高性能多孔聚四氟乙烯增强复合质子交换膜合成及燃料电池性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池技术倚重于质子交换膜和电催化剂两种关键材料的发展。质子交换膜主要起着阳极和阴极的电子隔离和反应气的隔离作用,并且提供电解质的质子导电功能。质子交换膜位于燃料电池中的膜电极三合一(MEA)的中间位置,在燃料电池研究中愈来愈显更为至关重要的作用。复合型质子交换膜是当前的研究热点之一。
     本论文通过提高膜的机械强度、降低膜厚度,以提高电池性能、降低成本为目标,研究和开发燃料电池用质子交换膜。薄膜显著降低电池内阻而提高电池性能,同时薄膜降低膜材料使用量因而降低成本。通过对多孔PTFE膜进行液相介质氧化处理,改善了其浸润性,提高了离子聚合物(如Nafion或SPSU)与PTFE之间的界面相容性;合成了厚15-30μm致密的Nafion/PTFE和SPSU/PTFE增强复合质子交换膜;研究了增强复合自增湿质子交换膜(Pt-SiO_2催化剂、Nafion和PTFE复合物,简称Pt-SiO_2/NP),膜内吸湿性的纳米级SiO_2担载Pt催化剂提高阳极的自增湿功能和降低阴极混合电位,因而提高了其电池开路电压(OCV)和电池性能,同时利于膜内的水平衡;研究了基于双磺化聚醚砜浸渍膨胀拉伸多孔PTFE的复合质子交换膜(SPSU/PTFE)。采用Pb2+染色TEM手段研究了IONOMER/PTFE类型复合膜(如Nafion/PTFE)的离子簇微相区的结构,发现膜内离子簇团的定向聚集现象,并探讨了离子簇团定向聚集与膜的质子传导机理的关联。
Currently, the development of key materials, the proton exchange membranes (PEMs) and the electrocatalysts, is now considered as the impediment to the success of the PEM fuel cell technology and thus should be given high priority. The PEM, located in the central of the fuel cell, has gained a more and more central importance in fuel cell R&D. The main task of the PEM is to separate the anodic and cathodic chambers in terms of electric isolation and reactant separation, and provide the function of a proton conductive electrolyte. Composite PEMs are of much importance in fuel cell membrane fields.
     In this thesis, with the two targets of cost and performance in mind, also required for PEM fuel cells for transportation applications, ultrathin composite membrane based on micro-porous expanded PTFE and ionomer (such as Nafion or disulfonated poly(arylene ether sulfone) etc.) were developed and investigated. In detail, the composite membranes based on PTFE and ionomer (Nafion or SPSU), can be made ultrathin for PEMFC due to PTFE reinforcement effect. The strategy of implement of thin membrane could great contribute to the reduced areal specific resistance and voltage drop, thus leading to high cell performance. However, a key issue exists in the synthesis or fabrication process of ionomer/PTFE membranes, namely, interface compatibility between hydrophobic PTFE and hydrophilic ionomer components. The surface modification of PTFE could improve interface compatibility. These twoconsiderations promoted successful development of Ionomer/PTFE membranes with excellent fuel cell performances.
     To well meet current low or none humidification requirement of PEMFC, sandwich-structured self-humidifying membrane (nanometer-sized SiO2 supported Pt catalyst, Nafion and PTFE composites, donated as Pt-SiO2/NP) was fabricated, characterized and experimentally analyzed. Surprisingly, this membrane could be applied in not only low temperature PEMFC, but high temperature PEM fuel cell (operated at 120 oC, R.H. = 25%). In detail, the SiO2 supported Pt catalyst (Pt-SiO2) in both side layers of the membrane suppresses gas-crossover by chemically catalyzing mutually permeable H2 and O2 to produce H2O, which can in situ hydrate the membrane and facilitate water balance. The recombination reaction inside the membrane occurs chemically not electrochemically, since the insulation of SiO2 results in lack of electron channel, which is essential for three phase interfaces required for electrochemical reaction. The reduction in membrane thickness can facilitate water back-diffusion. In the design, the anode side layer is used for membrane self-humidification and the cathode side layer aims to decrease oxygen electrode polarization, especially at low current density, and accordingly improve the cell OCV. Hydrophilic nanometer-sized SiO2 inside the membrane is expected to adsorb water at low current density, and to release water at high current density to satisfy the electro-osmotic drag requirement. The fuel cells performance data employing above three membranes (such as Nafion/PTFE, Pt-SiO2/NP and SPSU/PTFE) were far superior than virtually all existing literature data.
     Moreover, interestingly, the phenomenon of ionic cluster aggregation aligned along PTFE nano-rods and nodes in ionomer/PTFE membrane was observed and investigated. Furthermore, the behavior of ionic cluster aggregation was correlatedwith proton conduction mechanism and fuel cell performance.
引文
[1] 衣宝廉. 燃料电池-原理·技术·应用. 北京: 化学工业出版社,2003.
    [2] J. Larminie and A. Dicks, Fuel Cell Systems Explained, Second Edition, John Wiley & Sons Ltd, The Atrium, Southen Gate, Chichester, West Sussex Po19 8SQ, England. 2003.
    [3] V. Ramani, H. R. Kunz, and J. M. Fenton. The Polymer Electrolyte Fuel Cell. The Electrochemical Society Interface, Fall 2004, page 17-19.
    [4] M. F. Mathias, R. Makharia, H. A. Gasteiger, J. J. Conley, T. J. Fuller, C. J. Gittleman, S. S. Kocha, D. P. Miller, C. K. Mittelsteadt, T. Xie, S. G. Yan and P. T. Yu. Two Fuel Cell Cars In Every Garage? The Electrochemical Society Interface, Fall 2005, page 24-35.
    [5] D. Dunwoody and J. Leddy. Proton Exchange Membranes: The View Forward and Back The Electrochemical Society Interface, Fall 2005, page 37-39.
    [6] C. He, S. Desai, G. Brown, and S. Bollepalli. PEM Fuel Cell Catalysts: Cost, Performance, and Durability. The Electrochemical Society Interface, Fall 2005, page 41-44.
    [7] V. Ramani. The Polymer Electrolyte Fuel Cell. The Electrochemical Society Interface, Spring 2006, page 41-44.
    [8] C. Wieser. Novel Polymer Electrolyte Membranes for Automotive Applications - Requirements and Benifits. Fuel Cells, 2004(4): 245-230.
    [1] C. Wieser, Novel Polymer Electrolyte Membranes for Automotive Applications - Requirements and Benifits. Fuel Cells, 2004(4): 245-230.
    [2] M. Wakizoe, O.A. Velev, and S. Srinivasan, Analysis of Proton-Exchange Membrane Fuel-Cell Performance with Alternate Membranes. Electrochimica Acta, 1995(40): 335-344.
    [3] D. Dunwoody and J. Leddy, Proton Exchange Membranes: The View Forward and Back. The Electrochemical Society Interface, Fall 2005: page 37-39.
    [4] T.D. Gierke, G.E. Munn, and F.C. Wilson, The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. Journal of Polymer Science Edition, 1981(19): 1687-1704.
    [5] W.Y. Hsu and T.D. Gierke, Ion transport and clustering in Nafion perfluorinated membranes. Journal of Membrane Science, 1983(13): 307-326.
    [6] J.O.M. Bockris and A.K. Reddy, Modern Electrochemistry. 1998, New York: Plenum Press.
    [7] X.B. Zhu, H.M. Zhang, and Y.M. Liang, Chemical structure and transport in fuel cell proton exchange membranes. Newsletter of DICP (Chinese), 2006(7): 11-14.
    [8] T.A. Zawodzinski, C. Derouin, S. Radzinski, R.J. Sherman, V.T. Smith, T.E. Springer, and S. Gottesfeld, Water-Uptake by and Transport through Nafion(R) 117 Membranes. Journal of the Electrochemical Society, 1993(140): 1041-1047.
    [9] Y.S. Kim, L. Dong, M.A. Hickner, T.E. Glass, and J.E. McGrath, State of Water of Disulfonated Poly(arylene ether sulfone) Copolymers and a Perfluoro Sulfonic Acid Copolymer (Nafion) and Its Effect on Physical and Electrochemical Properties. Macromolecules, 2003(36): 6281-6285.
    [10] R.M. Hodge, T.J. Bastow, G.H. Edward, G.P. Simon, and A.J. Hill, Free Volume and the Mechanism of Plasticisation in Water-swollen poly(vinylalcohol). Macromolecules, 1996(29): 8137-8143.
    [11] R.S. McLean, M. Dolye, and B.B. Sauer, High-resolution imaging of ionic domains and crystal morphology in ionomers using AFM techniques. Macromolecules, 2000(33): 6541-6550.
    [12] G. Meresi, Y. Wang, A. Bandis, P.T. Inglefield, A.A. Jones, and W.Y. Wen, Morphology of dry and swollen perfluorosulfonate ionomer by fluorine-19 MAS, NMR and xenon-129 NMR. Polymer, 2001(42): 6153-6160.
    [13] J.A. Elliot, S. Hanna, A.M.S. Elliot, and G.E. Colley, Interpretation of the Small-Angle X-ray Scattering from Swollen and Oriented Perfluorinated Ionomer Membranes. Macromolecules, 2000(33): 4161-4171.
    [14] M. Laporta, M. Pegoraro, and L. Zanderighi, Recast Nafion-117 Thin Film From Water Solution. Macromolecular Materials and Engineering, 2000(282): 22-29.
    [15] X.M. Ren, T.E. Springer, T.A. Zawodzinski, and S. Gottesfeld, Methanol transport through nafion membranes - Electro-osmotic drag effects on potential step measurements. Journal of the Electrochemical Society, 2000(147): 466-474.
    [16] G. Gebel, Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer, 2000(41): 5829-5838.
    [17] J. Divisek, M. Eikerling, V. Mazin, H. Schmitz, U. Stimming, and Y.M. Volfkovich, A study of capillary porous structure and sorption properties of Nafion proton-exchange membranes swollen in water. Journal of the Electrochemical Society, 1998(145): 2677-2683.
    [18] J.Y. Li and S. Nemat-Nasser, Micromechanical Analysis of Ionic Clustering in Nafion Perfluorinated Membrane. Mechanical of Materials, 2000(32): 303-314.
    [19] A.V. Anantaraman and C.L. Gardner, Studies on Ion-exhange Membranes. Part 1. Effect of Humidity on the Conductivity of Nafion. Journal of Electroanalytical Chemistry, 1996(414): 115-120.
    [20] M. Cappadonia, J.W. Erning, S.M.S. Niaki, and U. Stimming, Conduction of Nafion 117 membranes as a function of temperature and water content. Solid State Ionics, 1995(77): 65-69.
    [21] G.K. Rennie and J.J. Clifford, Melting Ice In Porous Solids. Journal of Chemical Society Faraday Transaction, 1977(73): 680-689.
    [22] T.A. Zawodzinski, T.E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, and S. Gottesfeld, A Comparative-Study of Water-Uptake by and Transport through Ionomeric Fuel-Cell Membranes. Journal of the Electrochemical Society, 1993(140): 1981-1985.
    [23] C.A. Edmondson, P.E. Stallworth, M.C. Wintersgill, J.J. Fontanella, Y. Dai, and S. Greenbaum, Electrical conductivity and NMR studies of methanol/water mixtures in Nafion membranes. Electrochimica Acta, 1998(43): 1295-1299.
    [24] M.C. Wintersgill and J.J. Fontanella, Complex impedance measurements on Nafion. Electrochimica Acta, 1998(43): 1533-1538.
    [25] J.J. Fontanella, M.C. Wintersgill, R.S. Chen, Y. Wu, and S.G. Greenbaum, Charge-Transport and Water Molecular-Motion in Variable Molecular-Weight Nafion Membranes - High-Pressure Electrical-Conductivity and NMR. Electrochimica Acta, 1995(40): 2321-2326.
    [26] R.S. Chen, P.E. Stallworth, S.G. Greenbaum, J.J. Fontanella, and M.C. Wintersgill, Electrochimica Acta, 1995(40): 309-313.
    [27] T.F. Fuller and J. Newman, Experimental-Determination of the Transport Number of Water in Nafion-117 Membrane. Journal of the Electrochemical Society, 1992(139): 1332-1337.
    [28] T.A. Zawodzinski, J. Davey, J. Valerio, and S. Gottesfeld, The Water-Content Dependence of Electroosmotic Drag in Proton-Conducting Polymer Electrolytes. Electrochimica Acta, 1995(40): 297-302.
    [29] T.A. Zawodzinski, M. Neeman, L.D. Sillerud, and S. Gottesfeld, Determination of Water Diffusion Coefficients in PerfluorosulfonateIonomeric membranes. Journal of Physical Chemistry, 1991(95): 6040-6044.
    [30] K.D. Kreuer, T. Dippel, W. Meyer, and J. Maier, Materials Research Society Symosia Proceedings, 1993(293): 273.
    [31] X.M. Ren and S. Gottesfeld, Electro-osmotic drag of water in poly(perfluorosulfonic acid) membranes. Journal of the Electrochemical Society, 2001(148): A87-A93.
    [32] B.C. Johnson, I. Yilgor, C. Tran, M. Iqbal, J.P. Wightman, D.R. Lloyd, and J.E. MacGrath, Synthesis and characterization of sulfonated poly(arylene ether sulfones). Journal of Polymer Science Part a-Polymer Chemistry, 1984(22): 721-737.
    [33] A.E. Steck, New materials for fuel cell systems I. 1995, Montreal: Editions de l'Ecole Polytechnique de Montreal. pp. 74-92.
    [34] A.E. Steck and C. Stone. Membrane materials in fuel cells. in 2nd Int. Sympo. on New Materials for fuel cells and Morden Battery Systems. 1997. Montreal, Canada.
    [35] W.L. Harrison, F. Wang, J.B. Mecham, V.A. Bhanu, M. Hill, Y.S. Kim, and J.E. McGrath, Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I. Journal of Polymer Science Part a-Polymer Chemistry, 2003(41): 2264-2276.
    [36] B.R. Einsla, Y.T. Hong, Y.S. Kim, F. Wang, N. Gunduz, and J.E. McGrath, Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells. I. Monomer and copolymer synthesis. Journal of Polymer Science Part a-Polymer Chemistry, 2004(42): 862-874.
    [37] O. Savadogo, Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems. Journal of New Materials for Electrochemical Systems, 1998(1): 47-66.
    [38] J. Wei, C. Stone, and A.E. Steck, Trifluorostyrene and substituted trifluorostyrene coplymeric compositions and ion-exchange membranes formed therefrom. 1995. U.S. 5422411.
    [39] V.I. Basura, P.D. Beattie, and S. Holdcroft, Solid-state electrochemical oxygen reduction at Pt/Nafion 117 and Pt /BAM3GTM 407 interfaces. Journal of Electroanalytical Chemistry, 1998(458): 1-5.
    [40] V.I. Basura, P.D. Beattie, and S. Holdcroft, Temperature and pressure dependence of O2 reduction at Pt /Nafion 117 and Pt /BAMTM 407 interfaces. Journal of Electroanalytical Chemistry, 1999(468): 180-192.
    [41] K.D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, and J. Maier, Imidazole and pyrazole-based proton conducting polymers and liquids. Electrochimica Acta, 1998(43): 1281-1288.
    [42] J. Kerres, A. Ullrich, F. Meier, and T. Haring, Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells. Solid State Ionics, 1999(125): 243-249.
    [43] X. Glipa, M. ElHaddad, D.J. Jones, and J. Roziere, Synthesis and characterisation of sulfonated polybenzimidazole: A highly conducting proton exchange polymer. Solid State Ionics, 1997(97): 323-331.
    [44] P. Staiti, M. Minutoli, and S. Hocevar, Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application. Journal of Power Sources, 2000(90): 231-235.
    [45] C.A. Linkous, H.R. Anderson, R.W. Kopitzke, and G.L. Nelson, Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures. International Journal of Hydrogen Energy, 1998(23): 525-529.
    [46] D.J. Jones and J. Roziere, Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications. Journal of Membrane Science, 2001(185): 41-58.
    [47] M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, and N. Ogata, Synthesis and proton conductivity of thermally stable polymer electrolyte: poly(benzimidazole) complexes with strong acid molecules. Electrochimica Acta, 2000(45): 1395-1398.
    [48] K.D. Kreuer, On the development of proton conducting polymer membranesfor hydrogen and methanol fuel cells. Journal of Membrane Science, 2001(185): 29-39.
    [49] M. Hickner, F. Wang, Y. Kim, B. Pivovar, T. Zawodzinski, and J. McGrath, Abstracts of Papers of the American Chemical Society, 2001(222): U467.
    [50] S.M.J. Zaidi, S.D. Mikhailenko, G.P. Robertson, M.D. Guiver, and S. Kaliaguine, Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. Journal of Membrane Science, 2000(173): 17-34.
    [51] B. Bonnet, D.J. Jones, J. Roziere, L. Tchicaya, G. Alberti, M. Casciola, L. Massinelli, B. Bauer, A. Peraio, and E. Ramunni, Hybrid organic-inorganic membranes for a medium temperature fuel cell. Journal of New Materials for Electrochemical Systems, 2000(3): 87-92.
    [52] C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, and M. Pineri, Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer, 2001(42): 5097-5105.
    [53] C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, and M. Pineri, Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer, 2001( 42): 359-373.
    [54] J.K. Stille, Polyquinolines. Macromolecules, 1981(14): 870-880.
    [55] M.X. Ding and J.K. Stille, Syntheses of polyquinolines containing diphenylphosphine ligands as heterogeneous supports for homogeneous catalysts. Macromolecules, 1983(16): 839-843.
    [56] F. Lufrano, I. Gatto, P. Staiti, V. Antonucci, and E. Passalacqua, Sulfonated polysulfone ionomer membranes for fuel cells. Solid State Ionics, 2001(145): 47-51.
    [57] P. Genova-Dimitrova, B. Baradie, D. Foscallo, C. Poinsignon, and J.Y. Sanchez, Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid. Journal of Membrane Science, 2001(185): 59-71.
    [58] Y.S. Kim, F. Wang, M. Hickner, T.A. Zawodzinski, and J.E. McGrath, Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications. Journal of Membrane Science, 2003(212): 263-282.
    [59] H.R. Allock, R.J. Fitzgerald, and L. Salvati, Sulfonation of (aryloxy)- and (arylamino)phosphazenes: small-molecule compounds, polymers, and surfaces. Chemistry of Materials, 1991(3): 1120-1132.
    [60] M.A. Hoffmann, C.M. Ambler, A.E. Maher, E. Chalkova, X.Y. Zhou, S.N. Lvov, and H.R. Allock, Synthesis of Polyphosphazenes with Sulfonimide Side Groups. Macromolecules, 2002(35): 6490-6493.
    [61] K. Tsuruhara, M. Rikukawa, K. Sanui, N. Ogata, Y. Nagasaki, and M. Kato, Synthesis of proton conducting polymer based on poly(silamine). Electrochimica Acta, 2000(45): 1391-1394.
    [62] M.A. Vargas, R.A. Vargas, and B.E. Mellander, New proton conducting membranes based on PVAL/H3PO2/H2O. Electrochimica Acta, 1999(44): 4227-4232.
    [63] S.F. Hou, Y.C. He, M.X. Ding, and L.X. Gao, Preparations and Properties of the Proton Conducting Membranes of non-Fluorinated Polymers for Fuel Cells. Chinese Polymer Bulletin, 2003(5): 7-16.
    [64] A. Eisberg and E. Yeager, Perfluorinated ionomer membranes. ACS Symposium Series (ACS), 1982(No. 180).
    [65] W.G. Grot, 1973. U.S. 3,370,567.
    [66] I. Watanabe, Y. Yamakoshi, H. Miyauchi, S. Tsshima, and M. FUkumoto, 1978. U.S. 4,072,793.
    [67] H. Ukihashi, T. Asawa, and T. Gunjima, 1980. U.S. 4,218,542.
    [68] T. Asawa, Material properties of cation exchange membranes for chlorlkali electrolysis, water electrolysis and fuel cells. Journal of Applied Electrochemistry, 1989(19): 566-570.
    [69] M. Nakao and M. Yoshitake, Handbook of Fuel Cells - Fundamentals, Technology and Applications. Fuel Cell Tehnology and Applications, ed. W.G. Vielstich, H. A. Lamm. A. Vol. 3. 2003, England: John Wiley & Sons, Ltd. p, 412-419.
    [70] R. Penner and C. Matin, Ion-transporting composite membranes I. Nafion-impregnated Gore-Tex. Journal of Electrochemistry Society, 1985(132): 514-515.
    [71] M.W. Verbrugge, R.F. Hill, and E.W. Schneider, Composite Membranes for Fuel-Cell Applications. AIChE Journal, 1992(38): 93-100.
    [72] C. Liu and C.R. Martin, Ion-transporting composite membranes II. Ion transport mechanism in Nafion-impregnated Gore-Tex membranes. J. Electrochem. Soc., 1990(137): 510-515.
    [73] C. Liu and C.R. Martin, Ion-transporting composite membranes. III. Selectivity and rate of ion transport in Nafion-impregnated. Gore-Tex membranes prepared by a high temperature. solution-casting method. J. Electrochem. Soc., 1990(137): 3114-3120.
    [74] K.M. Nouel and P.S. Fedkiw, Nafion (R)-based composite polymer electrolyte membranes. Electrochimica Acta, 1998(43): 2381-2387.
    [75] H.L. Lin, T.L. Yu, K.S. Shen, and L.N. Huang, Effect of Triton-X on the preparation of Nafion/PTFE composite membranes. Journal of Membrane Science, 2004(237): 1-7.
    [76] K. Ramya, G. Velayutham, C.K. Subramaniam, N. Rajalakshmi, and K.S. Dhathathreyan, Effect of solvents on the characteristics of Nafion/PTFE composite membranes for fuel cell applications. J. Power Sources, 2006(160): 10-17.
    [77] F.Q. Liu, B.L. Yi, D.M. Xing, J.R. Yu, and H.M. Zhang, Nafion/PTFE composite membranes for fuel cell applications. Journal of Membrane Science, 2003(212): 213-223.
    [78] B. Bahar, A. Hobson, J. Kolde, and D. Zuckerbrod, U.S. 5,547,551. 1996.
    [79] B.A. Bahar, R.S. Mallouk, A.R. Hobson, and J.A. Kolde, U.S. RE37, 307. 2001.
    [80] B. Bahar, C. Cavalca, S. Cleghorn, J. Kolde, D. Lane, M. Murthy, and G. Rush, Effective selection and use of advanced membrane electrode power assemblies. Journal of New Materials for Electrochemical Systems, 1999(2): 179-182.
    [81] Y.Z. Fu, F.Q. Liu, D.M. Xing, J.R. Yu, B.L. Yi, and H.M. Zhang, SPTFS/PTFE composite membrane for proton-exchange membrane fuel cell. Chinese Journal of Power Sources, 2003(27): 345-347.
    [82] Y.Z. Fu, D.M. Xing, B.L. Yi, and H.M. ZHang, Study of SPTFS/PTFE composite membrane with different EWs. Electrochemistry (Chinese), 2004(10): 27-34.
    [83] S. Koter, P. Piotrowski, and J. Kerres, Comparative investigations of ion-exchange membranes. Journal of Membrane Science, 1999(153): 83-90.
    [84] D.M. Xing, B.L. Yi, F.Q. Liu, Y.Z. Fu, and H.M. Zhang, Characterization of sulfonated poly(ether ether ketone)/polytetrafluoroethylene composite membranes for fuel cell applications. Fuel Cells, 2005(5): 406-411.
    [85] M. Tamura, K. Sanekata, and Y. Higuchi, 1994. Laid Open Japanese Patent Appication 6-231779.
    [86] Y. Higuchi, I. Terada, H. Shimoda, and S. Hommura, US20010026883A1, EP1139472(2201)
    [87] L.E. Nielsen, Mechanical Properties of Polymers and Composites. New York, Marcel Dekker, 1975.
    [88] Y.H. Liu, B.L. Yi, Z.G. Shao, D.M. Xing, and H.M. Zhang, Carbon nanotubes reinforced nafion composite membrane for fuel cell applications. Electrochemical and Solid State Letters, 2006(9): A356-A359.
    [89] B.I. Yakobson and R.E. Smalley, Fullerence nanotubes: C1,000,000 and beyond. American Scientist, 1997(85): 324-327.
    [90] R. Blake, Y.K. Gun'ko, J. Coleman, M. Cadek, A. Fonseca, J.B. Nagy, andW.J. Blau, A Generic organometallic approach toward ultra-strong carbon nanotube polymer composites. J. Am. Chem. Soc., 2004(126): 10226-10227.
    [91] B.J. Landi, R.P. Raffaelle, M.J. Heben, J.L. Alleman, W. VanDerveer, and T. Gennett, Single wall carbon nanotube-Nafion actutors. Nano Letters, 2002(2): 1329-1332.
    [92] Y.H. Liu, B.L. Yi, Z.G. Shao, L. Wang, D.M. Xing, and H.M. Zhang, Pt/CNTs-Nafion reinforced and self-humidifying composite membrane for PEMFC applications. Journal of Power Sources, 2006: Article in Press.
    [93] D.L. Wood, J.S. Yi, and T.V. Nguyen, Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells. Electrochimica Acta, 1998(43): 3795-3809.
    [94] K.H. Choi, D.J. Park, Y.W. Rho, Y.T. Kho, and T.H. Lee, A study of the internal humidification of an integrated PEMFC stack. Journal of Power Sources, 1998(74): 146-150.
    [95] R. Mosdale and S. Srinivasan, Analysis of Performance and of Water and Thermal Management in Proton-Exchange Membrane Fuel-Cells. Electrochimica Acta, 1995(40): 413-421.
    [96] F.N. Buchi and S. Srinivasan, Operating proton exchange membrane fuel cells without external humidification of the reactant gases - Fundamental aspects. Journal of the Electrochemical Society, 1997(144): 2767-2772.
    [97] S.Y. Ahn, Y.C. Lee, H.Y. Ha, S.A. Hong, and I.H. Oh, Effect of the ionomers in the electrode on the performance of PEMFC under non-humidifying conditions. Electrochimica Acta, 2004(50): 673-676.
    [98] S. Vengatesan and H.J. Kim, Operation of a proton-exchange membrane fuel cell under non-humidified conditions using thin cast Nafion membranes with different gas-diffusion media. Journal of Power Sources, Article in press.
    [99] C. Wang, Z.Q. Mao, J.M. Xu, and X.F. Xie, A novel preparation for a self-humidifying membrane electrode assembly and performance of its fuel cell. Chemical Journal of Chinese Universities-Chinese, 2003(24): 140-142.
    [100] M. Watanabe, H. Uchida, Y. Seki, M. Emori, and P. Stonehart, Self-humidifying polymer electrolyte membranes for fuel cells. Journal of the Electrochemical Society, 1996(143): 3847-3852.
    [101] M. Watanabe, H. Uchida, and M. Emori, Analyses of self-humidification and suppression of gas crossover in Pt-dispersed polymer electrolyte membranes for fuel cells. Journal of the Electrochemical Society, 1998(145): 1137-1141.
    [102] M. Watanabe, H. Uchida, and M. Emori, Polymer electrolyte membranes incorporated with nanometer-size particles of Pt and/or metal-oxides: Experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells. Journal of Physical Chemistry B, 1998(102): 3129-3137.
    [103] H. Uchida, Y. Mizuno, and M. Watanabe, Suppression of methanol crossover in Pt-dispersed polymer electrolyte membrane for direct methanol fuel cells. Chemistry Letters, 2000: 1268-1269.
    [104] H. Uchida, Y. Mizuno, and M. Watanabe, Suppression of methanol crossover and distribution of ohmic resistance in Pt-dispersed PEMs under DMFC operation. Journal of the Electrochemical Society, 2002(149): A682-A687.
    [105] H. Uchida, Y. Ueno, H. Hagihara, and M. Watanabe, Self-humidifying electrolyte membranes for fuel cells - Preparation of highly dispersed TiO2 particles in Nafion 112. Journal of the Electrochemical Society, 2003(150): A57-A62.
    [106] H. Hagihara, H. Uchida, and M. Watanabe, Preparation of highly dispersed SiO2 and Pt particles in Nafion (R) 112 for self-humidifying electrolyte membranes in fuel cells. Electrochimica Acta, 2006(51): 3979-3985.
    [107] H.K. Lee, J.I. Kim, J.H. Park, and T.H. Lee, A study on self-humidifying PEMFC using Pt-ZrP-Nafion composite membrane. Electrochimica Acta,2004(50): 761-768.
    [108] F.Q. Liu, B.L. Yi, D.M. Xing, J.R. Yu, Z.J. Hou, and Y.Z. Fu, Development of novel self-humidifying composite membranes for fuel cells. Journal of Power Sources, 2003(124): 81-89.
    [109] D.M. Xing, B.L. Yi, Y.Z. Fu, F.Q. Liu, and H.M. Zhang, Pt-C/SPEEK/PTFE self-humidifying composite membrane for fuel cells. Electrochemical and Solid State Letters, 2004(7): A315-A317.
    [110] B. Yang, Y.Z. Fu, and A. Manthiram, Operation of thin Nafion-based self-humidifying membranes in proton exchange membrane fuel cells with dry H-2 andO(2). Journal of Power Sources, 2005(139): 170-175.
    [111] T.H. Yang, Y.G. Yoon, C.S. Kim, S.H. Kwak, and K.H. Yoon, A novel preparation method for a self-humidifying polymer electrolyte membrane. Journal of Power Sources, 2002(106): 328-332.
    [112] C. Wang, Z.X. Liu, Z.Q. Mao, J.M. Xu, and K.Y. Ge, Preparation and evaluation of a novel self-humidifying Pt/PFSA composite membrane for PEM fuel cell. Chemical Engineering Journal, 2005(112): 87-91.
    [113] Y. Zhang, H.M. Zhang, X.B. Zhu, and Y.M. Liang, A low-cost PTFE-reinforced integral multilayered self-humidifying membrane for PEM fuel cells. Electrochemical and Solid State Letters, 2006(9): A332-A335.
    [114] U. Beuscher, S.J.C. Cleghorn, and W.B. Johnson, Challenges for PEM fuel cell membranes. International Journal of Energy Research, 2005(29): 1103-1112.
    [1] R. M. Penner and C. R. Martin. Ion-transporting composite membranes I. Nafion-impregnated Gore-Tex. J. Electrochem. Soc., 1985(132): 514-515.
    [2] M. W. Verbrugge, R. F. Hill and E. W. Schneider. Composite membranes for fuel-cell applications. AIChE Journal, 1992(38): 93-100.
    [3] C. Liu and C. R. Martin. Ion-transporting composite membranes Ⅱ.Ion transport mechanism in Nafion-impregnated Gore-Tex membranes. J. Electrochem. Soc., 1990(137): 510-515.
    [4] C. Liu and C. R. Martin. Ion-transporting composite membranes. III. Selectivity and rate of ion transport in Nafion-impregnated. Gore-Tex membranes prepared by a high temperature. solution-casting method. J. Electrochem. Soc., 1990(137): 3114-3120.
    [5] H. L. Lin, T. L. Yu, K. S. Shen and L. N. Huang. Effect of Triton-X on the preparation of Nafion/PTFE composite membranes. J. Memb. Sci., 2004(237): 1-7.
    [6] K. Ramya, G. Velayutham, C. K. Subramaniam, N. Rajalakshmi and K. S. Dhathathreyan. Effect of solvents on the characteristics of Nafion?/PTFE composite membranes for fuel cell applications. J. Power Sources, 2006, 160, 10-17.
    [7] F. Q. Liu, B. L. Yi, D. M. Xing, J. R. Yu and H. M. Zhang. Nafion/PTFE composite membranes for fuel cell applications. J. Memb. Sci., 2003(212): 213-223.
    [8] B. Bahar, A. R. Hobson, J. A. Kolde and D. Zuckerbrod, U.S. Patent, 5,547,551.
    [9] B. A. Bahar, R. S. Mallouk, A. R. Hobson and J. A. Kolde, U.S. Patent, RE37, 307.
    [10] M. Nakao and M. Yoshitake, Handbook of Fuel Cells - Fundamentals, Technology and Applications, Edited by Vielstich, W.; Gasteiger, H. A.; Lamm. A. Volume 3: Fuel Cell Tehnology and Applications. p, 412-419. 2003 John Wiley & Sons, Ltd.
    [11] E.J. Carlson, P. Kopf, J. Sinha, S. Sriramulu and Y. Yang, Cost Analysis of PEM Fuel Cell Systems for Transportation, subcontract report of NREL/SR-560-39104, TIAX LLC, Cambridge, Massachusetts, NationalRenewable Energy Laboratory, USA, December 2005.
    [12] U. Beuscher, S.J.C. Cleghorn, and W.B. Johnson, Challenges for PEM fuel cell membranes, International Journal of Energy Research, 2005(29): 1103-1112.
    [13] T. E. Springer, T. A. Zawodzinski, S. J. Gottesfeld. Polymer electrolyte fuel cell model. J. Electrochem. Soc. 1991(138): 2334-2339.
    [14] S. Slade, S. A. Campbell, T. R. Ralph and F. C. Walsh. Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes. Journal of The Electrochemical Society, 2002(149): A1556-A1564.
    [15] A. Lehmani, P. Turq, M. Perie, J. Perie and J. P. Simonin. Ion transport in Nafion? 117 membrane. J. Electroanal. Chem., 1997(428): 81-89.
    [16] J. Divisek, M. Eikerling, H. Schmitz, U. Stimming, and Y. M. Volfkovich. A study of capillary. porous structure and sorption properties of Nafion proton-exchange membranes swollen in. water. J. Electrochem. Soc., 1998(145): 2677-2683.
    [17] S. Cleghorn, J. Kolde and W. Liu, catalyst coated composite membranes, Handbook of Fuel Cells – Fundamentals, Technology and Applications, Edited by Wolf Vielstich, Arnold Lamm and Hubert A. Gasteiger, John Wiley & Sons, Ltd, Chichester, 2003.
    [18] M. F. Mathias, R. Makharia, H. A. Gasteiger, J. J. Conley, T. J. Fuller, C. J. Gittleman, S. S. Kocha, D. P. Miller, C. K. Mittelsteadt, T. Xie, S. G. Yan and P. T. Yu. Two Fuel Cell Cars In Every Garage? The Electrochemical Society Interface, Fall 2005, page 24-35.
    [19] C. Wieser. Novel Polymer Electrolyte Membranes for Automotive Applications - Requirements and Benifits. Fuel Cells, 2004(4): 245-230.
    [20] Huamin Zhang, Xiaobing Zhu, Yu Zhang, Mingqiang Li and Baolian Yi, “Synthesis of Fuel Cell Composite Proton Exchange Membranes”, China Patent Pending, Application Number: 200510046208.8, April, 2005.
    [21] 黄玉东,聚合物表面与界面技术,化学工业出版社,北京,2003年7月。
    [22] M. Mathias, J. Roth, J. Fleming and W. Lehnert, Handbook of Fuel Cells: Fundamentals, Technology and Applications, 6th ed., vol. 3, Wiley, England, 2003 [Chapter 46].
    [23] T. A. Jr. Zawodzinski, C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. Springer, S. Gottesfeld. Water Uptake by and Transport Through Nafion 117 Membranes. J. Electrochem. Soc. 1993(140): 1041-1047.
    [24] M. Yoshitake, M. Tamura, N. Yoshida, T. Ishisaki. Studies of perfluorinated ion exchange membranes for polymer elecrtolyte fuel cells. DENKI KAGAKU 1996(64): 727-736.
    [25] T. A., Jr. Zawodzinski, M. Neeman, L. O. Sillerud and S. Gotesfeld. Determination of water diffusion coefficients in perfluorosulfonate ionomerie membranes. J. Phys. Chem., 1991(95): 6040-6044.
    [26] E. I. Santiago, G.. A. Camara, E. A. Ticianelli. CO tolerance on PtMo/C electrocatalyst prepared by the formic acid method, Electrochim Acta, 2003(48): 3527.
    [27] M. A. Mohammed and V. Rossbach. Surface activation of polytetrafluoroethylene by bonding of polymeric silicic acid. Journal of Applied Polymer Science, 1993(50): 929-939.
    [28] D. Myers, Surface, Interface, and Colloids: Principles and Applications, Second Edition, John Wiley & Sons. 1999, Chapter 17.
    [29] 吴培熙, 张留城, 聚合物共混改性, 中国轻工业出版社, 2004, 第5版, p. 47 – 56.
    [30] D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman and M. E. Tisack. Advanced materials for improved PEMFC performance and life. J. Power Sources, 2004(131): 41-48.
    [31] J. A. Kolde, B. Bahar, M. S. Wilson, T. A. Zawodzinski, S. Gottesfeld, in: Proceedings of the First International Symposium on Proton ConductingMembrane Fuel Cells, S. Gottesfeld, G. Halpert, and A. Landgrebe (Eds.), The Eletrochemical Society Proceedings Series, Pennington, NJ, 1995, Volume 95-23, pp. 193-201.
    [32] D. M. Xing, B. L. Yi, F. Q. Liu, H. M. Zhang. Characterization of sulfonated poly (ether ether ketone)/ Polytetrafluoroethylene composite membranes for fuel cell applications. Fuel Cells, 2005(5): 406-411.
    [33] J. Surowiec, R. Bogoczek. Studies on the thermal stability of. the perfluorinated cation-exchange membrane Nafion-417. J. Therm. Anal., 1988(33): 1097-1102.
    [34] R. S. Mclean, M. Doyle, B. B. Sauer. High-resolution imaging of ionic domains and crystal. morphology in ionomers using AFM techniques. Macromolecules, 2000(33): 6541-6550.
    [35] B. C. H. Steeke, A. Heinzel, Materials for fuel-cell technologies, Nature, 2001(414): 345-352.
    [1] B. C. H. Steeke, A. Heinzel, Materials for fuel-cell technologies, Nature, 2001(414): 345-352.
    [2] O. Savadogo. Emerging Membranes for Electrochemical System (I) Solid Polymer Electrolyte Membranes for Fuel Cell Systems. J. New Mater. Electrochem. Syst., 1998(1): 47-53.
    [3] K. B. Prater. Solid polymer fuel cell developments at Ballard. J. Power Sources, 1992(37): 181-188.
    [4] A. J. Appleby. Fuel cell technology and innovation. J. Power Sources, 1992(37): 223-239.
    [5] S. Srinivasan, D. J. Manko, H. Koch, M. A. Enayetullah, A. J. Appleby. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes. J. Power Sources, 1990(29): 367-387.
    [6] M. Eikerling, A. A. Kornyshev, A. M. Kuznetsov, J. Ulstrup, S. Walbran. Mechanisms of proton conductance in polymer electrolyte membranes. J. Phys. Chem. B, 2001(105): 3646-3662.
    [7] A. A. Kornyshev, A. M. Kuznetsov, E. Spohr, J. Ulstrup. Kinetics of proton transport in water. J. Phys. Chem. B, 2003(107): 3351-3366.
    [8] M. F. Mathias, R. Makharia, H. A. Gasteiger, J. J. Conley, T. J. Fuller, C. J. Gittleman, S. S. Kocha, D. P. Miller, C. K. Mittelsteadt, T. Xie, S. G. Yan, P. T. Yu. Two fuel cell cars in every garage? The Electrochemical Society Interface, Fall 2005, page 24.
    [9] A. S. Ioselevich, A. A. Kornyshev, J. H. G. Steinke. Fine morphology of proton conducting ionomers. J. Phys. Chem. B, 2004(108): 11953-11963.
    [10] A. M. Pivovar, B. S. Pivovar. Dynamic Behavior of Water within a Polymer Electrolyte Fuel Cell Membrane at Low Hydration Levels. J. Phys. Chem. B, 2005(109): 785-793.
    [11] M. K. Kadirov, A. Bosnjakovic, S. Schlick. Membrane-Derived Fluorinated Radicals Detected by ESR in UV-Irradiated Nafion and Dow Ionomers: The Effect of Counterions and H2O2 J. Phys. Chem. B, 2005(109): 7664-7670.
    [12] M. Saito, K. Hayamizu, T. Okada. Temperature Dependence of Ion and Water Transports in Perfluorinated Ionomer Membranes for Fuel Cells. J. Phys. Chem. B, 2005(109): 3112-3119.
    [13] E. Spohr, P. Commer, A. A. Kornyshev. Enhancing proton mobility inpolymer electrolyte membranes: Lessons from molecular dynamics simulations. J. Phys. Chem. B 2002, 106, 10560-10569.
    [14] T. A. Jr. Zawodzinski, T. E. Springer, F. Uribe, S. Gottesfeld. Characterization of polymer electrolytes for fuel cell applications. Solid State Ionics 1993(60): 199-211.
    [15] R. S. Yeo. Ion clustering and proton transport in Nafion membranes and its applications as solid polymer electrolyte. J. Electrochem. Soc. 1983(130): 533-538.
    [16] R. Hill, M. W. Verbrugge. Ion and solvent transport in ion-exchange membranes. J. Electrochem. Soc. 1990(137): 886-899.
    [17] D. M. Bernardi. Water-Balance Calculations for Solid Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 1990(137): 3344-3350.
    [18] M. Cappadonia, J. W. Erning, S. M. Saberi Niaki, U. Stimming. Conduction of Nafion 117. membranes as a function of temperature and water content. Solid State Ionics. 1995(77): 65-69.
    [19] T. A. Jr. Zawodzinski, C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. Springer, S. Gottesfeld. Water Uptake by and Transport Through Nafion 117 Membranes. J. Electrochem. Soc. 1993(140): 1041-1047.
    [20] T. F. Fuller, J. Newman. Experimental Determination of the Transport Number of Water in Nafion 117 Membrane. J. Electrochem. Soc. 1992(139): 1332-1337.
    [21] D. M. Bernardi, M. W. Verbrugge. A mathematical model for the solid-polymer-electrode fuel cell. J. Electrochem. Soc. 1992(139): 2477-2490.
    [22] O. Savadogo. Emerging membranes for electrochemical systems Part Ⅱ. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J. Power Sources. 2004(127): 135-161.
    [23] M. Ciureanu, M. Badita, J. New Mater. Electrochem. Syst. 2003(6): 163.
    [24] M. Watanabe, Y. Satoh, C. Shimura. Management of the Water content in Polymer Electrolyte Membranes with Porous Fiber Wicks. J. Electrochem. Soc.1993(140): 3190-3193.
    [25] M. Watanabe, K. Sakairi, M. Inoue. An effect of proton conductivity in electrolyte membranes on cathode performances at polymer electrolyte fuel cells. J. Electroanal. Chem. 1994(375): 415-418.
    [26] F. N. Büchi, S. Srinivasan. Operating Proton Exchange Membrane Fuel Cells Without External Humidification of the Reaction Gases: Fundamental Aspect. J. Electrochem. Soc. 1997(144): 2767-2772.
    [27] M. Watanabe, H. Uchida, Y. Seki, M. Emori, P. Stonehart. Self-Humidifying Polymer Electrolyte Membranes for Fuel Cells. J. Electrochem. Soc. 1996(143): 3847-3852.
    [28] M. Watanabe, H. Uchida, M. Emori. Analysis of selfhumidification and Suppression of gas crossover in Pt -dispersed polymer electrolyte membranes for fuel cells. J. Electrochem. Soc. 1998(145): 1137-1141.
    [29] M. Watanabe, H. Uchida, M. Emori. Experimental analysis of the self-humidification and suppression of gas crossover in fuel cells. J. Phys. Chem. B 1998(102): 3129-3137.
    [30] H. Uchida, Y. Ueno, H. Hagihara, M. Watanabe. Self-Humidifying Electrolyte Membranes for Fuel Cells - Preparation of Highly Dispersed TiO2 Particles in Nafion 112. J. Electrochem. Soc. 2003(150): A57-A62.
    [31] H. K. Lee, J. I. Kim, J. H. Park, T. H. Lee. A study on self-humidifying PEMFC using Pt-ZrP-Nafion composite membrane. Electrochimica Acta 2004(50): 761-768.
    [32] D. M. Xing, B. L. Yi, Y. Z. Fu, F. Q. Liu, H. M. Zhang. Pt-C/SPEEK/PTFE Self-Humidifying Composite Membrane for Fuel Cells. Electrochem. Solid-State Lett. 2004(7): A315-A318.
    [33] B. Yang, Y. Z. Fu, A. Manthiram. Operation of thin Nafion-based self-humidifying membranes in proton exchange membrane fuel cells with dry H2 and O2. J. Power Sources 2005(139): 170-175.
    [34] F. Q. Liu, B. L. Yi, D. M. Xing, J. R. Yu, Z. J. Hou, Y. Z. Fu. Development ofnovel self-humidifying composite membranes for fuel cells. J. Power Sources 2003(124): 81-89.
    [35] T. E. Springer, T. A. Zawodzinski, S. Gottesfeld. Polymer electrolyte fuel cells model. J. Electrochem. Soc. 1991(138): 2334-2342.
    [36] H. H. Voss, D. P. Wilkinson, P. G. Pickup, M. C. Johnson, V. Basura. Anode water removal:A water management and diagnostic technique for solid polymer membrane fuel cells. Electrochimica Acta 1995(40): 321-328.
    [37] S. Kaliaguine, S. D. Mikhailenko, K. P. Wang, P. Xing, G. Robertson, M. Guiver. Properties of SPEEK Based PEMs for Fuel Cell Application. Catalysis Today 2003(82): 213-222.
    [38] B. Bahar, A. R. Hobson, J. A. Kolde, D. Zuckerbrod, U.S. Patent 5,547,551.
    [39] M. Yoshitake, M. Tamura, N. Yoshida, T. Ishisaki. Studies of perfluorinated ion exchange membranes for polymer elecrtolyte fuel cells. DENKI KAGAKU 1996(64): 727-736.
    [40] M. Eikerling, A. A. Kornyshev, U. Stimming. Electrophysical Properties of Polymer Electrolyte Membranes: A Random Network Model. J. Phys. Chem. B 1997, 101, 10807-10820.
    [41] M. Watanabe, H. Igarashi, K. Yoshioka. An experimental prediction of the preparation condition of Nafion-coated catalyst layers for PEFCs. Electrochimica Acta 1995(40): 329-334.
    [42] R. S. Mclean, M. Doyle, B. B. Sauer. High-resolution imaging of ionic domains and crystal morphology in ionomers using AFM techniques. Macromolecules 2000(33): 6541-6550.
    [43] J. A. Kolde, B. Bahar, M. S. Wilson, T. A. Zawodzinski, S. Gottesfeld, in: Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells, S. Gottesfeld, G. Halpert, and A. Landgrebe [Eds.], The Eletrochemical Society Proceedings Series, Pennington, NJ, 1995, Volume 95-23, pp. 193-201.
    [44] D. M. Xing, B. L. Yi, F. Q. Liu, H. M. Zhang. Characterization of SulfonatedPoly(ether ether ketone)/ploytetrafloroethylene For Fuel Cell Applications. Fuel Cells, 2005(5): 406-411.
    [45] T. A. Jr. Zawodzinski, M. Neeman, L. O. Sillerud, S. Gottesfeld. Determination of Water Diffusion Coefficients in Perfluorosulfonate Ionomeric membranes. J. Phys. Chem. 1991(95): 6040-6044.
    [1] M. F. Mathias, R. Makharia, H. A. Gasteiger, J. J. Conley, T. J. Fuller, C. J. Gittleman, S. S. Kocha, D. P. Miller, C. K. Mittelsteadt, T. Xie, S. G. Yan and P. T. Yu. Two Fuel Cell Cars In Every Garage? The Electrochemical Society Interface, Fall 2005, page 24-35.
    [2] C. Wieser. Novel Polymer Electrolyte Membranes for Automotive Applications - Requirements and Benifits. Fuel Cells, 2004(4): 245-230.
    [3] B. C. H. Steeke, A. Heinzel, Materials for fuel-cell technologies, Nature, 2001(414): 345-352.
    [4] Y. Yang and S. Holdcroft. Synthetic Strategies for Controlling the Morphology of Proton Conducting Polymer Membranes. Fuel Cells, 2005(5) 171-186.
    [5] S. Hietala, S. Holmberg, M. Karjalainen, J. N?sman, M. Paronen, R. Serimaa, F. Sundholm and S. Vahvaselk?. Structural Investigation of Radiation Grafted and Sulfonated PVDF Membranes. J. Mater. Chem. 1997(7): 721-727.
    [6] K. D. Kreuer. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci., 2001(185): 29-39.
    [7] B. C. Johnson, I. Yilgor, C. Tran, M. Iqbal, J. P. Wightman, D. R. Lloyd and J. E. McGrath. Synthesis and Characterization of Sulfonated Poly(Arylene Ether Sulfones). J. Polym. Sci., 1984(22): 721-737.
    [8] R. Nolte, K. Ledjeff, M. Bauer and R. Mülhaupt. Partially sulphonated poly(arylene ether sulfone)—a. versatile proton conducting membrane material for modern energy conversion technologies. J. Membr. Sci., 1993(83): 211-220.
    [9] S. Koter, P. Piotrowski and J. Kerres. Comparative investigations of ion-exchange membranes. J. Membr. Sci., 1999(153): 83-90.
    [10] Y. S. Kim, L. Dong, M. A. Hickner, T. E. Glass and V. Webb, J. E. McGrath. State of Water of Disulfonated Poly(arylene ether sulfone) Copolymers and a Perfluoro Sulfonic Acid Copolymer (Nafion) and Its Effect on Physical and Electrochemical Properties. Macromolecules, 2003(36): 6281-6285.
    [11] F. Lufrano, I. Gatto, P. Staiti, V. Antonucci and E. Passalacqua. Sulfonated polysulfone ionomer membranes for fuel cells. Solid State Ionics, 2001(145): 47-51.
    [12] F. Lufrano, G. Squadrito, A. Patti and E. Passalacqua. Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells. Journal of Applied Polymer Science, 2000(77): 1250-1256.
    [13] Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski and J. E. McGrath. Fabrication and Characterization of Heteropolyacid (H3PW12O40)/directly Polymerized Sulfonated Poly(arylene ether sulfone) Copolymer Composite Membranes for Higher Temperature Fuel Cell Applications. J. Membr. Sci., 2003(212): 263-282.
    [14] F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski and J. E. McGrath. Direct Polymerization of Sulfonated Poly(arylene ether. sulfone) Random (Statistical) Copolymers: Candidates for New Proton. Exchange Membranes. J. Membr. Sci., 2002(197): 231-242.
    [15] G. Gebel. Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer, 2000(41): 5829-5838.
    [16] J. A. Kerres. Development of ionomer membranes for fuel cells. J. Membr. Sci., (2001)185: 3-27.
    [17] J. A. Kerres Blended and Cross-Linked Ionomer Membranes for Application in Membrane Fuel Cells. Fuel Cells, 2005(5): 230-247.
    [18] J. A. Kolde, B. Bahar, M. S. Wilson, T. A. Zawodzinski and S. Gottesfeld, In Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells; S. Gottesfeld, G. Halpert, A. Landgrebe, Eds.; The Eletrochemical Society Proceedings Series; Electrochemical Society: Pennington, NJ, 1995; Vol. 95-23, pp 193-201.
    [19] B. Bahar, A. R. Hobson, J. A. Kolde and D. Zuckerbrod, U.S. Patent, 5,547,551.
    [20] B. A. Bahar, R. S. Mallouk, A. R. Hobson and J. A. Kolde, U.S. Patent, RE37, 307.
    [21] R. M. Penner and C. R. Martin. Ion-transporting composite membranes I. Nafion-impregnated Gore-Tex. J. Electrochem. Soc., 1985(132): 514-515.
    [22] M. W. Verbrugge, R. F. Hill and E. W. Schneider. Composite membranes for fuel-cell applications. AIChE Journal, 1992(38): 93-100.
    [23] C. Liu and C. R. Martin. Ion-transporting composite membranes Ⅱ.Ion transport mechanism in Nafion-impregnated Gore-Tex membranes. J. Electrochem. Soc., 1990(137): 510-515.
    [24] C. Liu and C. R. Martin. Ion-transporting composite membranes. III. Selectivity and rate of ion transport in Nafion-impregnated. Gore-Tex membranes prepared by a high temperature. solution-casting method. J. Electrochem. Soc., 1990(137): 3114-3120.
    [25] H. L. Lin, T. L. Yu, K. S. Shen and L. N. Huang. Effect of Triton-X on the preparation of Nafion/PTFE composite membranes. J. Memb. Sci., 2004(237): 1-7.
    [26] K. Ramya, G. Velayutham, C. K. Subramaniam, N. Rajalakshmi and K. S. Dhathathreyan. Effect of solvents on the characteristics of Nafion?/PTFE composite membranes for fuel cell applications. J. Power Sources, 2006, 160, 10-17.
    [27] X. B. Zhu, H. M. Zhang, Y. M. Liang, Y. Zhang and B. L. Yi. A Novel PTFE-Reinforced Multilayer Self-Humidifying Composite Membrane for PEM Fuel Cells. Electrochemical and Solid-State Letters, 2006(9): A49-A52.
    [28] X. B. Zhu, H. M. Zhang, Y. Zhang, Y. M. Liang, X. L. Wang and B. L. Yi. An Ultrathin Self-Humidifying Membrane for PEM Fuel Cell Application: Fabrication, Characterization, and Experimental Analysis. J. Phys. Chem. B, 2006(110): 14240-14248.
    [29] F. Q. Liu, B. L. Yi, D. M. Xing, J. R. Yu and H. M. Zhang. Nafion/PTFE composite membranes for fuel cell applications. J. Memb. Sci., 2003(212): 213-223.
    [30] F. Q. Liu, B. L. Yi, D. M. Xing, J. R. Yu, Z. J. Hou, Y. Z. Fu. Development of novel self-humidifying composite membranes for fuel cells. J. Power Sources 2003(124): 81-89.
    [31] Y. Zhang, H. M. Zhang, X. B. Zhu and Y. M. Liang. A Low-Cost PTFE-Reinforced Integral Multilayered Self-Humidifying Membrane for PEM Fuel Cells. Electrochemical and Solid-State Letters, 2006(9): A332-A335.
    [32] D. M. Xing, B. L. Yi, Y. Z. Fu, F. Q. Liu, H. M. Zhang. Pt-C/SPEEK/PTFE Self-Humidifying Composite Membrane for Fuel Cells. Electrochem. Solid-State Lett. 2004(7): A315-A318.
    [33] D. M. Xing, B. L. Yi, F. Q. Liu, H. M. Zhang. Characterization of Sulfonated Poly(ether ether ketone)/ploytetrafloroethylene For Fuel Cell Applications. Fuel Cells, 2005(5): 406-411.
    [34] M. Nakao and M. Yoshitake, Handbook of Fuel Cells- Fundamentals, Technology and Applications, Edited by Vielstich, W.; Gasteiger, H. A.; Lamm. A. Volume 3: Fuel Cell Technology and Applications. p, 412-419. 2003 JohnWiley & Sons, Ltd.
    [35] M. Mathias, J. Roth, J. Fleming and W. Lehnert, Handbook of Fuel Cells: Fundamentals, Technology and Applications, 6th ed., vol. 3, Wiley, England, 2003 [Chapter 46].
    [36] M. Schulze, M. V. Brake, R. Reissner, M. Lorenz and E. Gülzow. Characterization of polymers in PEFC-electrodes with EDX and XPS. Fresenius J. Anal. Chem., 1999(365): 123-132.
    [37] S. Kaliaguine, S. D. Mikhailenko, K. P. Wang, P. Xing, G. Robertson, M. Guiver. Properties of SPEEK Based PEMs for Fuel Cell Application. Catalysis Today 2003(82): 213-222.
    [38] Y. S. Kim, M. A. Hickner, L. Dong, B. S. Pivovar and J. E. McGrath. Sulfonated Poly(arylene ether. sulfone) Copolymer Proton Exchange Membranes: Composition and Morphology Effects on the Methanol Permeability. Journal of Membrane Science, 2004(243): 317-326.
    [39] T. A. Jr. Zawodzinski, M. Neeman, L. O. Sillerud, S. Gottesfeld. Determination of Water Diffusion Coefficients in Perfluorosulfonate Ionomeric membranes. J. Phys. Chem. 1991(95): 6040-6044.
    [40] D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman and M. E. Tisack. Advanced. materials for improved PEMFC performance and life. J. Power Sources, 2004(131): 41-48.
    [41] M. A. Hickner, Ph.D. Thesis, Virginia Polytechnic Institute and State University, USA, 2003.
    [42] N. Chakrabarti and J. Jacobus. The Chemical Reduction of Poly(tetrafluoroethylene). Macromolecules, 1988(21): 3011-3014.
    [43] M. A. Mohammed and V. Rossbach. Surface activation of polytetrafluoroethylene by bonding of polymeric silicic acid. Journal of Applied Polymer Science, 1993(50): 929-939.
    [44] S. Shimada, A. Suzuki, M. Sakaguchi and Y. Hori. Molecular motion of chain end peroxy radicals of polyethylene molecules tethered on a fresh surface ofpoly (tetrafluoroethylene). Macromolecules, 1996(29): 973-977.
    [45] T. A. Jr. Zawodzinski, C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. Springer, S. Gottesfeld. Water Uptake by and Transport Through Nafion 117 Membranes. J. Electrochem. Soc. 1993(140): 1041-1047.
    [46] M. A. Hickner and B. S. Pivovar. The Chemical and Structural Nature of Proton. Exchange Membrane Fuel Cell Properties. Fuel Cells, 2005(5): 213-229.
    [47] T. E. Springer, T. A. Zawodzinski, S. Gottesfeld. Polymer electrolyte fuel cells model. J. Electrochem. Soc. 1991(138): 2334-2342.
    [1] T. A. Jr. Zawodzinski, T. E. Springer, F. Uribe, S. Gottesfeld. Characterization of polymer electrolytes for fuel cell applications. Solid State Ionics 1993(60): 199-211.
    [2] R. S. Yeo. Ion clustering and proton transport in Nafion membranes and its applications as solid polymer. electrolyte. J. Electrochem. Soc. 1983(130): 533-538.
    [3] R. Hill, M. W. Verbrugge. Ion and solvent transport in ion-exchange membranes. J. Electrochem. Soc. 1990(137): 886-899.
    [4] D. M. Bernardi. Water-Balance Calculations for Solid Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 1990(137): 3344-3350.
    [5] M. Cappadonia, J. W. Erning, S. M. Saberi Niaki, U. Stimming. Conduction of Nafion 117. membranes as a function of temperature and water content. Solid State Ionics. 1995(77): 65-69.
    [6] T. A. Jr. Zawodzinski, C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. Springer, S. Gottesfeld. Water Uptake by and Transport Through Nafion 117 Membranes. J. Electrochem. Soc. 1993(140): 1041-1047.
    [7] T. F. Fuller, J. Newman. Experimental Determination of the Transport Number of Water in Nafion 117 Membrane. J. Electrochem. Soc. 1992(139): 1332-1337.
    [8] T. D. Gierke, G.E. Munn, and F.C. Wilson. The morphology in Nafion perfluorinated membrane products as determined by Wide- and Small-angle x-ray studies. Journal of Polymer Science Edition, 1981(19): 1687-1704.
    [9] W.Y. Hsu and T. D. Gierke. Ion Transport and Clustering in Nafion? Perfluorinated. Membranes. Journal of Membrane Science, 1983(13): 307-326.
    [10] J. O. M., Bockris, A. K. Reddy (1998). Modern Electrochemistry. New York, Plenum Press.
    [11] M. Eikerling, A. A. Kornyshev, U. Stimming. Electrophysical Properties of Polymer Electrolyte Membranes: A Random Network Model. J. Phys. Chem. B 1997, 101, 10807-10820.
    [12] Komoroski, R A and Mauritz, K A. A sodium-23 nuclear magnetic resonance study of ionic mobility and contact ion pairing in a perfluorosulfonate ionomer. J. Am. Chem. Soc. 1978(100): 7487.
    [13] Lee P C and Meisel D. Luminescence quenching in the cluster network of perfluorosulfonate membrane. J. Am. Chem. Soc. 1980(102): 5477.
    [14] T. A. Zawodzinski, J. Davey, J. Valerio, S. Gottesfeld, The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes. Electrochimica Acta, 1995(40): 297.
    [15] K. D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, Journal of Membrane Sciences, 2001(185): 29.
    [16] 衣宝廉. 燃料电池-原理·技术·应用. 北京: 化学工业出版社,2003.
    [17] W. Y. Hsu, T. D. Gierke. Elastic theory for ionic clustering in perfluorinatedionomers. Macromolecules, 1982(15): 101-105.
    [18] M. Fujimura, T. Hashimoto, H. Kawai. Small-Angle X-ray Scattering Study of Perfluorinated Ionomer Membranes, 1. Origin of Two Scattering Maxima. Macromolecules, 1981(14): 1309-1315.
    [19] M. Fujimura, T. Hashimoto, H. Kawai. Small-angle X-ray study of. perfluorinated ionomer membranes. Part 2. Models for ionic scattering. Maximum. Macromolecules, 1982(15): 136-144.
    [20] W. Y. Hsu, J. R. Barkley, P. Meakin. Ion percolation and insulator-to conductor transition in nafion perfluorosulfonic acid. Macromolecules, 1980(13): 198-200.
    [21] A. Eisenberg. Clustering of Ions in Organic Polymers - A Theoretical Approach. Macromolecules, 1970(3): 147-154.
    [22] A. Eisenberg, B. Hird, R. B. Moore. A new multiple cluster model for the morphology of random ionomers. Macromolecules, 1990(23): 4098-4107.
    [23] V. K. Datye, P. L. Taylor, A. J. Hopfinger. Simple Model for Clustering and Ionic Transport in Ionomer Membranes. Macromolecules, 1984(17): 1704-1708.
    [24] M. Eikerling, A. A. Kornyshev. Proton transfer in a single pore of a polymer electrolyte membrane. Journal of Electroanalytical Chemistry, 2001(502): 1-14.
    [25] M. Eikerling, A. A. Kornyshev, A. M. Kuznesov, J. Ulstrup, S. Walbran. Mechanisms of proton conductance in polymer electrolyte membranes. J. Phys. Chem. B., 2001(105): 3646-3662.
    [26] E. Spohr, P. Commer, A. A. Kornyshev. Enhancing proton mobility in polymer electrolyte membranes: Lessons from molecular dynamics simulations. J. Phys. Chem. B., 2002, 106, 10560-10569.
    [27] A. A. Kornyshev, A. M. Kuznetsov, E. Spohr, J. Ulstrup. Kinetics of proton transport in water. J. Phys. Chem. B., 2003(107): 3351-3366.
    [28] A. S. Ioselevich, A. A. Kornyshev, J. H. Steinke. Fine morphology of proton-conducting ionomers. J. Phys. Chem. B., 2004(108): 11953-11963.
    [29] S. J. Paddison, R. Paul. The Nature of Proton Transport in Fully Hydrated Nafion?. Phys. Chem. Chem. Phys., 2002(4): 1158-1163.
    [30] P. Choi, N. H. Jalani, R. Datta. Thermodynamics and Proton Transport in Nafion? II. Proton diffusion Mechanisms and Conductivity. Journal of The Elecrochemical Society, 2005(152): E123-E130.
    [31] Z. Porat, J. R. Fryer, M. Huxham. I. Rubinstein. Electron-microscopy. investigation of the microstructure of Nafion films. J. Phys. Chem., 1995(99): 4667-4671.
    [32] D. L. Handlin, W. J. MacKnight, E. L. Thoms. A Critical Evaluation of Electron Microscopy. of Ionomers. Macromolecules, 1981(14): 795-801.
    [33] R. S. Mclean, M. Doyle, B. B. Sauer. High-resolution imaging of ionic domains and crystal. morphology in ionomers using AFM techniques. Macromolecules 2000(33): 6541-6550.
    [34] R. M. Penner and C. R. Martin. Ion-transporting composite membranes I. Nafion-impregnated Gore-Tex. J. Electrochem. Soc., 1985(132): 514-515.
    [35] C. Liu and C. R. Martin. Ion-transporting composite membranes Ⅱ.Ion transport mechanism in Nafion-impregnated Gore-Tex membranes. J. Electrochem. Soc., 1990(137): 510-515.
    [36] C. Liu and C. R. Martin. Ion-transporting composite membranes. III. Selectivity and rate of ion transport in Nafion-impregnated. Gore-Tex membranes prepared by a high temperature. solution-casting method. J. Electrochem. Soc., 1990(137): 3114-3120.
    [37] X. B. Zhu, H. M. Zhang, Y. M. Liang, Chemical structure and transport in fuel cell proton exchange membranes, Newsletter of DICP (Chinese), 2006(7): 11-14.
    [38] Z. Cai, C. Liu, C. R. Martin. Measuring Conductivities of Highly Conductive Membranes. J. Electrochem. Soc., 1989(136): 3356-3361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700