polypyrrole films over each of well-aligned carbon nanotubes. Synthetic Metals, 2002, 125: 289-294.
    [172] Meixiang Wan, Jie Huang, Youqing Shen. Microtubes of conducting polymers. Synthetic Metals, 1999,101: 708-711.
    [173] Jing. Liu, Meixiang Wan. Studies on formation mechanism of polypyrrole microtubule synthesized by template-free method. J Polym. Sci. Pol. Chem. 2001, 39: 997-1004.
    [174] N. Cioffi, L. Torsi, L. Sabbatini, P. G. Zambonin, T. Bleve-Zacheo. Electrosynthesis and characterization of nanostructured palladium- polypyrrole composites. J. Electroanal. Chem. 2000, 488: 42-47.
    [175] I. Seo, M. Pyo. G. J. Cho. Micrometer to Nanometer Patterns of Polypyrrole Thin Films via Microphase Separation and Molecular Mask. Langmuir, 2002, 18: 7253-7257.
    [1] H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc., 1997, 144: 127.
    [2] H. Masuda, M. Satoh, Jpn. J. Appl. Phys., 1996, 35: L126.
    [3] A. P. Li, F. Muller, A.Birner et al., J. Appl. Phys., 1998, 84: 6023.
    [4] G. E. Thompson, G. C. Wood, Nature, 1981, 290: 230.
    [5] F. Keller, M. S. Hunter, D. L. Robinson, J. Electrochem. Soc. 1953, 100: 411.
    [6] J. P. O'Sullivan, G. C. Wood, Proc. R. Soc. London, Ser. A, 1970, 317: 511.
    [7] C. R. Martin, Acc. Chem. Res. 1995, 28: 61.
    [8] O. Jessensky, F. Muller, U. Gosele. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl.Phys.Lett. 1998, 72:1173-1175.
    [9] H. Masuda, K. Fukuda, Science, 1995, 268: 1466.
    [10] H. Masuda, K. Yaka, A. Osaka, Jpn. J. Appl. Phys. Part 2, 1998, 37: L1340.
    [11] S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, T. Takahagi, Jpn. J. Appl. Phys. 1997, 36: 7791.
    [12] F. Li, L, Zhang, R. M. Metzger, Chem. Mater. 1998, 10: 2470.
    [13] C. J. Miller, M. Majda, J. Am. Chem. Soc., 1985, 107: 1419.
    [14] A. R. Despic, J. Electroanal. Chem. Interfacial Electrochem. 1985, 191: 417.
    [15] D. Crouse, Y. H. Lo, A. E. Miller, M. Crouse, Appl. Phys. Lett., 2000, 76: 49.
    [16] R. C. Furneaux, W. R. Rigby, A. P. Davidson. The formation of controlled-porosity membranes from anodically oxidized aluminium. Nature, 1989, 337: 147-149.
    [17] 潘谷平.自组装有序金属纳米线阵列的样模法制备及其一些磁学、光学特性.南京师范大学硕士学位论文,1999年。
    [18] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Appl. Phys. Lett. 1997, 71: 2770.
    [19] H. Asoh, N. Kazuyuki, M. Nakao, T. Tamamura, H. Masuda, J. Electrochem. Soc. 2001, 148: B152.
    [20] A.-P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele. Fabrication and Microstructuring of Hexagonally Ordered Two-Dimensional Nanopore Arrays in Anodic Alumina. Adv. Mater., 1999, 11: 483.
    [21] A.-P. Li, F. Muller, U. Gosele, Electrochem. Solid-State Lett. 2000, 3: 131.
    [22] A.-P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, J. Vac. Sci. Technol. A 1999, 17: 1428.
    [23] T. P. Hoar, J. Yahalom, J. Electrochem. Soc., 1963, 110: 614.
    [24] M. Hideki, S. Masahiro, Jpn. J. Appl. Phys., 1996, 35(1B 15): 126.
    [25] S. Shoso, M. Yasuhiko, S. Hiroyuki, T. Yakayuki, Jpn. J. Appl. Phys., 2002, 41: 340.
    [26] M. Hideki, F. Kenji, Science, 1995, 268(9): 1466.
    [27] A. Mozalev, S. Magaino, H. Imai. The formation of nanoporous membrane from anodically oxidized aluminium and their application to Li rechargeable batteries. Electrochimica Acta, 2001, 46: 2825-2834.
    [28] Y. Hirata, H. Kyoda, H. Hatano, Mater. Lett., 1994, 21: 154.
    [29] J. L. Yao, G. P. Pan, K. H. Xue, D.Y. Wu, B. Ren, D. M. Sun, J. Tang, X. Xu, Z. Q. Tian, Pure Appl. Chem., 2000, 72: 221.
    [30] M. Nagai, T. Nishino, Solid State Ionics, 1996, 86-88: 559.
    [31] S.-L. Pan,L. J. Rothberg. Interferometric sensing of biomolecular binding using nanoporous aluminum oxide templates. Nano Lett., 2003, 3:811-814.
    [32] 郑志新,席燕燕,董平,黄怀国,周剑章,吴玲玲,林仲华,ZnO-聚苯胺同轴纳米线及其列阵的制备和表征,电化学,2002,8:154-159.
    [33] Yan Shen, Run-Ping Jia, Hai-Qing Luo, Xing-Guo Chen, De-Sheng Xue, Zhi-De Hu. Enhanced photoluminescence of morin-bovine serum albumin on porous anodized aluminum oxide. Spectrochimica Acta Part A, 2004, 60: 1007-1011.
    [34] A. K. Salem, P. C. Searson, K. W. Leong. Multifunctional nanorods for gene delivery, nature materials, 2003, 2: 668-670.
    [35] J. Zhao, Q.Y. Gao, C. Gu, Y. Yang. Preparation of multi-walled carbon nanotube array electrodes and its electrochemical intercalation behavior of Li ions. Chemical Physics Letters, 2002, 358:77-82.
    [36] Ying-ke Zhou, Cheng-min Shen, Jier Huang, Hu-lin Li. Synthesis of high-ordered LiMn_2O_4 nanowire arrays by AAO template and its structural properties. Materials Science and Engineering B, 2002, 95: 77—82.
    [37] Yingke Zhou, Jier Huang, Chengmin Shen, Hulin Li. Synthesis of highly ordered LiNiO_2 nanowire arrays in AAO templates and their structural properties. Materials Science and Engineering A, 2002, 335: 260-267.
    [38] Y. C. Sui, J. A. Gonzalez-Le6n, A. Bermudez, J. M. Saniger. Synthesis of multi branched carbon nanotubes in porous anodic aluminum oxide template. Carbon, 2001, 39: 1709-1715.
    [39] Y. Xu, G. E. Thompson and G. C. Wood, Trans. Inst. Met. Finish, 1985, 63: 98.
    [40] M. Stalzer, Metalloberflaeche, 1964, 18: 263.
    [41] 程国胜,中国科学院固体物理研究所博士论文,1999。
    [42] 张信义.准一维纳米材料有序微阵列体系的模板合成及表征.北京:中国科学院固体物理研究所,2001.
    [43] R. Dmitri, B. Terry, M. Martin, J. M. Xu, J. Phys. Chem. 1996, 100: 14037.
    [44] G. E. Thompson. Porous anodic alumina: fabrication,characterization and applications. Thin Solid Films, 1997, 297:192-201.
    [1] A. K. Salem, P. C. Searson, K. W. Leong, Multifunctional nanorods for gene delivery, nature materials, 2003, 2: 668-670.
    [2] Cheng-min Shen, Xiao-gang Zhang, Hu-lin Li. DC electrochemical deposition of CdSe nanorods array using porous anodic aluminum oxide template. Materials Science and Engineering A, 2001,303:19-23.
    [3] Bozhang Yu, Hulin Li. Morphology and photoluminescent properties of poly(p-phenylene) nanofibre arrays fabricated by template method. Materials Science and Engineering A, 2002, 325:215-220.
    [4] J. Zhao, Q. Y. Gao, C. Gu, Y. Yang. Preparation of multi-walled carbon nanotube array electrodes and its electrochemical intercalation behavior of Li ions. Chemical Physics Letters, 2002, 358:77-82.
    [5] G. B. Ji, W. Chen, S. L. Tang, B. X. Gu, Z. Li, Y. W. Du. Fabrication and magnetic properties of ordered 20 nm Co-Pb nanowire arrays. Solid State Communications, 2004, 130: 541-545.
    [6] 王银海,牟季美,蔡维理,石刚,交流电在Al_2O_3模板中沉积金属机理探讨,物理化学学报,2001,17(2):116-118.
    [7] K. H. Lee, H. Y. Lee, and W. Y. Jeung. Magnetic properties and crystal structures of self-ordered ferromagnetic nanowires by ac electroforming. J. Applied Physics, 2002, 91: 8513-8515.
    [8] Y. Li, Z. Zhu, Z. Jiang, M.Yan. Cold sealing mechanism of anodic oxide films on aluminum Part Ⅰ: composition and structure of cold sealed oxide films. Plating and surface finishing,1993, Sep: 79-81.
    [9] C. K. Preston, M. Moskovits, J. Phys. Chem, 1993, 97: 8495.
    [10] Socrates G, "Infrared characteristic Group Frequencies" John wiley & Sons Ltd, chichester, 1980: 139.
    [11] Inorganics IR Grating Spectra, vols. 1-2, Y1KY600K.
    [12] P. A. Christensen, A. Hamnett. In situ spectroscopic investigations of the growth, electrochemical cycling and overoxidation of polypyrrole in aqueous solution. Electrochim Acta, 1991, 36: 1263-1286.
    [13] P. Novak, B. Rasch, W. Vielstich. Overoxidation of polypyrrole in propylene carbonate, an In Situ FTIR study. J Electrochem soc, 1991, 138 (11): 3300-3304.
    [14] A. F. Diaz, J. I. Castillo, J. A. Logan, W. Y. Lee. Electrochemistry of conducting polypyrrole films. J Electroanal chem., 1981, 129:115-132.
    [15] S. Panero, P. Prosperi, S. Passerini, B. Scrosati. Characteristics of electrochemically synthesized polymer electrodes. J Electrochem Soc, 1989, 136(12): 3729-3734.
    [16] L. J. Bellamy. The infrared spectra of complex molecules, vol.2, 2nd ed., p.44. chapman and Hall, London, 1980:44.
    [17] J. Duchet, R. Legras, S. D. Champagne. Chemical synthesis of Polypyrrole:structure-properties relationship. Synthetic Metals, 1998, 98: 113-122.
    [18] C. J erome, S. D. Champagne, R. Legras, R. Jerome. Electrochemical synthesis of conjugated polymer wires and nanotubules. Chem. Eur. J. 2000, 6: 3089-3093.
    [19] Z. Cai, J. Lei, W. Liang, V. Menon, C. R. Martin. Molecular and supermolecular origins of enhanced electronic conductivity in template-synthesized polyheterocyclic fibrils. 1. supermolecular effects. Chem Materials, 1991, 3: 960-967.
    [20] H. Xie, M.Yan, Z. Jiang, Electrochim. Acta, 1997, 42: 2361.
    [21] Y. Du, W. L. Cai, C. M. Mo, J. Chen, L. D. Zhang, X. G. Zhu, Appl. Phys. Lett., 1999, 74 (20): 2951.
    [1] R. M. Penner, C. R. Martin, J. Electrochem. Soc. 1986, 133: 2206.
    [2] C. R. Martin, Nanomaterials: a membrane-based synthetic approach, Science, 1994, 266: 1961-1966.27.
    [3] R. Parthasarathy and C. R. Martin, Nature, 1994, 369: 298.
    [4] C. R. Martin, R. Parthasarathy, V. Menon. Template synthesis of electronically conductive polymers-preparation of thin films. Electrochim. Acta, 1994, 39: 1309-1313.
    [5] Z. H. Cai, C. R. Martin, J. Am. Chem. Soc., 1989, 111: 4138.
    [6] W. B. Liang, C. R. Martin, J.Am. Chem. Soc., 1990, 112: 9666.
    [7] C. R. Martin, R. Parthasarathy, and V. Menon, Synth. Met. 1993, 55-57: 1165.
    [8] R. V. Parthasarathy, C. R. Martin, Chem. Mater., 1994, 6: 1627.
    [9] C. J. Brumlik, V. P. Menon, C. R. Martin, J. Mater. Res. 1994, 9: 1174.
    [10] L. S. Van Dyke and C. R. Martin. Chemistry in adsorbed monolayers. 2. Thermal and photochemical grafting reactions at the polymer-filler interface. Langmuir 1990, 6: 1123-1132.
    [11] C. A. Foss, Jr., G. L. Hornyak, J. A. Stocket, and C. R. Martin, J. Phys. Chem. 1992, 96: 7497-7499.
    [12] J. W. Schultze, K. J. Jung. Regular nanostructured systems formed electrochemically: deposition of electroactive polybithiophene into porous silicon. Electrochim. Acta, 1995, 40 (10): 1369-1383.
    [13] J. W. Schultze, T. Morgenstern, D. Schattka, S. Winkels. Microstructuring of conducting polymers. Electroehim. Acta, 1999, 44(12): 1847-1864.
    [14] S. A. A. Mohamed, Z. W. Xie, A. M. Leung, Synth. Met., 1992, 52: 159.
    [15] S. A. Johnson, P. J. Ollivier, T. E. Mallouk. Ordered Mesoporous polymers of tunable pore size from colloidal silica templates. Science, 1999, 283: 963-965.
    [16] A. J. G. Zarbin, M. A. De Paoli, O. L. Alves. Nanocomposites glass/conductive polymers. Synthetic Metals, 1999,99:227-235.
    [17] Huang jie, Wan Meixiang, Solid State Commun. 1998, 108: 255.
    [18] Huang jie, Wan Meixiang, J. Polym. Chem. 1999, 37: 151.
    [19] Shen Youqing, Wan Meixiang, J Polym. Sci. Pol. Chem. 1999, 9: 1277.
    [20] J. Fan, M. Wan, D. Zhu, B. Chang, Z. Pan, S. Xie. Synthesis and properties of carbon nanotube-polypyrrole composites. Synthetic Metals, 1999, 102: 1266-1267.
    [21] W.-L. Yuan, E. A. O'Rear, G. Cho, G. P. Runkhouser, D. T. Glatzhofer. Thin polypyrrole films formed on mica and alumina with and without surfactant present: characterization by scanning probe and optical microscopy. Thin Solid Films, 2001, 385: 96-108.
    [22] 董平,周剑章,席燕燕,蔡成东,张彦,吴玲玲,林仲华.电聚合聚苯胺纳米管在氧化铝模板中的生长机理.第十二次全国电化学会议论文集.上海:复旦大学印制,2003,F01-F02.
    [23] R. Cordova, M. A.del Valle, et al. J. Electroanal. Chem.. 1994, 377: 75-83.
    [24] S. D. Champagne, S. Ferain, C. J erome, R. Jerome, R. Legras. Electrochemically synthesized polypyrrole nanotubules: effects of different experimental conditions. Eur. Polym. J. 1998, 34: 1767-1774.
    [25] R. M. Penner, C. R. Martin, J. Phys. Chem., 1989, 93: 984.
    [26] Z. Cai, C. R. Martin, J. Electroanal. Chem., 1991, 300: 35.
    [27] S. Panero, P. Prosperi, B. Scrosati, Electrochim. Acta, 1992, 37: 419..
    [28] A. F. Diaz, J. I. Castillo, J. A. Logan, W. Y. Lee, J. Electroanal. Chem., 1981, 129: 115.
    [29] G. A. Snook, G. Z. Chen, D. J. Fray, M. Hughes M.Shaffer. Studies of deposition of and charge storage in polypyrrole- chloride and polypyrrolecarbon nanotube composites with an electrochemical quartz crystal microbalance. J. Electroanalytical Chemistry, 2004, 568:135-142.
    [30] G. A. Snook, A. M. Bond, S. Fletcher, J. Electroanal. Chem. 2003, 554-555: 157.
    [31] 电极过程动力学导论,查全性等著,P106.
    [32] S. Panero, P. Prosperi, B. Scrosati, Electrochim. Acta, 1992, 37(2): 419.
    [33] 《电化学中的仪器方法》,南安普顿电化学小组,柳厚田,徐品弟等译,复旦大学出版社,1992,P209.
    [34] C. Ho, I. D. Raistrick, R.A. Huggins, Semiconductor Electrodes, 1980, 2: 343.
    [35] J. Tanguy, N. Mermilliod, M. Hoclet, Synth. Met. 1987, 18 (7): 19.
    [36] K. Naoi, K. Ueyama, T. Osaka, J. Electrochem. Soc. 1990, 2: 494.
    [37] M. M. Musiani, Electrochim. Acta, 1990, 10: 1665.
    [38] R. M. Penner, C. R. Martin, J. Phys.Chem. 1989, 93: 984.
    [39] J. Yanguy, N. Mermilliod, M. Hoclet, J. Electrochem. Soc. 1987, 134: 3078.
    [1] M. C. Lonergan. A tunable diode based on an inorganic semiconductor/conjugated polymer interface. Science, 1997, 278:2103-2106.
    [2] C. K. Chiang, S. C. Gau, C. R. Fincher Jr., Y. W. Park, A. G. MacDiarmid, A. J. Heeger, Appl.Phys. Lett, 1978, 33: 18.
    [3] B. Lucas, B. Ratier, A. Moliton, J. P. Moliton, T. F. Otero, C. Santamaria, E. Angulo, J. Rodriguez. Thick layers of PPy and PTh: electrosynthesis and modification of electrical parameters by ion implation, p-n junctions. Synthetic Metals, 1993, 55-57: 1459-1464.
    [4] G. Liang, T. Cui, K. Varahramyan. Electrical characteristics of diodes fabricated with organic semiconductors. Microelectron. Eng, 2003, 65: 279-284.
    [5] M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, R. H. Friend. Laminated fabrication of polymeric photovoltaic diodes. Nature, 1998, 395 : 257-260.
    [6] M. Cakar, M. Biber, M. SaGlam, A. Turut. Conductance. and capacitance-frequency characteristics of polypyrrole/p-type silicon structures. J. Polymer Science: Part B: Polymer Physics, 2003, 41: 1334-1338.
    [7] N. I. Kovtyukhova, B. R. Martin, J. K. N. Mbindyo, P. A. Smith, B. Razavi, T. S. Mayer, and T. E. Mallouk. Layer-by-layer assembly of rectifying junctions in and on metal nanowires. J. Phys. Chem. B, 2001, 105: 8762-8769.
    [8] Y. Onganer, M. Saglam, A. Turut, H. Efeoglu and S. Tuzemen. High barrier metallic polymer/P-type silicon schottky diodes. Solid-State Electronics. 39, No. 1996, 5: 677-680.
    [9] B. Abay, Y. Onganer, M. Saglam, H. Efeoglu, A. Turut, Y. K. Yogurtcu. Current-voltage and capacitance-voltage characteristics of metallic polymer/InSe(:Er) Schottky contacts. Microelectronic Engineering, 2000, 51-52: 689-693.
    [10] 李东升,吕功煊.制备导电聚合物—半导体纳米颗粒自组装膜.物理化学学报,2001,17(3):252-256.
    [11] F. E. Jones, C. D-Haler, B. P. Wood, R. G. Danner, M. C. Lonergan. Current transport at the p-lnP/poly(pyrrole) interface. J. Applied Physics, 2001, 90: 1001-1010.
    [12] T. Cassagneau, T. E. Mallouk, J. H. Fendler. Layer-by- Layer assembly of thin film zener diodes from conducting polymers and CdSe nanoparticles. J. Am. Chem. Soc, 1998, 120: 7848-7859.
    [13] B. Abay, Y. Onganer, M. Saglam , H. Efeoglu, A. Turut, Y. K. Yogurtcu. characteristics of metallic polymer and Au schottky contacts on cleaved surfaces of InSe(:Er). Solid-State Electronics. 41, No. 1997, 6: 924-926.
    [14] F. E. Jones, B. P. Wood, J. A. Myers, C. D-Hafer, M. C. Lonergan. Current transport and the role of barrier inhomogeneities at the high barrier n-lnP/poly(pyrrole) interface. J. Applied Physics, 1999, 86:6431-6441.
    [15] S. Park, S-W. Chung, C. A. Mirkin. Hybrid Organic-Inorganic, Rod-Shaped nanoresistors and diodes. J. Am. Chem. Soc, 2004, 126:11772-11773.
    [16] R. Singh, A. K. Narula. Junction properties of aluminum/polypyrrole (polypyrrole derivatives) schottky diodes. Appl. Phys. Lett. 1997, 71: 2845-2847.
    [17] W. Bantikassegn, O. Inganas, The electrical properties of junctions between aluminium and doped polypyrrole, J. Phys. D: Appl. Phys, 1996, 29: 2971-2975.
    [18] P. S. Abthagir, R. Saraswathi. Juntion properties of metal/polypyrrole schottky barriers. J. Appl. Polym. Sci, 2001, 81:2127-2135.
    [19] S. Aydogan, M. Saglam, A. Turut. The effects of the temperature on the some parameters obtained from current-voltage and capacitance-voltage characteristics ofpolypyrrole/n-Si structure. Polymer, 2005, 46: 563-568.
    [20] D. J. Paul, P. See, I. V. Zozoulenko, K.-F. Berggren, B. Hollander, S. Mantl, N. Griffin, B. P. Coonan, G. Redmond, G. M. Crean. n-type Si/SiGe resonant tunnelling diodes. Materials Science and Engineering B, 2002, 89: 26-29.
    [21] M. Saglam, M. Biber, M. C,akar, A. Turut. The effects of the ageing on the characteristic parameters of polyaniline/p-type Si/Al structure. Applied Surface Science, 2004, 230: 404-410.
    [22] Y. Liu, Y. Xu, D. Zhu. Schottky diodes fabricated with Langmuir-Blodgett films of C60-doped poly(3-alkylthiophene)s. Synthetic Metals, 1997, 90:143-146.
    [23] A. Assadi, A. Spetz, M. Willander, C. Svenson, I. Lundstrom, O. Inganas, Sens. Actuat. B, 1994, 20: 71.
    [24] V. C. Nguyen, K. Potje-Kamloth. Electrical and chemical sensing properties of doped polypyrrole/gold Schottky barrier diodes. Thin Solid Films, 1999, 338: 142-148.
    [25] D. Sutar, R. Menon, S. V. Subramanyam. Study of electrical conduction in polypyrrole by varying the doping level. Thin Solid Films, 2002, 417: 40-42.
    [26] K. Kaneto, S. Takeda, K. Yoshino, Jpn. J. Appl. Phys, 1985, 24: L553.
    [27] J. Gao, A. J. Heeger, J. Y. Lee, C. Y. Kim. Soluble polypyrrole as the transparent anode in polymer light-emitting diodes. Synth. Met, 1996, 82:221-223.
    [28] S. Radhakrishnan, P. Somani. Sensitization of photocurrents in solid-state electrochemical cells using conducting polypyrrole. Mater. Lett. 1998, 37(4-5) : 192-196.
    [29] A. Watanabe, S. Murakami, K. Mori, Macromolecules, 1989, 22: 4231.
    [43] C. Zhao, H. Wang, Z. Jiang. Photocurrent and photothermal current of polypyrrole (PPy) film. Appl. Surf. Sci. 2003, 207(1-4): 6-12.
    [30] C. Joachim, J. K. Gimzewski & A. Aviram. Electronics using hybrid-molecular and mono-molecular devices. Nature, 2000, 408: 541-547.
    [31] T-H. Lee, R. M.Dickson. Single-molecule LEDs from nanoscale electroluminescent junctions. J. Phys. Chem. B 2003, 107: 7387-7390.
    [32] A. Nitzan, M. A. Ratner. Electron transport in molecular wire junctions. Science, 2003, 300: 1384-1389.
    [33] W. A. Schoonveld, J. wildeman, D. Flchou, P. A. Bobbert, B. J. van Wees & T. M. Klapwijk, Coulomb-blockade transport in single-crystal organic thin-film transistors. Nature, 2000, 404: 977-980.
    [34] T. Osaka, T. Momma, H. Kanagawa, J. Electroanal. Chem, 1994, 372: 201.
    [35] T. Osaka, Z. Jiang, T. Momma, H.Kanagawa, Thin Solid Films, 1994, 239: 267.
    [36] H. Xie, M.Yan. Z. Jiang. Transition of polypyrrole from electroactive to electroinactive state investigated by use of in situ FTIR spectroscopy. Electrochim. Acta, 1997, 42: 2361-2367.
    [37] 毛秉伟,施财辉,李筱琴,熊丽华.金电沉积过程的电化学放大测量的初步研究.电化学,1996,2:254-257.
    [38] T. Osaka, T. Fukuda, K. Ouchi, T. Nakajima, Denkikagaku, 1991, 59: 1019.
    [39] G. H. Pontifex, P. Zhang, Z. Wang, T. L. Haslett, D. AlMawlawi, M. Moskovits, J. Phys. Chem, 1991, 95: 9989.
    [40] J. M. Mativetsky, W. R. Datars. Morphology and electrical properties of template-synthesized polypyrrole nanocylinders. Physica B, 2002, 324:191-204.
    [41] S. K. Saha, Y. K. Su, C. L. Lin, D. W. Jaw. Current-voltage characteristics of conducting polypyrrole nanotubes using atomic force microscopy. Nanotechnology, 2004, 15: 66-69.
    [42] T. Osaka, T. Fukuda, K. Ouchi, T. Momma, Thin Solid Films, 1992, 215: 200.
    [1] S. Panero, P. Prosperi, B. Scrosati. Characteristics of electrochemically synthesized polymer electrodes in lithium cells-Ⅳ. Effects of the synthesis conditions on the performance of polypyrrole. Electrochimica Acta, 1987, 32(10): 1465-1468.
    [2] N. Mermilliod, J. Tanguy. A study of chemically synthesized polypyrrole as electrode material for battery applications. J. Electrochem. Soc., 1986, 133(6): 1073-1079.
    [3] T. Momma, K. Nishimura, T. Osaka. Electrochemical properties of a polypyrrole/polystyrenesulfonate composite film and its application to rechargeable lithium battery cathodes. J. Electrochem. Soc., 1994, 141(9): 2326-2331.
    [4] T. Osaka, K. Naoi, H. Sakai, S. Ogano. Effect of PF6 anion on the properties of lithium-polypyrrole battery during polypyrrole film formation. J. Electrochem. Soc., 1987, 134(2): 285-289.
    [5] S. Panero, P. Prosperi, F. Bonino, B. Scrosati. Characteristics of electrochemically synthesized polymer electrodes in lithium cells-Ⅲ. Polypyrrole. Electrochimica Acta, 1987, 32(7): 1007-1011.
    [6] T. F. Otero, I. Cantero. Conducting polymers as positive electrodes in rechargeable lithium-ion batteries. Journal of Power Sources, 1999, 81-82: 838-841.
    [7] T. F. Otero, I. Cantero., H. Grande. Solvent effects on the charge storage ability in polypyrrole. Electrochimica Acta, 1999, 44: 2053-2059.
    [8] M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin, H. Yoneyama. Template synthesis of polypyrrole-coated spinel LiMn_2O_4 nanotubules and their properties as cathode active materials for lithium batteries. J. Eoectrochem. Soc., 1997, 144(6): 1923-1927.
    [9] S. Kuwabata, A. Kishimoto, T. Tanaka, H. Yoneyama. Electrochemical synthesis of composite films of manganese dioxide and polypyrrole and their properties as an active material in lithium secondary batteries. J. Electrochem. Soc., 1994, 141(1): 10-15.
    [10] J.-U. Kim, I.-S. Jeong, S.-I. Moon, H.-B. Gu. Electrochemical characteristics of LiMn_2O_4- polypyrrole composite cathode for lithium polymer batteries. Journal of Power Sources, 2001, 97-98: 450-453.
    [11] R. Huguenin, E. M. Girotto, R. M. Torresi, D. A. Buttry. Transport properties of V_2O_5/polypyrrole nanocomposite prepared by a sol-gel alkoxide route. Journal of Electroanalytical Chemistry, 2002, 536: 37-45.
    [12] S. Kuwabata, S. Maxui, H. Tomiyori, H. Yoneyama. Charge-discharge properties of chemically prepared composites of V_2O_5 and polypyrrole as positive electrode materials in rechargeable Li batteries. Electrochimica Acta, 2000, 46: 91-97.
    [13] T. Osaka, T. Momma, H. Ito, B. Scrosati. Performances of lithium/gel electrolyte/polypyrrole secondary batteries. Journal of Power Sources, 1997, 68: 392-396.
    [14] T. Boinowitz, G. Suden, U. Tormin, H. Krohn, F. Beck, A metal-free polypyrrole/graphite secondary battery with an anion shuttle mechanism. Journal of Power Sources, 1995, 56: 179-187.
    [15] B. Veeraraghavan, J. Paul, B. Haran, B. Popov. Study of polypyrrole graphite composite as anode material for secondary lityium-ion batteries. Journal of Power Sources, 2002, 109: 377-387.
    [16] B. E. Conway. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. New York: Kluwer Academic/Plenum, 1999.
    [17] Q. Xiao, X. Zhou. The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochimica Acta, 2003, 48: 575-580.
    [18] A. Rudge, I. Raistrick, S. Gottesfeld, J.P. Ferraris, Electrochim. Acta, 1994, 39: 273.
    [19] A. Clemente, S. Panero, E. Spila, B. Scrosati, Solid State Ionics, 1996, 85: 273.
    [20] S. Panero, A. Clemente, E. Spila, Solid State Ionics, 1996, 86-88: 1285.
    [21] M. Mastragostino, C. Arbizzani, F. Soavi, Solid State Ionics, 2002,148: 493.
    [22] C.C. Hu, X.X. Lin, J. Electrochem. Soc, 2002,149: A1049.
    [23] A. Laforgue, et al., J. Electrochem. Soc, 2003, 150: A6.
    [24] A. Burke, J. Power Sources, 2000, 91:37.
    [25] L. P. Jarvis, T.B. Atwater, P. J. Cygan, J. Power Sources, 1999, 79: 60.
    [26] D. J. T. Tarnowski, H. Lei, C. Peiter, M. Wixom, The 200th Meeting of the Electrochemical Society Inc. and the 52nd Meeting of the International Society of Electrochemistry, San Francisco Hilton and Towers, San Francisco, California, USA, 2-7 September 2001.
    [27] X. Liu, T. Osaka, Electronics, 1998,4: 54.
    [28] J. P. Zheng, J. Huang, T. R. Jow, J. Electrochem. Soc, 1997, 144: 2417.
    [29] J. P. Zheng, J. Huang, T. R. Jow, J. Electrochem. Soc, 1997, 144: 2026.
    [30] B. E. Conway, W. Pell, Proceedings of the 8th International Seminar on Double-Layer Capacitors and Similar Energy Storage Devices, Florida Educational Seminars, Deerfield Beach, FL, 7-9 December, 1998.
    [31] C Arbizzani, M. Mastragostino, B. Scosati, in: H.S. Nalwa (Ed.), Handbook of Organic Conductive Molecules and Polymers, Wiley, Chichester, UK, 1997,4: 595.
    [32] W. R. Cieslak (Ed.), Selected Battery Topics, PV 98-15, The Electrochemical Society Proceedings Series, Pennington, NJ, 1998.
    [33] M. Mastragostino, C, Arbizzani, R. Paraventi, A. Zanelli. Polymer selection and cell design for electric-vehicle supercapacitors. Journal of The Electrochemical Society, 2000,147(2): 407-412.
    [34] B.E. Conway, in: Proceedings of the 34th International Power Sources Symposium on Electrochemical Energy, Cherry Hill, New Jersey, USA, 1990, 102:319.
    [35] A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J. Power Sources 1994,47: 89.
    [36] A. Laforgue, P. Simon, Ch. Sarrazin, J-F. Fauvarque, J. Power Sources, 1999, 80: 142.
    [37]K.Naoi, S. Suematsu. A. Manago, J. Elctrochem. Soc, 2000,147:420.
    [38] K. A. Noh, D.-W. Kim, C.-S. Jin, K.-H. Shin, J.-H. Kim, J. M. Ko. Synthesis and pseudo-capacitance of chemically-prepared polypyrrole powder. J. Power Sources, 2003, 124: 593-595.
    [39] K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin, E. Frackowiak. Supercapacitors from nanotubes/polypyrrole composites. Chemical Physics Letters, 2001, 347: 36-40.
    [40] E. Frackowiak, F. Beguin. Electrichemical storage if energy in carbon nanotubes and nanostructured carbons. Carbon, 2002, 40: 1775-1787.
    [41] 陈巧玲,薛宽宏,陶菲菲,沈伟,尹寿银,徐雯.多壁碳纳米管阵列及其聚吡咯复合电极的电容性能研究.南京师范大学学报,2002,2(4):18-20.
    [42] A. Rudge, I. Raistrick, S. Gottesfeld, J. P. Ferraris, Electrochim. Acta, 1994, 39 (2): 273.
    [43] G. A. Snook, G. Z. Chen, D. J. Fray, M. Hughes M.Shaffer. Studies of deposition of and charge storage in polypyrrole - chloride and polypyrrole-carbon nanotube composites with an electrochemical quartz crystal microbalance. J. Electroanalytical Chemistry, 2004, 568:135-142.
    [44] B. E. Conway, in: B. E. Conway(Ed.), Electrochemical Supercapacitors, Kluwer Academic Publishers/Plenum Press, New York, 1999.
    [45] Q.-W. Zhang, X. Zhou, H.-S. Yang. Capacitance properties of composite electrodes prepared by electrochemical polymerization of pyrrole on carbon foam in aqueous solution. Journal of Power Sources, 2004, 125: 141-147.
    [46] D.T. Glatzhofer, J. Ulanski, G. Wegner, Polymer, 1987, 28: 449.
    [47] S. M. Chang, J.M. Kim, Y. K. Chang, Y. S. Kwon, H. Muramatsu, T. Ataka, Mol. Cryst. Liq. Cryst, 1996, 280: 157.
    [48] J. M. Kim, H.W. Lee, Y. H. Kim, Y. S. Kwon, H. Muramatsu, S. M. Chang, Mol. Cryst. Liq. Cryst, 1998, 316: 141.
    [49] J. M. Kim, S. M. Chang, H. Muramatsu, J. Electrochem. Soc, 1999, 146: 4544.
    [50] S.-H. Song, D.-S.Han, H.-J. Lee, H.-S. Cho,S.-M.Chang, J.-M. Kim, H. Muramatsu. Application of quartz crystal for the supercapacity studies of Ppy/anion composites. Synthetic Metals, 2001, 117: 137±139.
    [51] M. D. Ingram, A. J. Pappin, F. Delalande, D. Poupard, G. Terzouli, Electrochim. Acta, 1998, 48: 1601.
    [52] K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, Y-.H. Lee, J. Electrochem. Soc, 2002, 149: A1058.
    [53] S. Kakuda, T. Momma, T. Osaka. Ambient-temperature, Rechargeable, All-Solid lithium/polyrrole polymer battery. J. Electrochem. Soc., 1995, 142(1): L1-L2.
    [54] C.-W. Kwon, A. Poquet, S. Mornet, G. Campet, J. Portier, J.-H. Choy. A new polypyrrole/maghemite hybrid as a lithium insertion electrode. Electrochemistry Communications, 2002, 4: 197-200.
    [55] T. Osaka, T. Momma, K. Nishimura, S. Kakuda, T. Ishii. Application of solid polymer electrolyte to lithium/polypyrrole secondary battery system. J. Electrochem. Soc., 1994, 141(8): 1994-1998.
    [56] S. A. Hashmi, H. M. Upadhyaya. Polypyrrole and poly(3-methyl thiophene )-based solid state redox supercapacitors using ion conducting polymer electrolyte. Solid State Ionics, 2002, 152-153: 883-889.
    [57] M.-L. Tsai, P.-J. Chen, J.-S. Do. Preparation and characterization of Ppy/Al_2O_3/Al used as a solid-state capacitor. J. Power Sources, 2004, 133: 302-311.
    [58] Y. Kudoh, T. Kojima, M. Fukuyana, S. Tsuchiya, S. Yoshimura. Covering anodized aluminum with electropolymerized polypyrrole via manganese oxide layer and application to solid electrolytic capacitor. J. Power Sources, 1996, 60: 157-163.
    [59] 胡明,张景阳,郝嘉林,刘志刚.新型铝电解电容器中导电聚吡咯对电极的形成.天津大学学报,2000,33(2):231-235。
    [60] 季锐,徐友龙.聚吡咯固体电解电容器.电子元件与材料,1999,18(4):4-6.
    [61] 徐友龙,王杰,秦继伟.影响聚吡咯铝电解电容器漏电流的因素及改进措施.西安交通大学学报,2002,36(3):300-304.
    [62] K. Naoi, Y. Oura, M. Maaeda, S. Nakamura, J. Electrochem. Soc, 1995, 142: 417.
    [63] J. Ackermann, C. Videlot, T. N. Nguyen, L. Wang, P. M. Sarro, D. Crawley, K. Nikolic, M. Forshaw. Micro-patterning of self-supporting layers with conducting polymer wires for 3D-chip interconnection applications. Applied Surface Science, 2003, 212-213: 411-416.
    [64] J. H. Sung, S. J. Kim, K. H. Lee. Fabrication of microcapacitors using conducting polymer microelectrodes. J. Power Sources, 2003, 124: 343-350.
    [65] J. H. Sung, S. J. Kim, K. H. Lee. Fabrication of all-solid-state electrochemical microcapacitors J. Power Sources, 2004, 133: 312-319.
    [66] J. K. Lee, D. H. Ryu, J. B. Ju, Y. G. Shul, B. W. Cho, D. Park, J. Power Sources 2002, 107: 90-97.
    [67] L. Wang, K. Yu-zhang, A. Metrot, P. Borthomme, M. Troyon. TEM study of electrodeposited Ni/Cu multilayers in the form of nanowires. Thin Solid Films, 1996, 288: 86-89.
    [68] B. R. Martin, D. J. Dermody, B. D. Reiss and et al, Adv. Mater. 1999, 11: 1021-1025
    [69] P. Novak and W. Vielstich, J. Electrochem. Soc., 1990, 137:1036-1042
    [70] G. A. Snook, A. M. Bond, S. Fletcher, J. Electroanal. Chem, 2003, 554-555: 157.
    [71] M. J. Spamaay, The Electrical Double Layer, Pergamon Press, Oxford, 1972.
    [72] G. A. Martynov, R. R. Salem, Electrical Double Layer at Metal- Dilute Electrolyte Solution Interface, Springer, New York, 1983.
    [73] C. Labbez, P. Fievet, A. Szymczyk, A. Vidonne, A. Foissy, J.Pagetti, J. Membrane Science, 2002, 208: 315-329.
    [74] L. Kavan, B. O'Regan, A. Kay and M.Gratzel, J. Electroanal. Chem., 1993, 346: 291-307.
    [75] T. W. Lewis, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi. Invextigation of the applied potential limits for polypyrrole when employed as the active components of a two-electrode device. Synthetic Metals, 2001, 122: 379-385.
    [1] A. G. Macdiarmid. Handbook of Conducting Polymers, New York: Marcel Pekker, 1986:18.
    [2] T. Inoue, T. Yamase, Electrochemical properties of electrochemically polymerized polypyrrole film in the dark and under light irradiation. Bull. Chem. Soc. Jpn. 1983, 56: 985-990.
    [3] M. Kaneko, K. Okuzumi, A. Yamada. Photocurrent generation by a liquid-junction poly(pyrrole) films. J. Electroanal. Chem., 1985, 183: 407-410.
    [4] Y. Yang, Z. G. Lin. The photoelectrochemical behavior of polypyrrole films in nonaqueous solutions. Synthetic Metals, 1994, 64(1): 43-48.
    [5] D. N. Upadhyay, S. Bharathi, V. Yegnaraman, G. Parbhakara Rao, Photoelectrochemical and electrochemical behaviour of gold electrode modified with bilayers of polypyrrole and polyaniline. Solar Energy Materials and Solar Cells, 1995, 37: 307-314.
    [6] F. L. C. Miquelino, M.-A. D. Paoli, E. M. Genies. Photoelectrochemical response in conducting polymer films. Synthetic Metals, 1994, 68: 91-96.
    [7] R. A. Zoppi, M.-A. D. Paoli. Chemical preparation of conductive elastomeric blends: polypyrrole/EPDM Ⅲ. Electrochemical characterization. J. Electroanalytical Chemistry, 1997, 437:175-182.
    [8] M. Martini, M.-A. D. Paoli. Action spectra of EE and SE illuminated polypyrrole-dodecylsulphate films in aqueous solutions. Solar Energy Materials & Solar Cells, 2000, 60: 73-83.
    [9] H. Kim, W. Chang. Preparation and photoelectrochemical behavior of polypyrrole with platinum nanoparticles. Synthetic Metals, 1998, 101:150-151.
    [10] U. Rammelt, S. Bischoff, M. E.-Dessouki, R. Schulze, W. Plieth, L. Dunsch. Semiconducting poroperties of polypyrrole films in aqueous solution. J. Solid State Electrochem, 1999, 3:406-411.
    [11] A. Hamnett, P. A. Christensen, S.J. Higgins, Analyst, 1994, 199: 735.
    [12] C. Zhao, H. Wang, Z. Jiang, Photocurrent and photothermal current of polypyrrole (PPy) film, Applied Surface Science, 2003, 207: 6-12.
    [13] M. Martini, M. A. De Paoli. Effect of the electrolyte cations and anions on the photocurrent of dodecylsulphate doped polypyrrole films. Solar Energy Materials & Solar Cells, 2002, 73: 235-247.
    [14] A. Konno, I. Mogi, K. Watanabe. Effect of strong magnetic fields on the photocurrent of a poly(N-methylpyrrole) modified electrode. Journal of Electroanalytical Chemistry, 2001, 507: 202-205.
    [15] P. Somani, D. P. Amalnerkar, S. Radhakrishnan. Errect of moisture (in solid polymer electrolyte) on the photosensitivity of conducting polypyrrole sensitized by Prussian blue in solid-atate photocells. Synthetic Metals, 2000, 110: 181-187.
    [16] P. Somani, S. Radhakrishnan. Effect of dye aggregation on the photosensitization effect of conducting polypyrrole sensitized with Prussian blue. Materials Chemistry and Physics, 2001, 70:150-155.
    [17] E. M. Girotto, W. A. Gazotti, C. F. Tormena, M.-A. D. Paoli. Photoelectronic and transport properties of polypyrrole doped with a dianionic dye. Electrochimica Acta, 2002,47: 1351-1357.
    [18] T. Kitamura, M. Maitani, M. Matsuda, Y. Wada, S. Yanagida. Improved solid-state dye solar cells with polypyrrole using a carbon-based counter electrode. Chemistry Letters, 2001: 1054-1055.
    [19] S. Radhakrishnan, P. Somani. Sensitization of photocurrents in solid-state electrochemical cells using conducting polypyrrole. Materials Letters, 1998, 37: 192-196.
    [20] 李卫华,郝彦忠,乔学斌,张莉,杨迈之,蔡生民.纳米结构ZnO/染料/聚吡咯光阳极的光电化学性质.物理化学学报,1999,15(10):905-910.
    [21] Y. Hao, M. Yang, W. Li, X. Qiao, L. Zhang, S. Cai. A photoelectrochemical solar cell based on ZnO/dye/polypyrrole film electrode as photoanode. Solar Energy Materials & Solar Cclls, 2000, 60: 349-359.
    [22] L. Yuan, B. Li, L. Jiang. Photoelectric responses of Langmuir-Blodgett film containing bacteriorhodopsin on ITO modified with polypyrrole film. Thin Solid Films, 1999, 340(1-2): 262-264.
    [23] N. Lassalle, E. Vieil, J. P. Correia, L. M. Abrantes. Study of DNA hybridization by photocurrent spectroscopy. Synthetic Metals, 2001, 119: 407-408.
    [24] N. Lassalle, E. Vieil, J. P. Correia, L. M. Abrantes. Study of DNA hybridization on polypyrrole grafted with oligonucleotides by photocurrent spectroscopy. Biosensors & Booelectronics, 2001, 16: 295-303.
    [25] S. Bouchtalla, A. Deronzier, J.-M. Janot, J.-C. Moutet, P. Seta. Photoinduced electron transfer at an ITO/C_(60) trapped in a thin polypyrrole film interface. Synthetic Metals, 1996, 82: 129-132.
    [26] A. F. Diaz and J. I. Castillo, J. Chem. Soc., Chem. Commun., 1980: 397.
    [27] F. Trinidad, J. Alonsolopez, and M. Nebot. J. Appl. Electrochem., 1987, 17: 215
    [28] M. A. Butler, J. Appl. Phys., 1977, 48: 1914.
    [29] J. M. Bolts, A. B. Bocarsly, M.C. Palazzotto, E.G. Walton, N.S. lewis, M.S. Wrighton, J. Am. Chem. Soc.c, 1979, 101: 1378.
    [30] L. Micaroni, C.N. Polo da Fonseca, F. Decker, M.-A. De Paoli, Solar Energy Materials & Solar Cells, 2000, 60: 27.
    [1] K. Pinel, Q. D. Walker, R. M. Wightman. Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry. Anal. Chem, 1996, 68: 2084-2089.
    [2] N. Oyanma, S. Ikeda, M. Suziki, T. Ohsaka. Electroanalysis, 1991, 3(7): 665.
    [3] M. R ikukawa, M. Nakagawa, N. Nishizawa, K. Sanui, N. Ogata. Electrochemical and sensing properties of enzyme-polypyrrole multicomponent electrodes. Synthetic Metals, 1997, 85: 1377-1378.
    [4] L. Shi, Y. Xiao, I. Willner. Electrical contacting of glucose oxidase by DNA-templated polyaniline wires on surfaces. Electrochemistry Communications, 2004, 6:1057-1060.
    [5] C. A. Marquette, L. J. Blum. Conducting elastomer surface texturing: a part to electrode spotting application to the biochip production. Biosensors and Bioelectronics, 2004, 20:197-203.
    [6] S. Myler, F. Davis, S. D. Collyer, S. P. J. Higson. Sonochemically fabricated microelectrode arrays for biosensors—part Ⅱ modification with a polysiloxane coating. Biosensors and Bioelectronics, 2004, 20: 408-412.
    [7] A. Kros, S. W. F. M. van Hovell, N. A. J. M. Sommerdijk, R. J. M. Nolte. Poly(3,4-ethylenedioxythiophene)-Based glucose biosensors. Adv. Mater, 2001, 13(20): 1555-1557.
    [8] J.-M. Qian, A.-L. Suo, Y. Yao, Z. -H. Jin. Polyelectrolyte-stabilized glucose biosensor based on woodceramics as electrode. Clinical Biochemistry, 2004, 37: 155-161.,
    [9] T. Li, Z. Yao, L. Ding. Development of an arnperometric biosensor based on glucose oxidase immobilized through silica sol-gel film onto Prussian blue modiried electrode. Sensors and Actrators B, 2004, 101: 155-160.,
    [10] B. Liu, R. Hu, J. Deng. Fabrication of an amperometric biosensor based on the immobilization of glucose oxidase in a modified molecular sieve matrix. Analyst, August, 1997, 122:821-826.
    [11] L. C. Brousseau, III, Q. Zhao, D. A. Shultz, D. L. Heldheim. PH-Gated Single-Electron tunneling in chemically modified gold nanoclusters. J. Am. Chem. Soc, 1998, 120: 7645-7646.
    [12] F. Favier, C. W. Erich, M. P. Zach, T. Benter, Penner. R. M. Science. 2001, 293: 2227.
    [13] C. Z. Li, H. X. He, A. Bogozi, J. S. Bunch, N. J. Tao. Appl. Phys. Lett. 2000, 76: 1333.
    [14] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai. Nanotube molecular wires as chemical sensors. Science, 2000, 287: 622-624.
    [15] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293: 1286-1291.
    [16] A. Bogozi, O. Lain, H. X. He, C. Z. Li, N. J. Tao, L. A. Nagahara, I. Amlani, R. J. Tsui. Am. Chem. Soc, 2001, 123: 4585.
    [17] J.-I. Hahm, C. M. Lieber. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett., 2004, 4(1): 51-54.
    [18] X. Chen, R. Ferrigno, J. Yang, G. M. Whitesides. Redox properties of cytochrome c adsorbed on self-assembled monolayers: A probe for protein conformation and orientation. Langmuir, 2002, 18:7009-7015.,
    [19] E. J. Calvo, C. Danilowicz, A. Wolosiuk. Molecular "wiring" enzymes in organized nanostructures. J. Am. Chem. Soc, 2002, 124(11): 2452-2453.
    [20] Y. Xian, H. Wang, Y. Zhou, D. Pan, F. Liu, L. Jin. Preparation of L-Cys-Au colloid self-assembled nanoarray electrode based on the microporous aluminium anodic oxide film and its application to the measurement of dopamine. Electrochemistry Communications, 2004, 6:1270-1275.
    [21] E. S. Forzani, H. Zhang, L. A. Nagahara, I. Amlani, R. Tsui, N. Tao, Nano Lett, 2004, 4(9): 1785-1788.
    [22] Y. Yu, Y. Lin, Z. F. Ren, Nano Lett, 2003, 3: 107-109.
    [23] Y. Lin, F. Lu, Y. Tu, Z. Ren. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett, 2004, 4(2): 191-195.
    [24] P. Ugo, L. M. Moretto, F. Vezza, ChemPhysChem, 2002, 3:917.
    [25] W. Schuhmann. Electron-transfer pathways in amperometric biosensors. Ferrocene-modified enzymes entrapped in conducting-polymer layers. Biosensors & Bioelectronics, 1995, 10:181-193.
    [26] F. Tian, B. Xu, L. Zhu, G. Zhu. Hydrogen peroxide biosensor with enzyme entrapped within electrodeposited polypyrrole based on mediated sol-gel derived composite carbon electrode. Analytica Chimica Acta, 2001, 443: 9-16.
    [27] J.-C. Vidal, E. Garcia, J.-R. Castillo. Electropolymerization of pyrrole and immobilization of glucose oxidase in a flow system:influence of the operating conditions on analytical performance. Biosensors & Bioelectronics, 1998, 13(3-4): 371-382.
    [28] A. Guerrieri, G. E. De Benedetto, F. Palmisano, P. G. Zambonin, Biosens. Bioelectron, 1998, 13: 103.
    [29] P. Gros, T. Gibson, A. Bergel, M. Comtat. Permeability enhahcement of electropolymerized thin organic films. Journal of Electroanalytical Chemistry, 1997, 437: 125-134.
    [30] M.-C. Shin, H.-S. Kim. Electrochemical characterization of polypyrrole/glucose oxidase biosensor:Part Ⅰ. Influence of enzyme concentration on the growth and properties of the film. Biosensors & Bioelectronics, 1996, 11(1/2): 161-169.
    [31] M.-C. Shin, H.-S. Kim. Electrochemical characterization of polypyrrole/glucose oxidase biosensor:Part Ⅱ. Optimal preparation conditions for the boosensor. Biosensors & Bioelectronics, 1996, 11(1/2): 171-178.
    [32] M. Amounas, C. Innocent, S. Cosnier, P. Seta. A membrane based reactor with an enzyme immobilized by an avidin-biotin molecular recognition in a polymer matrix. Journal of Electroanalytical Chemistry, 2000, 176: 169-176.
    [33] M. Ferreira, P. A. Fiorito, O. N. Oliveira, Jr., S. I. C. Torresi. Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer(LbL) adsorption technique. Biosensors and Bioelectronics, 2004, 19: 1611-1615.
    [34] B.Wu, G. Zhang, S. Shuang, M. M. F. Choi. Biosensors for determination of glucose with glucose oxidase immobilized on an eggshell membrane. Talanta, 2004, 64: 546-553.
    [35] F. Palmisano, R. Rizzi, D. Centonze, P. G. Zambonin. Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films. Biosensors & Bioelectronics, 2000, 15:531-539.
    [36] L. R. Retana, E. L. Cabarcos, D. Mecerreyes, B. L-Ruiz. Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase. Biosensors and Bioelectronics, 2004, 20: 1111-1117.
    [37] L.-Y. Chu, Y.-J. Liang, W.-M. Chen, X.-J. Ju, H.-D. Wang. Preparation of glucose-sensitive microcapsules with a porous membrane and functional gates. Colloids and Surfaces B: Biointerfaces, 2004, 37: 9-14.
    [38] K. Suri, S. Annapoorni, A. K. Sarkar, R. R Tandon. Gas and humiditr sensors based on iron oxide-polypyrrole nanocomposites. Sensors and Actrators B, 2002, 81: 277-282.
    [39] F. Tian, G. Zhu. Bienzymatic amperonetric biosensor for glucose based on polypyrrole/ceramic carbon as electrode material. Analytica Chimica Acta. 2002, 451 : 251-258.
    [40] A. Gursel, S. Alkan, L. Toppare, Y. Yagci. Immobilization of invertase and glucose oxidase in conducting H-type polysiloxand/polypyrrole block copolymers. Reactive & Functional Polymers, 2003, 57: 57-65.
    [41] F. Selampinar, U. Akbulut, M. U. Ozden, L. Toppare. Immobilization of invertase in conducting polymer matrices. Biomaterials, 1997, 18:1163-1168. [45] J. C. Vidal, S. Mendez, J. R. Castillo. Electropolymerization of pyrrole and phenylenediamine over an organic conducting salt based amperometric sensor of increased selectivity for glucose determination. Analytica Chimica Acta, 1999, 385: 203-211.
    [42] H. Xue, S. Mu. Bioelectrochemical response of the polypyrrole xanthine oxidase electrode. Joumal of Electroanalytical Chemistry, 1995, 397: 241-247.
    [43] A. Malinauskas, Bioelectrochemistry at surface modified carbon electrodes, in: Encyclopedia of Surface and Colloid Science, Marcel Dekkdr, New York, 2002, pp. 753-773.
    [44] M. Trojanowicz, O. Geschke, T. Krawczynski vel Krawczyk, K. Cannann. Biosensors based on oxidases immobilized in various conducting polymers. Sensors and Actrators B, 1995, 28: 191-199.
    [45] J. C. Vidal, S. Mendez, J. R. Castillo. Electropolymerization of pyrrole and phenylenediamine over an organic conducting salt based amperometric sensor of increased selectivity for glucose determination. Analytica Chimica Acta, 1999, 385:203-211.
    [46] J. C. Vidal, E. Garcia, J. R. Castillo. In situ preparation of overoxidized PPy/OPPD bilayer biosensors for the determination of glucose and cholesterol in serum. Sensors and Actuators B, 1999, 57: 219-226.
    [47] J. C. Vidal, E. G. -Ruiz, J. R. Castillo. Strategies for the improvement of an amperometric cholesterol biosensor based on electropolymerization in flow systems:use of charge-transfer mediators and platinization of the electrode. Journal of Pharmaceutical and Biomedical Analysis, 2000, 24: 51-63.
    [48] M. Yasuzawa, T. Nieda, T. Hirano, A. Kunugi. Properties of glucose sensors based on the immobilization of glucose oxidase in N-substituted polypyrrole film. Sensors and Actuators B, 2000, 66: 77-79.
    [49] A. Isik, S. Alkan, L. Toppare, I. Cianga, Y. Yagci. Immobilization of invertase and glucose oxidase in poly 2-methylbutyl-2-(3-thienyl) acetate/polypyrrole matrices. European Polymer Journal, 2003, 39: 2375-2381.
    [50] P. Godillot, H. Korri-Youssoufi, P. Srivastava, A. E. Kassmi, F. Gamier. Direct chemical functionalization of as-grown electroactive polypyrrole filn containing leaving groups. Synthetic Metals, 1996, 83: 117-123.
    [51] J.-L. Besombes, S. Cosnier, P. Labbe. Improvement of poly(amphiphilic pyrrole )enzyme electrodes via the incorporation of synthetic laponite-clay-nanoparticles. Talanta, 1997, 44: 2209-2215.
    [52] S. Dutta, S. Padhye, R. Narayanaswamy, K. C. Persaud. An optical biosensor employing tiron-immobilised polypyrrole films for estimating monophenolase activity in apple juice. Biosensors & Bioelectronics, 2001, 16: 287-294.
    [53] R. Koncki, O. S. Wolfbeis. Composite films of Prussian blue and N-substituted polypyrroles: covalent immobilization of enzymes and application to near infrared optical biosensing. Biosensors & Bioelectronics, 1999, 34: 87-92.
    [54] S. Grant, F. Davis, J. A. Pritchard, K. A. Law, S. P. J. Higson, T. D. Gibson. Labeless and reversible immunosensor assay based upon an electrochemical current-transient protocol. Analytica Chimica Acta, 2003,495: 21-32.
    [55] S. B. Adeloju, J. N. Barisci, G. G. Wallace. Electroimmobilisation of sulphite oxidase into a polypyrrole film and its utilization for flow amperonetric detection of sulphite. Analytica Chimica Acta, 1996, 332: 145-153.
    [56] Y. Yang, S. Mu, H. Chen. Electrochemical synthesis of polypyrrole for the immobilization of galactose oxidase. Synthetic Metals, 1998,92: 173-178.
    [57] L. C. Jr. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NY Acad. Sci, 1962, 102: 29-45.
    [58] S. J. Updike and G. P. Hicks, Nature(London),1967,214: 986.
    [59] S. Jawaheer, S. F. White, S. D. D. V. Rughooputh, D. C. Cullen. Development of a common biosensor format for an enzyme based biosensor array to monitor fruit quality, Biosensors and Bioelectronics, 2003,18: 1429-1437.
    [60] P. Gros, A. Bergel. Improved model of a polypyrrole glucose oxidase modified electrode. Joumal of Electroanalytical Chemistry, 1995, 386: 65-73.
    [61] P. N. Bartlett, Y. Astier, Chem. Commun. 2000, 105.
    [62] X. Liu, K.G. Neoh, Lian Cen, E.T. Kang,. Enzymatic activity of glucose oxidase covalently wired via viologen to electrically conductive polypyrrole films. Biosensors and Bioelectronics, 2004, 19: 823-834.
    [63] K. Kouima, H. Nasu, M. Shimomura, S. Miyauchi. An interfering factor in the glucose oxidase sensing system with polypyrrole/glucose oxidase membrane. Synthetic Metals, 1995, 71: 2245-2246.
    [64] M. A. McRipley, R. A. Linsenmeier. Fabrication of a mediated glucose oxidase recessed microelectrode for the amperometric determination of glucose. Jounal of Electroanalytical Chemistry, 1996, 414:235-246.
    [65] Wolfgang Schuhmann, 1995. Electron-transfer pathways in amperometric biosensors. Ferrocene-modified enzymes entrapped in conducting-polymer layers. 10,181-193.
    [66] I. Otsuka, M. Yaoita, M. Higano, S. Nagashima, R. Kataoka. Tapping mode AFM study on the surface dynamics of a single glucose oxidase molecule on a Au(111) aurface in water with implication for a surface-induced unfolding pathway. Applied Surface Science, 2004, 235: 188-196.
    [67] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons, Ltd(Chichester), UK, 3rd edn., 2001, p.331.
    [68] D. Purvis, O. Leonardova, D. Farmakovsky, V. Cherkasov. An ultrasensitive and stable potentiometric immunosensor. Biosensors and Bioelectronics, 2003, 18: 1385-1390.
    [69] R. S. Pickard. Micromachined biosensor terminals for the study of growing neurons. Analytica Chimica Acta, 1999, 385: 73-77.
    [70] R. A. Kamin, G. S.Wilson. Rotation ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal.Chem. 1980, 52: 1198-1205.
    [71] G. Fortier and D. Belanger, Biotechnol. Bioeng 1991, 37: 854.
    [72] P. Forrer, F. Schlottig, H. Siegenthaler and M. Textor, Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique, Journal of Applied Electrochemistry, 2000, 30: 533-541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700