化学信息学新算法及在化学、生物与食品科学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着信息科学、计算机科学与互联网的高速发展,一种新的交叉学科-化学信息学(Chemoinformatics)也迅速成长起来了。化学信息学是一门利用信息学的方法来解决化学的问题,同时得到有关化学本质规律的的学科。化学信息学的研究范围十分广泛,内容丰富,例如化学试验设计与优化、定量校正理论、分析信号处理、化学模式识别、模型与参数估计、人工智能等。化学信息学产生于科学家们对化学知识规律的不断需要的过程中。
     化合物结构与性质/活性定量关系(quantitative structure-property /activityrelationship,QSPR/QSAR)是化学信息学研究中的一个重要应用分支。该方法是指将化合物的结构参数同其生物活性数据以一定的数学模型相联系起来的定量关系。QSPR/QSAR的研究最初应用于生物领域是为了适应合理设计生物活性分子的需要而发展起来的。由于计算机技术的发展和应用,QSPR/QSAR的研究提高到了一个新的水平,且日趋成熟,其应用范围也迅速扩大,研究涉及生物,化学,药物科学,以及食品科学等诸多学科。人们期望用一个成功的数学模型,能从分子水平上理解其微观结构同其宏观性质/活性之间的关系,根据已有的知识,探求化合物性质/活性与结构的相互作用规律,从而推论呈现化合物某些性质的影响因素,然后为设计,筛选或预测具有人们期望性质的化合物提供信息。
     化学信息学的发展为化学各分支学科的发展提供了多种解决问题的新思路,新方法。本学位论文主要对化学信息学研究中的一些新算法进行了探讨,并把这些新算法成功应用于QSAR/QSPR研究领域中。该论文共包括五章节内容,每一个章节的具体内容如下所示:
     第一章:简述了化学信息学的基本概念和研究现状,以及多种化学信息学算法,也详细讲述了化学信息学研究的分支之一——QSAR,包括QSAR演变历史,基本原理以及实现的步骤等等。
     第二章:主要讨论了Quantitative structure-retention relationship (QSRR)方法在多肽色谱保留行为预测的应用研究。具体内容如下:(1)基于线性和非线性建模方法对反相液相色谱(RPLC)的101种多肽保留时间进行了定量结构保留关系建模研究。最佳多元线性回归(BMLR)方法用来选择与保留行为最为密切的分子描述符,并建立线性模型。另外两种非线性回归方法(径向基函数神经网络(RBFNN)和投影寻踪回归(PPR))用来构建非线性模型。RBFNN和PPR模型的训练集的相关系数(R~2)分别为0.9787和0.9881;均方根误差(RMSE)为0.5666和0.4207。结果表明,RBF神经网络和投影寻踪回归将是蛋白质组研究中一种简单且有效的工具,并有望应用于其他类似的研究领域。(2)新颖的化学信息学方法—局部懒惰回归(LLR)首次应用于预测278个多肽在固定金属亲和色谱(镍柱)的保留行为研究。该工作分别用BMLR,PPR和LLR三种方法建立线性和非线性QSRR模型。最佳的LLR模型的训练集和测试集的R~2分别为0.9446和0.9252。该工作证明新颖机器学习算法LLR是一个非常有前途的研究工具,它可用于色谱保留行为研究领域,为协助设计和分离纯化蛋白质和多肽发挥一定的作用。
     第三章主要描述了QSAR方法在农业和食品科学领域的应用研究,具体内容如下:(1)三种机器学习方法:遗传算法-多元线性回归(GA-MLR),最小二乘支持向量机(LS- SVM),PPR用于100个稻瘟病抑制剂噻唑啉衍生物的杀菌活性研究。线性模型GA-MLR和非线性模型LS-SVM和PPR都得到了良好的预测结果,但非线性模型提供了更加精确的预测能力。结果表明,非线性LS-SVM和PPR方法可以更加准确地模拟噻唑啉分子结构与杀菌活性之间的关系,能够成为研究稻瘟病抑制剂良好的建模工具。此外,这项研究为稻瘟病抑制剂的设计和开发提供了一种新的,简单而且有效的办法,同时得到的与其密切相关的分子结构信息。(2)运用定量结构保留关系方法对藏红花内43种芳香组分的SPME-GC-MS保留时间进行了预测。应用最佳多元线性回归(BMLR)和投影寻踪回归(PPR)方法分别建立了线性和非线性模型,两种方法均得到了较好的结果:线性模型的训练集和测试集的相关系数(R~2)分别为0.9434和0.8725,非线性模型则给出了较好的预测结果分别为0.9806和0.9456。通过对模型的稳定性和预测能力的比较,可以看出非线性PPR方法可以较好的应用到SPME-GC-MS保留行为研究领域内,同时该工作又可以为其他植物和中草药的分离研究提供一种简便有效的方法。
     第四章主要讨论了定量构效关系在生命科学和医药研究领域内的应用,主要有以下几部分组成:(1)利用QSRR方法对55种药物在固相人工膜色谱内的保留指数进行了线性和非线性建模研究。在该工作中,线性BMLR方法被用来选取与保留指数最为相关的参数,同时建立线性回归模型;利用选取的描述符,应用PPR和LLR方法来建立更加准确的预测模型。通过模型对比,我们发现LLR作为一种新的建模方法,体现出较完美的预测能力,其训练集和测试集的预测结果为:复相关系数(R~2),0.9540,0.9305;均方根误差(RMSE),0.2418,0.3949。结果显示,新型LLR建模方法在QSRR方法研究中表现出了较好的预测能力,同时该方法定会成功的应用于其它类似的色谱研究领域内。(2)利用线性和非线性建模方法研究了80个N-羟基-a-苯磺酰乙酰胺(N-hydroxy-aphenylsulfonylacetamidederivatives,HPSAs)衍生物对三种类型的基质金属蛋白酶的抑制活性。其中线性BMLR方法用来选取关键的结构参数,同时建立线性模型对所选化合物的抑制活性进行了预测;然后以全局格式搜索PPR方法利用选取的参数建立非线性回归模型。最终,线性和非线性模型均能提供较为满意的预测结果。在该工作中,非线性PPR方法首次与格式搜索(GS)方法相结合并成功应用于对HPSAs的抑制活性的建模研究,得到了令人满意的预测结果。该方法的成功为其他模型参数的优化与选取提供了一种捷径。(3)利用线性回归方法和非线性回归方法-格式搜索支持向量机(GS-SVM)和PPR方法对MT3褪黑激素结合位点的亲和性进行了研究。在该工作中,遗传算法被用来选取与研究对象最为相关的结构参数,并建立线性回归模型对MT3褪黑激素结合位点的亲和性进行预测;利用选取的五个结构变量,采用非线性回归方法GS-SVM和PPR方法建立更加准确的模型。通过模型对比,我们发现非线性PPR方法能够对MT3褪黑激素结合位点的亲和性具有比较准确的预测能力。该方法的建立,为设计和开发新型MT3褪黑激素的新型配体提供了一种新型的研究方法。
     第五章:QSAR方法在化学感应系统相对灵敏度的预测研究。在本章中,BMLR,SVM和LLR三种方法用来完成64种VOCs的气味检测阀值(ODTs)和鼻腔辛辣味阀值(NPTs)相对敏感性的QSAR建模研究,所得的预测结果和相应的实验数据基本吻合。相比之下,LLR方法能够获得更好的预测能力,因此,它在QSAR研究中是一种有效的机器学习算法。此外,本研究还确定了一些重要的分子结构信息,它们与VOC的相对敏感性密切相关。这些信息可以用来选择或制造一些新型的化学传感器,同时也说明LLR方法是一种很有前途的QSAR建模方法,可用于其他类似的化学传感器建模预测研究。
In recent years,with the development of information science, computerscience and convenient internet, a new interdisciplinary subject—Chemoinformaticsalso developed rapidly. Chemoinformatics is a knowledge utilizing variousinformatics methods to solve the chemical problems, find the essence of chemicalphenomena, and explain the discipline which was hidden in a large-scale data set。Theresearch area of chemoinformatics is very wide and the investigated contents areabundant, such as chemical experiment design and optimization, analytical signaltreatment, chemical pattern recognition, model and parameter estimate, artificialintelligence, etc. Chemoinformatics produced in the continuous process of thechemical knowledge of the necessary laws satisfying the scientists' needs.
     Quantitative structure-property/activity relationship (QSPR/QSAR) study is animportant applied branch of chemoinformatics algorithms. It refers to that there existsa quantitative relationship between the structural parameters of compounds and theirbiological activity。The QSPR/QSAR study was first applied in the biological fieldand developed in response to the rational design of bioactivity molecules. Due to therapid development and the extensive application of computer science, the studies ofQSPR/QSAR come into a new era and they have been widely used in several fieldsincluding biology, medicinal science, chemical and food science, etc. Using differentstatistical methods, we expect to develop a successful theoretical model which can notonly develop a method for the prediction of the property of compounds that have notbeen synthesized but also can identify and describe features of molecules that arerelevant to variations in molecular important properties, gain some insight intostructural factors affecting molecular properties and correspondingly provideinformation for the functional design of the molecules.
     The development of chemoinformatics provides a novel, practical andconstructive approach for the chemical branches' progress. In this dissertation, we mainly discussed some novel machine learning algorithms in chemoinformatics, andalso applied these methods to QSAR/QSPR research fields. It consists of five chapters;the detailed description of the chapters was shown in the following:
     In chapter 1, I described the principle of chemoinformatics and the current researchstatus, at the same time, some novel algorithms were also introduced in this chapter.Furthermore, a brief description of one important applied branch of chemoinformatics-QSAR was provided, including its evolution history, basic theory, and implementsteps.
     Chapter 2 mainly discusses the application of Quantitative structure-retentionrelationship(QSRR)method in the prediction of chromatography retention behaviorsof peptides. A brief description was given in the following: (1) QSRR modelscorrelating the retention times of peptides in reversed-phase liquid chromatography(RPLC) and their structures were developed based on linear and nonlinear modelingmethods. The Best multi-linear regression (BMLR) method was used to select themost appropriate molecular descriptors and develop a linear QSRR model. Anothertwo nonlinear regression methods (Radial basis function neural networks (RBFNN)and Projection pursuit regression (PPR)) were used in the nonlinear QSRR modelsdevelopment. The coefficients of determination (R~2) for the training set of these twomethods (RBFNN and PPR) were 0.9787 and 0.9881; the root mean square of errors(RMSE) of these two methods were 0.5666 and 0.4207, respectively. The proposedmethods RBFNN and PPR will be of importance in the proteomic research, and couldbe expected to apply to other similar research fields. (2) Novel method Local lazyregression (LLR) was first used to predict the retention behaviors of peptides in theNickel column in immobilized metal-affinity chromatography (IMAC). The BMLR,PPR and LLR approaches were used to build linear and non-linear QSRR models. TheR~2 of the best model LLR model were 0.9446 and 0.9252 for the training and test sets,respectively. By comparison, it was proved that the novel local learning method LLRwas a very promising tool for QSRR study. It could be applied to other chromatography research fields and that should facilitate the design and purificationof peptides and proteins.
     Chapter 3 described the application of QSAR method in agriculture and food sciencescopes. A brief description was given as below: (1) Three machine learning methodsGenetic algorithm-Multi-linear regression (GA-MLR), Least-squares support vectormachine (LS-SVM) and PPR were used to investigate the relationship betweenthiazoline derivatives and their fungicidal activities against the rice blast disease. Boththe linear and nonlinear modes gave good prediction results, but the non-linear modelsafforded better prediction ability, which meant the LS-SVM and PPR methods couldsimulate the relationship between the structural descriptors and fungicidal activitiesmore accurately. The results show that the non-linear methods (LS-SVM and PPR)could be used as good modeling tools for the study of rice blast. Moreover, this studyprovides a new and simple but efficient approach, which should facilitate the designand development of new compounds to resist rice blast disease. (2) QSRR studieswere performed for predicting the retention times of 43 constituents of saffron aroma,which were analyzed by solid-phase micro-extraction gas chromatography massspectrometry (SPME-GC-MS). The linear and non-linear QSRR models wereconstructed using BMLR and PPR methods. The predicted results of these twoapproaches were both in agreement with the experimental data. The R~2 of the bestmodel (PPR) were 0.9806 (training set) and 0.9456 (test set) respectively. This studyalso affords a simple but efficient approach for studying the retention behaviors ofother similar plants and herbs.
     Chapter 4 described the application of QSAR method in life science and medicineresearch. It contains the following parts: (1) The relationship between the logarithm ofretention indices (log k_(IAM)) of 55 diverse drugs in immobilized artificial membrane(IAM) chromatography and molecular structural descriptors was established by linearand non-linear modeling methods-PPR and LLR. In this study, the BMLR methodwas used to select the most important molecular descriptors and develop a linearQSRR model. Using the selected descriptors, the other two non-linear regression methods, PPR and LLR were also utilized to build more accurate models. Bycomparing these different methods, the LLR model gave the best predictive resultswith R~2 of 0.9540, 0.9305; RMSE of 0.2418, 0.3949; for the training and test sets,respectively. The results were also shown that the LLR method was a promisingmethod for QSRR modeling, and could be used in other similar chromatographyresearch fields. (2) QSAR models of three matrix metalloproteinases (MMP-1,MMP-9, MMP-13) inhibition were developed based on linear and non-linearmodeling approaches by a series of N-hydroxy-a-phenylsulfonylacetamide derivatives(HPSAs). The BMLR method was used to develop the linear QSAR model. Globalgrid search PPR method was firstly used in generating the non-linear QSAR model ofMMP inhibitory phenomena. Both the linear and non-linear models could povidepromising prediction results. Six models were built according to different MMPs anddifferent MMPs inhibitory activities (log (106/IC50)). It was proved that thecombination of PPR and Global Grid Search method was a very useful modelingapproach for the prediction of MMP inhibitory activities, and the global grid searchmethod can also be used in other parameter optimization work. (3) The linearregression and non-linear regression methods-Grid search-support vector machine(GS-SVM) and PPR were used to develop QSAR models for a series of derivatives ofnaphthalene, benzofurane and indole with respect their affinities to MT3/QuinoneReductase 2 (QR2) melatonin binding site. Five molecular descriptors selected bygenetic algorithm (GA) were used as the input variables for the linear regressionmodel and two non-linear regression approaches. By comparing the results of thethree methods, it indicated that the PPR method was the most accurate approach inpredicting the affinities of the MT3/QR2 melatonin binding site. Moreover it shouldfacilitate the design and development of new selective MT3/QR2 ligands.
     Chapter 5 described the application of QSAR method in chemosensory systemsresearch. In this chapter, QSAR models were successfully developed for predictingthe relative sensitivities-odor detection thresholds (ODTs) and nasal pungencythresholds (NPTs) for the olfaction and nasal trigeminal chemosensory systems of a set of volatile organic compounds (VOCs). The BMLR, SVM and LLR were used tobuild regression models. By comparing the results of these three methods, the LLRmodel gave better results. Furthermore, this investigation also identified someimportant structural information which was strongly correlated the relativesensitivities of these VOCs. Such information can be used to select and manufacturechemical sensors in the future. The LLR method is a promising approach for QSARmodeling, and it also could be used to model the other similar chemical sensors.
引文
[1]Leach,A.R.,Gillet,V.J.,An introduction to chemoinformatics,Book An introduction to chemoinformatics,2007.
    [2]Gasteiger,J.,Engel,T.,Chemoinformatics,Wiley-VCH Verlag GmbH & Co.KGaA,2004.
    [3]Gasteiger,J.,Funatsu,K.,Chemoinformatics-an important scientific discipline,The Journal of Computer Chemistry,Japan,2006,5 (2):53-58.
    [4]徐筱杰,化学信息学的涵义及教育,大学化学,2002,17 (1):38-41.
    [5]http//:www.warr.com/warrzone.htm
    [6]Gasteiger编,梁逸曾,徐峻,姚建华等译,J.,化学信息学教程[M],化学工业出版社,北京,2005.
    [7]宋心琦,21世纪理论化学的重要课题之我见,大学化学,1999,14 (1):15-19.
    [8]李梦龙,刘志刚,刘冀昆,信息化学研究进展,化学研究与应用,2002,4 (1):90-95.
    [9]Brown,F.K.,Chapter 35.Chemoinformatics:What is it and how does it impact drug discovery,Annual Reports in Medicinal Chemistry,1998,33:375-384.
    [10]Paris,G.,Meeting of the American Chemical Society,(quoted by W.Warr at http://www.warr.com/warrzone.html),August 1999.
    [11]邵学广,蔡文生,化学信息学及其课程建设,大学化学,2002,17 (3):12-15.
    [12]Gasteiger,J.,Chemoinformatics:a new field with a long tradition,Analytical and Bioanalytical Chemistry,2006,384 (1):57-64.
    [13]刘冀昆,李梦龙,信息化学理论与研究方法,广西化工,2000,S l:20-22.
    [14]Agrafiotis,D.K.,Bandyopadhyay,D.,Wegner,J.K.,van Vlijmen,H.,Recent advances in chemoinformatics,Journal of Chemical Information and Modeling,2007,47 (4):1279-1293.
    [15]Engel,T.,Basic Overview of chemoinformatics,Journal of Chemical Information and Modeling,2006,46 (6):2267-2277.
    [16]Gasteiger,J.,Handbook of chemoinformatics,WILEY VCH Verlag GmbH & Co.KgaA,2003.
    [17]彭彤,漫谈化学信息学的产生与发展,山东化工,2002,31 (6):48-49.
    [18]李梦龙,Internet与信息化学导论,北京:化学工业出版社,2001.
    [19]解征,化学信息学的研究进展,安徽化工,2008,34 (1):21-23.
    [20]徐光宪,关于化学信息学的探索与思考,中国科学 B 辑 ,2007,37 (1):6-11.
    [21]Foucart,T.,Multiple linear regression on canonical correlation variables,Biometrical Journal,1999,41 (5):559-572.
    [22]Topliss,J.G,Costello,R.J.,Chance correlations in structure-activity studies using multiple regression analysis,Journal of Medicinal Chemistry,1972,15 (10):1066-1068.
    [23]Ogilvie,J.F.,Abu-Elgheit,M.A.,Statistical correlation of molecular structure with boiling points of N-heterocyclic compounds:Multiple linear regression analysis,Computers & Chemistry,1981,5 (1):33-39.
    [24] Harrell Jr, F. E., Lee, K. L., Mark, D. B., Multivariable prognostic models: Issues in developing models, evaluating assumptions and reducing errors, Statistics in Medicine, 1996,15 (4): 361-387.
    [25] Hartnett, M. K., Lightbody, G., Irwin, G. W., Dynamic inferential estimation using principal components regression (PCR), Chemometrics and Intelligent Laboratory Systems, 1998, 40 (2): 215-224.
    [26] Xie, Y. L., Kalivas, J. H., Local prediction models by principal component regression, Analytica ChimicaActa, 1997, 348 (1-3): 29-38.
    [27] Pires, J. C. M., Martins, F. G., Sousa, S. I. V., Alvim-Ferraz, M. C. M., Pereira, M. C., Selection and validation of parameters in multiple linear and principal component regressions, Environmental Modelling & Software, 2008, 23 (1):50-55.
    [28] Pietrogrande, M. C., Dondi, F., Borea, P. A., Bighi, C., Principal component analysis in structure-retention and retention-activity studies of benzodiazepines,Chemometrics and Intelligent Laboratory Systems, 1989, 5 (3): 257-262.
    [29] Dou, Y., Mi, H., Zhao, L. Z., Ren, Y. Q., Ren, Y. L., Determination of compound aminopyrine phenacetin tablets by using artificial neural networks combined with principal components analysis, Analytical Biochemistry, 2006, 351 (2): 174-180.
    [30] Barratt, M. D., Quantitative structure-activity relationships (QSARs) for skin corrosivity of organic acids, bases and phenols: Principal components and neural network analysis of extended datasets, Toxicology in Vitro, 1996,10 (1): 85-94.
    [31] Vendrame, R., Takahata, Y, Structure-activity relationship (SAR) of substituted 17[alpha]-acetoxyprogesterones studied with principal component analysis and neural networks using calculated physicochemical parameters, Journal of Molecular Structure: THEOCHEM, 1999, 489 (1): 55-66.
    [32] Geladi, P., Notes on the history and nature of partial least squares (PLS) modelling, Journal of Chemometrics, 1988, 2 (4): 231-246.
    [33] Wold, S., Personal memories of the early PLS development, Chemometrics and Intelligent Laboratory Systems, 2001, 58 (2): 83-84.
    [34]吴晓华,陈德钊,化学计量学非线性偏最小二乘算法进展评述,分析化学,2004,32 (4):534-540.
    [35]Leifeld,J.,Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter,European Journal of Soil Science,2006,57 (6):846-857.
    [36]Chu,P.S.,He,Y.X.,Long-range prediction of hawaiian winter rainfall using canonical correlation analysis,International Journal of Climatology,1994,14 (6):659-669.
    [37]Alves,M.R.,Oliveira,M.B.,Interpolative biplots applied to principal component analysis and canonical correlation analysis,Journal of Chemometrics,2003,17 (11):594-602.
    [38]Noble,R.,Smith,E.P.,Ye,K.-Y,Model selection in canonical correlation analysis (CCA)using Bayesian model averaging,Environmetrics,2004,15 (4):291-311.
    [39]Minsky,M.,Papert,S.,An introducton to computational geometry,MIT Press,Cambridge,USA,1969.
    [40]Hopfield,J.J.,Neural networks and physical systems with emergent collective computational abilities,Proceedings of the National Academy of Sciences of the United States of America,1982,79 (8):2554-2558.
    [41]Sumpter,B.G.,Getino,C.,Noid,D.W,Theory and applications of neural computing in chemical science,Annual Review of Physical Chemistry,1994,45(1):439-481.
    [42]Zhou,Y.P.,Jiang,J.H.,Lin,W.Q.,Xu,L.,Wu,H.L.,Shen,G.L.,Yu,R.Q.,Artificial neural network-based transformation for nonlinear partial least-square regression with application to QSAR studies,Talanta,2007,71 (2):848-853.
    [43](?)krbic,B.,Onjia,A.,Prediction of the Lee retention indices of polycyclic aromatic hydrocarbons by artificial neural network,Journal of Chromatography A,2006,1108 (2):279-284.
    [44]Du,H.Y,Wang,J.,Zhang,X.Y.,Yao,X.J.,Hu,Z.D.,Prediction of retention times of peptides in RPLC by using radial basis function neural networks and projection pursuit regression, Chemometrics and Intelligent Laboratory Systems,2008, 92 (1): 92-99.
    [45] Friedman, J. H., Stuetzle, W., Projection pursuit regression, Journal of the American Statistical Association, 1981, 76: 817-823.
    [46] Du, H. Y., Wang, J., Watzl, J., Zhang, X. Y., Hu, Z. D., Prediction of inhibition of matrix metalloproteinase inhibitors based on the combination of Projection Pursuit Regression and Grid Search method, Chemometrics and Intelligent Laboratory Systems, 2008, 93 (2): 160-166.
    [47] Aldrin, M., Moderate projection pursuit regression for multivariate response data, Computational Statistics & Data Analysis, 1996, 21 (5): 501-531.
    [48] Beebe, K. R., Kowalski, B. R., Nonlinear calibration using projection pursuit regression: application to an array of ion-selective electrodes, Analytical Chemistry, 1988, 60 (20): 2273-2278.
    [49] Hu, Q. N., Liang, Y. Z., Yin, H., Peng, X. L., Fang, K. T., Structural interpretation of the topological index. 2. The molecular connectivity index, the Kappa index,and the atom-type E-State index, Journal of Chemical Information and Computer Sciences, 2004, 44 (4): 1193-1201.
    [50] Ren, S. J., Kim, H., Comparative assessment of multiresponse regression methods for predicting the mechanisms of toxic action of phenols, Journal of Chemical Information and Computer Sciences, 2003, 43 (6): 2106-2110.
    [51] Du, H. Y., Wang, J., Hu, Z. D., Yao, X. J., Zhang, X. Y., Prediction of fungicidal activities of rice blast disease based on least-squares support vector machines and projection pursuit regression, Journal of Agricultural and Food Chemistry, 2008,56 (22): 10785-10792.
    [52] Du, H. Y., Wang, J., Zhang, X. Y., Hu, Z. D., A novel quantitative structure-activity relationship method to predict the affinities of MT3 melatonin binding site, European Journal of Medicinal Chemistry, 2008, 43 (12):2861-2869.
    [53] Du, H. Y., Wang, J., Hu, Z. D., Yao, X. J., Quantitative structure-retention relationship study of the constituents of saffron aroma in SPME-GC-MS based on the projection pursuit regression method, Talanta, 2008, 77 (1): 360-365.
    [54] Hoerl, A. E., Kennard, R. W., Ridge regression: applications to nonorthogonal problems, Technometrics, 1970,12 (1): 69-82.
    [55] Newell, G. J., Lee, B., Ridge regression: An alternative to multiple linear regression for highly correlated Data, Journal of Food Science, 1981, 46 (3):968-969.
    [56] Kelly, D. P., Spillane, W. J., Newell, J., Development of structure - taste relationships for monosubstituted phenylsulfamate sweeteners using classification and regression tree (CART) analysis, Journal of Agricultural and Food Chemistry, 2005, 53 (17): 6750-6758.
    [57] Deconinck, E., Hancock, T., Coomans, D., Massart, D. L., Heyden, Y. V.,Classification of drugs in absorption classes using the classification and regression trees (CART) methodology, Journal of Pharmaceutical and Biomedical Analysis, 2005, 39 (1-2): 91-103.
    [58] Sutton, C. D., Classification and regression trees, bagging, and boosting,Handbook of Statistics, 2005, 24: 303-329.
    [59] Yeh, C. H., Spiegelman, C. H., Partial least squares and classification and regression trees, Chemometrics and Intelligent Laboratory Systems, 1994, 22 (1):17-23.
    [60] Stahl, M, Mauser, H., Tsui, M., Taylor, N. R., A robust clustering method for chemical structures, Journal of Medicinal Chemistry, 2005, 48 (13): 4358-4366.
    [61] Zupan, J., Massart, D. L., Application of the three-distance clustering method in analytical chemistry,Analytical Chemistry, 1989, 61 (18): 2098-2102.
    [62] Jurs, P. C., Lawson, R. G., Analysis of chemical structure-biological activity relationships using clustering methods, Chemometrics and Intelligent Laboratory Systems, 1991, 10 (1-2): 81-83.
    [63] Huang, L., Pickle, L. W., Das, B., Evaluating spatial methods for investigating global clustering and cluster detection of cancer cases, Statistics in Medicine, 2008, 27 (25): 5111-5142.
    [64] Wang, J., Du, H. Y., Liu, H. X., Yao, X. J., Hu, Z. D., Fan, B. T., Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine, Talanta, 2007, 73 (1): 147-156.
    [65] Burges, C. J. C., A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 1998, 2 (2): 121-167.
    [66] Cristianini, N., Shawe-Taylor, J., Introduction to support vector machine and other kernel based learning methods, Cambridge: Cambridge University Press,2000.
    [67] Belousov, A. I., Verzakov, S. A., Frese, J. v., Applicational aspects of support vector machines, Journal of Chemometrics, 2002,16 (8-10): 482-489.
    [68] Xue, Y., Yap, C. W., Sun, L. Z., Cao, Z. W., Wang, J. F., Chen, Y Z., Prediction of p-glycoprotein substrates by a support vector machine approach, Journal of Chemical Information and Computer Sciences, 2004,44 (4): 1497-1505.
    [69] Ma, W. P., Zhang, X. Y., Luan, F., Zhang, H. X., Zhang, R. S., Liu, M. C., Hu, Z. D., Fan, B. T., Support vector machine and the heuristic method to predict the solubility of hydrocarbons in electrolyte, The Journal of Physical Chemistry A, 2005, 109 (15): 3485-3492.
    [70] Hou, T. J., Wang, J. M., Li, Y. Y., ADME evaluation in drug discovery. 8. the prediction of human intestinal absorption by a support vector machine, Journal of Chemical Information and Modeling, 2007,47 (6): 2408-2415.
    [71] Liao, Q., Yao, J. H., Yuan, S. G., SVM approach for predicting LogP, Molecular Diversity, 2006,10 (3): 301-309.
    [72] Cai, Y. D., Liu, X. J., Xu, X. B., Chou, K. C., Support vector machines for predicting HIV protease cleavage sites in protein, Journal of Computational Chemistry, 2002, 23 (2): 267-274.
    [73] Fatemi, M. H., Gharaghani, S., A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine, Bioorganic & Medicinal Chemistry, 2007, 15 (24): 7746-7754.
    [74] Du, H. Y., Wang, J., Watzl, J., Zhang, X. Y., Hu, Z. D., Classification structure-activity relationship (CSAR) studies for prediction of genotoxicity of thiophene derivatives, Toxicology Letters, 2008,177 (1): 10-19.
    [75] Wang, J., Du, H. Y., Yao, X. J., Hu, Z. D., Using classification structure pharmacokinetic relationship (SCPR) method to predict drug bioavailability based on grid-search support vector machine, Analytica Chimica Acta, 2007, 601 (2):156-163.
    [76] Coen, T., Saeys, W., Ramon, H., Baerdemaeker, J. D., Optimizing the tuning parameters of least squares support vector machines regression for NIR spectra, Journal of Chemometrics, 2006, 20 (5): 184-192.
    [77] Thissen, U., Ustun, B., Meissen, W. J., Buydens, L. M. C., Multivariate calibration with least-squares support vector machines, Analytical Chemistry, 2004, 76 (11): 3099-3105.
    [78] Yao, X. J., Liu, H. X., Zhang, R. S., Liu, M. C., Hu, Z. D., Panaye, A., Doucet, J.P., Fan, B. T., QSAR and classification study of 1,4-dihydropyridine calcium channel antagonists based on least squares support vector machines, Molecular Pharmaceutics, 2005, 2 (5): 348-356.
    [79] Lu, C., Van Gestel, T., Suykens, J. A. K., Van Huffel, S., Vergote, I., Timmerman, D., Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines, Artificial Intelligence in Medicine, 2003, 28 (3):281-306.
    [80] Zhang, Q., Aires de Sousa, J., Random forest prediction of mutagenicity from empirical physicochemical descriptors, Journal of Chemical Information and Modeling, 2007, 47 (1): 1-8.
    [81] Li, S. Q., Fedorowicz, A., Singh, H., Soderholm, S. C., Application of the Random Forest Method in Studies of Local Lymph Node Assay Based Skin Sensitization Data, Journal of Chemical Information and Modeling, 2005, 45 (4): 952-964.
    [82] Ehrman, T. M., Barlow, D. J., Hylands, P. J., Virtual screening of Chinese herbs with random forest, Journal of Chemical Information and Modeling, 2007, 47 (2): 264-278.
    [83] Zhang, S., Golbraikh, A., Oloff, S., Kohn, H., Tropsha, A., A novel automated lazy learning qsar (all-qsar) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models,Journal of Chemical Information and Modeling,2006,46 (5):1984-1995.
    [84]Gunturi,S.B.,Archana,K.,Khandelwal,A.,Narayanan,R.,Prediction of hERG potassium channel blockade using kNN-QSAR and local lazy regression methods,QSAR & Combinatorial Science,2008,27 (11-12):1305-1317.
    [85]Yuan,H.,Wang,Y.Y.,Cheng,Y.Y.,Local and global quantitative structure-activity relationship modeling and prediction for the baseline toxicity,Journal of Chemical Information and Modeling,2007,47 (1):159-169.
    [86]Wang,Z.,Isaksson,T.,Kowalski,B.R.,New approach for distance measurement in locally weighted regression,Analytical Chemistry,1994,66 (2):249-260.
    [87]Guha,R.,Dutta,D.,Jurs,P.C.,Chen,T.,Local lazy regression:making use of the neighborhood to improve QSAR predictions,Journal of Chemical Information and Modeling,2006,46 (4):1836-1847.
    [88]Du,H.Y.,Zhang,X.Y.,Wang,J.,Yao,X.J.,Hu,Z.D.,Novel approaches to predict the retention of histidine-containing peptides in immobilized metal-affinity chromatography,PROTEOMICS,2008,8 (11):2185-2195.
    [89]Pan,T.H.,Li,S.Y,Cai,W.J.,Lazy learning-based online identification and adaptive PID control:A case study for CSTR process,Industrial & Engineering Chemistry Research,2007,46 (2):472-480.
    [90]Du,H.Y.,Watzl,J.,Wang,J.,Zhang,X.Y.,Yao,X.J.,Hu,Z.,Prediction of retention indices of drugs based on immobilized artificial membrane chromatography using Projection Pursuit Regression and Local Lazy Regression,Journal of Separation Science,2008,31 (12):2325-2333.
    [91]Du,H.Y.,Wang,J.,Hu,Z.D.,Liu,M.C.,Yao,X.J.,Prediction of relative sensitivity of the olfactory and nasal trigeminal chemosensory systems for a series of the volatile organic compounds based on local lazy regression method,Sensors and Actuators B:Chemical,In Press.
    [92]陈安进,石杰,计算机辅助药物设计中用于建模的计算方法研究进展,中国海洋大学学报,2005,35:407-411.
    [93]Jackson,J.E.,A user's guide to principal components wiley series in probability and mathematical statistics,John Wiley&Sons,New York,London,Sydney,1991.
    [94]Jolliffe,I.T.,Principal component analysis,Springer Series in Statistics,Springer-Verlag,Berlin,1986.
    [95]刘广军,高洪涛,化学计量学中的主成分分析,曲阜师范大学学报,2004,30(3):75279.
    [96]张小确,高枝荣,夏云贵,主成分分析方法及其在各仪器分析中的应用,河北工业科技,2007,24 (6):345-350.
    [97]Borg,I.,Groenen,P.,Modern multidimensional scaling,theory and applications,New York,Springer-Verlag,1997.
    [98]Lee,M.D.,Determining the dimensionality of multidimensional scaling representations for cognitive modeling,Journal of Mathematical Psychology,2001,45 (1):149-166.
    [99]MacKay,D.B.,Probabilistic multidimensional scaling:An anisotropic model for distance judgments,Journal of Mathematical Psychology,1989,33 (2):187-205.
    [100]Shepard,R.N.,Multidimensional scaling,tree-fitting,and clustering,Science,1980,210 (4468):390-398.
    [101]Cox,T.F.,Cox,M.A.A.,Multidimensional scaling,2nd edition,Chapman & Hall /CRC,2001.
    [102]Feher,M.,Schmidt,J.M.,Metric and multidimensional scaling:efficient tools for clustering molecular conformations,Journal of Chemical Information and Computer Sciences,2001,41 (2):346-353.
    [103]张春燕,汤进,赵海峰,罗斌,基于MDS的统计形状聚类,计算机技术与发展,2007,17 (3):58-61.
    [104]李春田,薛付忠,王洁贞,郭亦寿,胡平,人类群体遗传结构的图论多维尺度分析方法,预防医学论坛,2007,13 (1):1-5.
    [105]薛春霞,SVM在QSPR中的应用及基于配体的计算机辅助药物设计,博士毕业论文,2005,兰州大学.
    [106]Orr,M.J.L.,Introduction to radial basis function networks,Center for cognitive science,Edinburgh University,1996.
    [107]Orr,M.J.L.,MATLAB routines for subset selection and ridge regression in linear neural networks,Center for cognitive science,Edinburgh University,1996.
    [108]丁涛,周惠成,基于径向基函数神经网络的预测方法研究,2005,37 (2):272-275.
    [109]王炜,吴耿锋,张博锋,王媛,径向基函数(RBF)神经网络及其应用,地震,2005,25 (2):19-25.
    [110]李祚泳,投影寻踪的理论及应用进展,大自然探索,1998,17 (1):47-50.
    [111]李朝奎,朱庆,赵杰,投影寻踪降维方法及其试验数据分析,中国有色金属学报,2003,13 (3):743-748.
    [112]刘卓,高维数据分析中的降维方法研究(硕士毕业论文),国防科学技术大学,2002.
    [113]杜一平,王文明,张彦芳,用投影寻踪方法建立准确的定量构性关系模型,山东工程学院学报,2002,16 (2):25-27.
    [114]廖海波,基于投影寻踪回归的文本分类研究(硕士学位论文),江西师范大学,2005.
    [115]Friedman,J.H.,Tukey,J.W.,A projection pursuit algorithm for exploratory data analysis,IEEE Transactions on Computers,1974,C-23:881-890.
    [116]赵小勇,投影寻踪模型及其在水土资源中的应用(硕士学位论文),东北农业大学,2006.
    [117]Huber,P.J.,Projection pursuit(with discussion),Annals of Statistics,1985 13(2):435 -525.
    [118]Kruskal,J.B.T.,Toward a practical method which helps uncover the structure of a set of multivariate observation by finding the linear transformation which optimizes a new index of condensation statistical computation,Mition,R.C and Nelder,J.A.Ed.New York:Academic,1969.
    [119]Kruskal,J.B.,Linear transformation of multivariate data to reveal clustering.multidimensional scaling:theory and application in behavioral science,Vol.1.Theory.,New York and London:Seminar Press,1972.
    [120]Switzer,P.,Numerical classification.in geostatistics,New York:Plenum Press,1970.
    [121]Fisherkeller,M.A.;Friedman,J.H.,Tukey,J.W.,PRIM-9:an interactive multidimensional data display and analysis system,Stanford University,1974.
    [122]Hall,P.,On Projection pursuit regression,Annals of Statistics,1989,17 (2):573-588.
    [123]Hall,P.,On polynomial-based projection indices for exploratory projection pursuit,The Annals of Statistics,1989,17:589-605.
    [124]Friedman,J.H.,Projection pursuit density estimation,Journal of the American Statistical Association,1984,79:599-608
    [125]Jones,M.,Sibson,R.,What is projection pursuit?,Journal of the Royal Statistical Society:Series A (Statistics in Society),1987,150:1-18.
    [126]N.,V.V.,Statistical learning theory,New York:Springer-Verlag,1995.
    [127]Nguyen,N.,Guo,Y.S.,Metric learning:A support vector approach,Machine Learning and Knowledge Discovery in Databases,2008:125-136.
    [128]Suykens,J.A.K.,Nonlinear modelling and support vector machines Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference,Piscataway,NJ,USA,2001.
    [129]Suykens,J.A.K.,Vandewalle,J.,Least squares support vector machine classifiers,Neural Processing Letters,1999,9 (3):293-300.
    [130]Suykens,J.A.K.,Vandewalle,J.,Recurrent least squares support vector machines,IEEE Tran-sactions on Circuits and Systems-I,2001,47 (7):1109-1114.
    [131]Suykens,J.A.K.,Vandewalle,J.,De Moor,B.,Optimal control by least squares support vector machines,Neural Networks,2001,14 (1):23-35.
    [132]Cawley,G.C.,Talbot,N.L.C.,Improved sparse least-squares support vector machines,Neurocomputing,2002,48 (1-4):1025-1031.
    [133]Chua,K.S.,Efficient computations for large least square support vector machine classifiers,Pattern Recognition Letters,2003,24 (1-3):75-80.
    [134]许建华,张学工,李衍达,基于最小二乘支持向量机的油气判别技术,模式识别与人工智能,2002,15 (4):507-510.
    [135]Suykens,J.A.K.,Lukas,L.,Vandewalle,J.,Sparse least squares support vector machine classifiers, European Symposium on Artificial Neural Networks(ESANN 2000),,Bruges Belgium,2000,pp 37-42.
    [136]Suykens,J.A.K.,De Brabanter,J.,Lukas,L.,Vandewalle,J.,Weighted least squares support vector machines:robustness and sparse approximation,Neurocomputing,2002,48 (1-4):85-105.
    [137]张小云,刘允才,高斯支撑向量机的性能分析,计算机工程,2003,29 (8):23-25.
    [138]Browne,M.W.,Cross-validation methods,Journal of Mathematical Psychology,2000,44 (1):108-132.
    [139]Min,J.H.,Lee,Y.C.,Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters,Expert Systems with Applications,2005,28 (4):603-614.
    [140]席少霖,赵凤治编著,最优化计算方法,上海科学技术出版社,1983.8.
    [141]Hsu,C.W.,Chang,C.C.,Lin,C.J.,A practical guide to support vector classification, available at:http://www.csie.ntu.edu.tw/-cjlin/papers/guide /guide.pdf,Technical Report,Department of Computer Science and Information Engineering,National Taiwan University.,2003.
    [142]王兴玲,李占斌,基于网格搜索的支持向量机核函数参数的确定,中国海洋大学学报,2005,35 (5):859-862.
    [143]Hand,D.;Mannila,H.,Smyth,P.,Principles of data mining,MIT Press,2001.
    [144]许亚洲,基于最小二乘支持向量机的数控机床热误差建模的研究,硕士学位论文,2006,浙江大学.
    [145]周新奇,梁逸曾,袁大林,梁晟,全局与局部模型对QSAR、 QSPR预报能力比较,计算机与应用化学,2007,1:83-86.
    [146]周新奇,小分子物质结构与熔点及蛋白亲和性定量构效关系研究,硕士学位论文,2007,中南大学.
    [147]Birattari,M.;Bontempi,G.,Bersini,H.,Advances in neural information processing systems,MIT Press,Cambridge,MA,1999,p 375-381.
    [148]Thimm,M.,Goede,A.,Hougardy,S.,Preissner,R.,Comparison of 2D similarity and 3D superposition.Application to searching a conformational drug database,Journal of Chemical Information and Computer Sciences,2004,44 (5):1816-1822.
    [149]Linnan,H.,Peter,C.J.,Assessing the reliability of a QSAR model's predictions,Environmental Health Perspect,2004,112 (12):1249-1254.
    [150]Svetnik,V.,Liaw,A.,Tong,C.,Culberson,J.C.,Sheridan,R.P.,Feuston,B.P.,Random forest:A classification and regression tool for compound classification and QSAR modeling,Journal of Chemical Information and Computer Sciences,2003,43 (6):1947-1958.
    [151]Cede(?)o,W.,Agrafiotis,D.K.,Using particle swarms for the development of QSAR models based on K-nearest neighbor and kernel regression,Journal of Computer-Aided Molecular Design,2003,17 (2):255-263.
    [152]Barakat,N.A.M.,Jiang,J.H.,Liang,Y.Z.,Yu,R.Q.,Piece-wise quasi-linear modeling in QSAR and analytical calibration based on linear substructures detected by genetic algorithm,Chemometrics and Intelligent Laboratory Systems,2004,72 (1):73-82.
    [153]Birattari,M.;Bontempi,G.,Bersini,H.,“Lazy learning meets the recursive least squares algorithm” in advances in neural information processing systems 11,Cambridge:MIT Press,1999,p 375-381.
    [154]Bontempi,G.,Birattari,M.,Bersini,H.,Local learning for iterated time-series prediction,International conference on machine learning,morgan-kaufmann publishers Inc.,San Fransisco,USA,1999,pp 32-38.
    [155]Hopfield,J.J.,Tank,D.W.,“Neural” computation of decisions in optimization problems,Biological Cybernetics,1985,52 (3):141-152.
    [156]Hopfield,J.J.,Tank,D.W.,Computing with neural circuits:a model,Science,1986,233 (4764):625-633.
    [157]Abe,S.,Kawakami,J.,Hirasawa,K.,Solving inequality constrained combinatorial optimization problems by the hopfield neural networks,Neural Networks,1992,5 (4):663-670.
    [158]周勇,陈洪亮,蚁群算法的研究现状及其展望,微型电脑应用,2002,2:23.
    [159]宋雪梅,李兵,蚂蚁群算法及其应用,河北理工学院学报,2006,28 (1):33-37.
    [160]Dorigo,M.,Optimization,learning and natural algorithms (Ph.D.Thesis), Dipartimento di Elettronica,Politecnico di Milano,Italy,1992.
    [161]Colorni,A.,Dorigo,M.,Maniezzo,V.,Distributed optimization by ant colonies,Proc.1st European conference artificial life [C].Pans,France:Elsevier,1991:134-142.
    [162]Dorigo,M.,Di Caro,G.,Stiitzle,T.,Ant algorithms,Future Generation Computer Systems,2000,16 (8):v-vii.
    [163]Dorigo,M.,Maniezzo,V.,Colorni,A.,The ant system:Optimization by a colony of cooperating agents,IEEE Transactions on Systems,Man,and Cybernetics-Part B,1996,26 (1):1-13.
    [164]李士勇,蚂蚁群优化算法及其应用研究进展,计算机测量与控制,2003,11(12):911-913.
    [165]温文波,杜维,蚁群算法综述,石油化工自动化,2002,1:19-22.
    [166]Kennedy,J.,Ebethart,R.C.,Particle swam optimization,Proceedings of IEEE International Conference on Neural Networks,1995,pp 1942-1948.
    [167]Ebethart,J.R.C.,Kennedy,J.,A new optimizer using particle swarm theory,Proceedings of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995,pp 39-43.
    [168]Eberhart,R.C.;Dobbins,R.,Simpson,P.K.,Computational Intelligence PC Tools,Boston,MA:Academic Press Professional,1996.
    [169]杨维,李歧强,粒子群优化算法综述,北京:中国工程科学,2004,6(5),p87-92.
    [170]李爱国,覃征,鲍复民,贺升平,粒子群优化算法,计算机工程与应用,2002,21:1-3.
    [171]申琦,定量结构活性相关性研究中的新型化学计量学算法研究,博士学位论文,2004,湖南大学.
    [172]Bergh,F.v.c.,An analysis of particle swarm optimizers,University of Pretoria etd,2002.
    [173]Hansch,C.,Fujita,T.,p-s -p analysis.A method for the correlation of biological activity and chemical structure,Journal of the American Chemical Society,1964,86 (8):1616-1626.
    [174]Taft,R.W.,Progress in physical organic chemistry,New York:John Wiley & Sons Inc.,1983.
    [175]Blum,D.J.W.,Speece,R.E.,Quantitative structure-activity relationships for chemical toxicity to environmental bacteria,Ecotoxicology and Environmental Safety,1991,22 (2):198-224.
    [176]Wiegand,C.,Pflugmacher,S.,Giese,M.,Frank,H.,Steinberg,C.,Uptake,toxicity,and effects on detoxication enzymes of atrazine and trifluoroacetate in embryos of zebrafish,Ecotoxicology and Environmental Safety,2000,45 (2):122-131.
    [177]Briens,F.,Bureau,R.,Rault,S.,Applicability of CATALYST in ecotoxicology,a new promising tool for 3D-QSAR:study of chlorophenols,Ecotoxicology and Environmental Safety,1999,43 (3):241-251.
    [178]刘征涛,生态毒理学研究中分子构效相关的应用,环境化学研究,2001,14:53-56.
    [179]Kurup,A.,Garg,R.,Hansch,C.,Comparative QSAR analysis of 5a-reductase inhibitors,Chemical Reviews,2000,100 (3):909-924.
    [180]Gao,H.,Katzenellenbogen,J.A.,Garg,R.,Hansch,C.,Comparative QSAR analysis of estrogen receptor ligands,Chemical Reviews,1999,99 (3):723-744.
    [181]Kurup,A.,Garg,R.,Hansch,C.,Comparative QSAR study of tyrosine kinase inhibitors,Chemical Reviews,2001,101 (8):2573-2600.
    [182]Hansch,C.,Gao,H.,Comparative QSAR:Radical reactions of benzene derivatives in chemistry and biology,Chemical Reviews,1997,97 (8):2995-3060.
    [183]陈凯先;蒋华良,嵇汝运,计算机辅助药物设计,上海:上海科学技术出版社,2000.
    [184]Beuerle,G.,Kovar,K.A.,Meike,S.A.,Three-dimensional quantitative structure-activity relationships of hallucinogenic phenylalkanamine and tryptamine derivatives:Studies using comparative molecular field analysis (CoMFA),Quantitative Structure-Activity Relationships,1997,16 (6):447-458.
    [185]Clouser,D.L.,Jurs,P.C.,Simulation of the 13C nuclear magnetic resonance spectra of ribonucleosides using multiple linear regression analysis and neural networks,Journal of Chemical Information and Computer Sciences,1996,36 (2):168-172.
    [186]Golbraikh,A.,Molecular dataset diversity indices and their applications to comparison of chemical databases and QSAR analysis,Journal of Chemical Information and Computer Sciences,2000,40 (2):414-425.
    [187]Estrada,E.,Rodriguez,L.,Edge-connectivity indices in QSPR/QSAR studies.1.Comparison to other topological indices in QSPR studies,Journal of Chemical Information and Computer Sciences,1999,39 (6):1037-1041.
    [188]Tang,Y.,Chen,K.X.,Jiang,H.L.,Ji,R.Y.,QSAR/QSTR of fluoroquinolones:an example of simultaneous analysis of multiple biological activities using neural network method,European Journal of Medicinal Chemistry,1998,33 (7-8):647-658.
    [189]Benigni,R.,Giuliani,A.,Franke,R.,Gruska,A.,Quantitative structure-activity relationships of mutagenic and carcinogenic aromatic amines,Chemical Reviews,2000,100 (10):3697-3714.
    [190]Selassie,C.D.,Garg,R.,Kapur,S.,Kurup,A.,Verma,R.P.,Mekapati,S.B.,Hansch,C.,Comparative QSAR and the radical toxicity of various functional groups,Chemical Reviews,2002,102 (7):2585-2606.
    [191]Hansch,C.,Hoekman,D.,Leo,A.,Weininger,D.,Selassie,C.D.,Chembioinformatics:Comparative QSAR at the interface between chemistry and biology,Chemical Reviews,2002,102 (3):783-812.
    [192]Hansch,C.,Kurup,A.,Garg,R.,Gao,H.,Chem-bioinformatics and QSAR:A review of QSAR lacking positive hydrophobic terms,Chemical Reviews,2001,101 (3):619-672.
    [193]王连生,韩朔睽,分子结构性质与活性,北京,化学工业出版社,1997.
    [194]Livingstone,D.J.,The characterization of chemical structures using molecular properties.A survey,Journal of Chemical Information and Computer Sciences,2000,40 (2):195-209.
    [195]Schultz,T.W.,Cronin,M.T.D.,Walker,J.D.,Aptula,A.O.,Quantitative structure-activity relationships (QSARs)in toxicology:a historical perspective, Journal of Molecular Structure: THEOCHEM, 2003, 622 (1-2): 1-22.
    [196] Hammett, L. P., Some relations between reaction rates and equilibrium constants, Chemical Reviews, 1935,17 (1): 125-136.
    [197] Hammett, L. P., The effect of structure upon the reactions of organic compounds. benzene derivatives, Journal of the American Chemical Society, 1937, 59 (1):96-103.
    [198] Taft, R. W., Polar and steric substituent constants for aliphatic and o-benzoate groups from rates of esterification and hydrolysis of esters1, Journal of the American Chemical Society, 1952, 74 (12): 3120-3128.
    [199] Hansch, C., Maloney, P. P., Fujita, T., Muir, R. M., Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients,Nature, 1962,194(4824): 178-180.
    [200] Hansch, C., Muir, R. M., Fujita, T., Maloney, P. P., Geiger, F., Streich, M., The correlation of biological activity of plant growth regulators and chloromycetin derivatives with hammett constants and partition coefficients, Journal of the American Chemical Society, 1963, 85 (18): 2817-2824.
    [201] Fujita, T, Iwasa, J., Hansch, C., A new substituent constant: derived from partition coefficients, Journal of the American Chemical Society, 1964, 86 (23): 5175-5180.
    [202] Free, S. M., Wilson, J. W., A mathematical contribution to structure-activity studies,Journal of Medicinal Chemistry, 1964, 7 (4): 395-399.
    [203] Fredenslund, A., Jones, R. L., Prausnitz, J. M., Group-contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE Journal, 1975, 21 (6):1086-1099.
    [204] Leo, A., Jow, P. Y. C., Silipo, C., Hansch, C., Calculation of hydrophobic constant (log P) from .pi. and f constants, Journal of Medicinal Chemistry, 1975,18 (9): 865-868.
    [205] Leo, A. J., Calculating log Poct from structures, Chemical Reviews, 1993, 93 (4):1281-1306.
    [206] Hopfinger, A. J., A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis,Journal of the American Chemical Society,1980,102 (24):7196-7206.
    [207]Contreras,M.L.,Gonzalez,F.D.,Munoz,V.C.,Rozas,R.,Computer assisted molecular design and biophore determination.Application to AIDS drugs Boletin De La Sociedad Chlena De Quimica,1995,40 (3):279-291.
    [208]Crippen,G.M.,Quantitative structure-activity relationships by distance geometry:systematic analysis of dihydrofolate reductase inhibitors,Journal of Medicinal Chemistry,1980,23 (6):599-606.
    [209]Cramer,R.D.,Patterson,D.E.,Bunce,J.D.,Comparative molecular field analysis (CoMFA).1.Effect of shape on binding of steroids to carrier proteins,Journal of the American Chemical Society,1988,110 (18):5959-5967.
    [210]Hopfinger,A.J.,Wang,S.,Tokarski,J.S.,Jin,B.,Albuquerque,M.,Madhav,P.J.,Duraiswami,C.,Construction of 3D-QSAR models using the 4D-QSAR analysis formalism,Journal of the American Chemical Society,1997,119 (43):10509-10524.
    [211]Vedani,A.,Dobler,M.,5D-QSAR:The key for simulating induced fit?,Journal of Medicinal Chemistry,2002,45 (11):2139-2149.
    [212]Vedani,A.,Dobler,M.,Multidimensional QSAR:moving from three-to five-dimensional concepts,Quantitative Structure-Activity Relationships,2002,21(4):382-390.
    [213]Ducki,S.,Mackenzie,G.,Lawrence,N.J.,Snyder,J.P.,Quantitative structure-activity relationship (5D-QSAR)study of combretastatin-like analogues as inhibitors of tubulin assembly,Journal of Medicinal Chemistry,2005,48 (2):457-465.
    [214]李敏勇,夏霖,从三维到五维:定量构效关系(QSAR)的研究进展,中国药科大学学报,2003,34 (6):586-591.
    [215]Vedani,A.,Dobler,M.,Lill,M.A.,Combining protein modeling and 6d-qsar.simulating the binding of structurally diverse ligands to the estrogen receptor,Journal of Medicinal Chemistry,2005,48 (11):3700-3703.
    [216]Katritzky,A.R.,Lobanov,V.S.,Karelson,M.,QSPR:the correlation and quantitative prediction of chemical and physical properties from structure, Chemical Society Reviews, 1995, 24: 279 - 287.
    [217] Karelson, M., Maran, U., Wang, Y, Katritzky, A. R., QSPR and QSAR models derived using large molecular descriptor spaces. A review of CODESSA applications, Collection of Czechoslovak Chemical Communications, 1999, 64:1551-1571.
    [218] Katritzky, A. R., Maran, U., Lobanov, V. S., Karelson, M., Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties, Journal of Chemical Information and Computer Sciences,2000, 40 (1): 1-18.
    [219] Stanton, D. T., Evaluation and use of BCUT descriptors in QSAR and QSPR studies, Journal of Chemical Information and Computer Sciences, 1999, 39 (1):11-20.
    [220] Benigni, R., Giuliani, A., Passerini, L., Infrared spectra as chemical descriptors for QSAR models, Journal of Chemical Information and Computer Sciences,2001,41 (3): 727-730.
    [221] Kier, L. B., Molecular connectivity in structure-activity analysis, John Wiley & Sons: New York, 1986.
    [222] Devillers, J., Balaban, A. T., Topological indices and related descriptors in QSAR and QSPR, Gordon and Breach: Amsterdam, The Netherlands, 1999.
    [223] Karelson, M., Molecular descriptors in QSAR/QSPR, John Wiley&Sons: New York, 2000.
    [224] Estrada, E., Delgado, E. J., Alderete, J. B., Ja(?)a, G. A., Quantum-connectivity descriptors in modeling solubility of environmentally important organic compounds,Journal of Computational Chemistry, 2004, 25 (14): 1787-1796.
    [225] Balaban, A. T., From chemical topology to 3D geometry, Journal of Chemical Information and Computer Sciences, 1997, 37 (4): 645-650.
    [226] Estrada, E., Uriarte, E., Recent advances on the role of topological indices in drug discovery research, Current Medicinal Chemistry, 2001, 8: 1699-1714.
    [227] Estrada, E., Molina, E., 3D Connectivity indices in QSPR/QSAR studies, Journal of Chemical Information and Computer Sciences, 2001. 41 (3): 791-797.
    [228] Gasteiger, J., Sadowski, J., Schuur, J., Selzer, P., Steinhauer, L., Steinhauer, V.,Chemical information in 3D space, Journal of Chemical Information and Computer Sciences, 1996, 36 (5): 1030-1037.
    [229] Gasteiger, J., Bauerschmidt, S., Burkard, U., Hemmer, M. C., Herwig, A., Von Homeyer, A., Hollering, R., Kleinoder, T., Kostka, T., Schwab, C., Selzer, P.,Steinhauer, L., Decision support systems for chemical structure representation,reaction modeling, and spectra simulation, SAR and QSAR in Environmental Research, 2002,13 (1): 89-110.
    [230] Katritzky, A. R., Oliferenko, P., Oliferenko, A., Lomaka, A., Karelson, M.,Nitrobenzene toxicity: QSAR correlations and mechanistic interpretations,Journal of Physical Organic Chemistry, 2003,16 (10): 811-817.
    [231] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA Version 2.0 reference manual, University of Florida, 1995-1997.
    [232] Kier, L. B., Hall, L. H., Molecular connectivity in chemistry and drug research,New York: Academic Press, 1976.
    [233] Kier, L. B., Hall, L. H., Molecular connectivity in structure-activity analysis,New York: John Wiley & Sons, 1986.
    [234] Balaban, A. T., From chemical topology to three-dimensional geometry, New York: Plenum Press, 1996.
    [235] Katritzky, A. R., Tatham, D. B., Maran, U., Theoretical descriptors for the correlation of aquatic toxicity of environmental pollutants by quantitative structure-toxicity relationships, Journal of Chemical Information and Computer Sciences, 2001, 41 (5): 1162-1176.
    [236] Katritzky, A. R., Perumal, S., Petrukhin, R., Kleinpeter, E., CODESSA-based theoretical QSPR model for hydantoin HPLC-RT lipophilicities, Journal of Chemical Information and Computer Sciences, 2001, 41 (3): 569-574.
    [237] Katritzky, A. R., Kulshyn, O. V., Stoyanova-Slavova, I., Dobchev, D. A., Kuanar, M., Fara, D. C., Karelson, M., Antimalarial activity: A QSAR modeling using CODESSA PRO software, Bioorganic & Medicinal Chemistry, 2006, 14 (7): 2333-2357.
    [238]Karelson,M.,Lobanov,V.S.,Katritzky,A.R.,Quantum-chemical descriptors in QSAR/QSPR studies,Chemical Reviews,1996,96 (3):1027-1044.
    [239]DRAGON for Windows (Software for molecular Descriptor Calculation),Version5.4-2006 Talete srl (http://www.talete.mi.it).
    [240]Todeschini,R.,Consonni,V.,Handbook of Molecular Descriptors,Wiley-VCH:Weinheim,Germany,2000.
    [241]许禄,胡昌玉,应用化学图论,北京,科学出版社,2000.
    [242]Hosmer,D.W.,Wang,C.Y.,Lin,I.C.,Lemeshow,S.,A computer program for stepwise logistic regression using maximum likelihood estimation,Computer Programs in Biomedicine,1978,8 (2):121-134.
    [243]陈念贻,模式识别方法在化学化工中的应用,北京,科学出版社,2000.
    [244]徐筱杰;侯廷军;乔学斌,章威,计算机辅助药物分子设计,北京,化学工业出版社,2004.
    [245]Pavan,M.,Mauri,A.,Todeschini,R.,Total ranking models by the genetic algorithm variable subset selection (GA-VSS)approach for environmental priority settings,Analytical and Bioanalytical Chemistry,2004,380 (3):430-444.
    [246]王连生,韩朔睽,有机物定量结构活性相关,北京,中国环境科学出版社,1993.
    [247]刘焕香,基于支持向量机方法的QSAR/QSPR在化学、生物及环境科学中的应用研究,博士-毕业论文,2005,兰州大学.
    [248]Daszykowski,M.,Walczak,B.,Massart,D.L.,Representative subset selection,Analytica Chimica Acta,2002,468 (1):91-103.
    [249]Rogers,D.,Hopfinger,A.J.,Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships,Journal of Chemical Information and Computer Sciences,1994,34(4):854-866.
    [250]Goldberg,D.E.,Genetic Algorithms in search,optimization and machine learning,MA:Addison-Wesley Publishing Company,1989.
    [251]Holland,J.,Adaptation in natural and artificial systems,Arbor,A.,Eds: University of Michigan Press,1975.
    [252]Gazonas,G.A.,Weile,D.S.,Wildman,R.,Mohan,A.,Genetic algorithm optimization of phononic bandgap structures,International Journal of Solids and Structures,2006,43 (18-19):5851-5866.
    [253]Handschuh,S.,Wagener,M.,Gasteiger,J.,Superposition of three-dimensional chemical structures allowing for conformational flexibility by a hybrid method,Journal of Chemical Information and Computer Sciences,1998,38 (2):220-232.
    [254]Hou,T.J.,Wang,J.M.,Xu,X.J.,Applications of genetic algorithms on the structure-activity correlation study of a group of non-nucleoside HIV -1 inhibitors,Chemometrics and Intelligent Laboratory Systems,1999,45 (1-2):303-310.
    [255]Liu,H.X.,Zhang,R.S.,Yao,X.J.,Liu,M.C.,Hu,Z.D.,Fan,B.T.,Prediction of the isoelectric point of an amino acid based on GA-PLS and SVMs,Journal of Chemical Information and Computer Sciences,2004,44 (1):161-167.
    [256]Ibarra-Molero,B.,Sanchez-Ruiz,J.M.,Genetic Algorithm to design stabilizing surface-charge distributions in proteins,The Journal of Physical Chemistry B,2002,106 (26):6609-6613.
    [257]Huang,C.L.,Wang,C.J.,A GA-based feature selection and parameters optimizationfor support vector machines,Expert Systems with Applications,2006,31 (2):231-240.
    [258]Tominaga,Y.,Comparative study of class data analysis with PCA-LDA,SIMCA,PLS,ANNs,and k-NN,Chemometrics and Intelligent Laboratory Systems,1999,49 (1):105-115.
    [259]王斌会,陈一非,基于稳健马氏距离的多元异常值检测方法,统计与决策,2005,3 (6):4-6.
    [260]陈斌,皱贤勇,朱文静,PCA结合马氏距离法剔除红外异常样品,江苏大学学报,2008,29 (4):277-279.
    [261]杨延娇,门维江,基于异常点发掘的聚类算法比较研究,甘肃联合大学学报,2008,22 (1):87-90.
    [262]Breiman,L.,Random Forests,Machine Learning,2001,45 (1):5-32.
    [263]邱一卉,林成德,基于随机森林方法的异常样本检测方法,福建工程学院学报,2007,5 (4):392.
    [264]Wehrens,R.,Putter,H.,Buydens,L.M.C.,The bootstrap:a tutorial,Chemometrics and Intelligent Laboratory Systems,2000,54 (1):35-52.
    [265]Paola,G.,Principles of QSAR models validation:internal and external,QSAR & Combinatorial Science,2007,26 (5):694-701.
    [1]Morris,D.L.,Sutton,J.N.,Harper,R.G.,Timperman,A.T.,Reversed-phase hplc separation of human serum employing a novel saw-tooth gradient:toward multidimensional proteome Analysis,Journal of Proteome Research,2004,3 (6):1149-1154.
    [2]Baczek,T.,Improvement of peptides identification in proteomics with the use of new analytical and bioinformatic strategies,Current Pharmaceutical Analysis,2005,1:31-40.
    [3]Jan(?)ky,T.,Szab(?),E.,Bal(?)spiri,L.,Adi,B.,Penke,B.,High-performance separation methods in the analysis of a new peptide family:the galanins,Journal of Chromatography B:Biomedical Sciences and Applications,1996,676 (1):7-12.
    [4]Mant,C.T.,Hodges,R.S.,High performance liquid chromatography of peptides and proteins:separation,analysis and conformation.CRC Press,Boca Raton,1991.
    [5] Wilce, M. C. J., Aguilar, M. I., Hearn, M. T. W., High-performance liquid chromatography of amino acids, peptides and proteins : CVII. A analysis of group retention contributions for peptides separated with a range of mobile and stationary phases by reversed-phase high-performance liquid chromatography, Journal of Chromatography A, 1991,536:165-183.
    [6] Wilce, M. C. J., Aguilar, M. I., Hearn, M. T. W., High-performance liquid chromatography of amino acids, peptides and proteins : CX. Principal component analysis of four sets of group retention coefficients derived from reversed-phase high-performance liquid chromatography of peptides, Journal of Chromatography A, 1991, 548:105-116.
    [7] Mant, C. T., Burke, T. W. L., Black, J. A., Hodges, R. S., Effect of peptide chain length on peptide retention behaviour in reversed-phase chromatogrphy, Journal of Chromatography A, 1988,458:193-205.
    [8] Browne, M. W., Cross-validation methods, Journal of Mathematical Psychology, 2000, 44 (1): 108-132.
    [9] Yoshida, T., Prediction of peptide retention time in normal-phase liquid chromatography,Journal of Chromatography A, 1998, 811 (1-2): 61-67.
    [10] Yoshida, T., Okada, T., Prediction of peptide retention times in normal-phase liquid chromatography with only a single gradient run, Journal of Chromatography A, 1999, 841 (1): 19-32.
    [11] Garcia, M. C., The effect of the mobile phase additives on sensitivity in the analysis of peptides and proteins by high-performance liquid chromatography-electrospray mass spectrometry, Journal of Chromatography B, 2005, 825 (2): 111-123.
    [12] Baczek, T., Buciski, A., Ivanov, A. R., Kaliszan, R., Artificial neural network analysis for evaluation of peptide MS/MS spectra in proteomics, Analytical Chemistry, 2004, 76 (6): 1726-1732.
    [13] Baczek, T., Wiczling, P., Marszall, M., Heyden, Y. V., Kaliszan, R., Prediction of peptide retention at different HPLC conditions from multiple linear regression models Journal of Proteome Research, 2005, 4 (2): 555-563.
    [14] Kaliszan, R., Baczek, T., Cimochowska, A., Juszczyk, P., Wisniewska, K.,Grzonka, Z., Prediction of high-performance liquid chromatography retention of peptides with the use of quantitative structure-retention relationships, Proteomics,2005, 5 (2): 409-415.
    [15] Baczek, T., Kaliszan, R., Novotna, K., Jandera, P., Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-subtraction model, Journal of Chromatography A, 2005, 1075 (1-2): 109-115.
    [16] Forgacs, E., Cserhati, T., Quantitative relationship between the retention of peptides on a reversed-phase alumina support and their physicochemical parameters, Journal of Chromatography A, 2002, 948 (1-2): 69-75.
    [17] Petritis, K., Kangas, L. J., Ferguson, P. L., Anderson, G. A., Pasa-Tolic, L., Lipton, M. S., Auberry, K. J., Strittmatter, E. F., Shen, Y., Zhao, R., Smith, R. D., Use of artificial neural networks for the accurate prediction of peptide liquid chromatography elution times in proteome analyses, Analytical Chemistry, 2003, 75 (5): 1039-1048.
    [18] Shinoda, K., Sugimoto, M., Yachie, N., Sugiyama, N., Masuda, T., Robert, M., Soga, T., Tomita, M., Prediction of liquid chromatographic retention times of peptides generated by protease digestion of the escherichia coli proteome using artificial neural networks, Journal of Proteome Research, 2006, 5 (12): 3312-3317.
    [19] Liu, H. X., Zhang, R. S., Yao, X. J., Liu, M. C., Hu, Z. D., Fan, B. T., Prediction of the isoelectric point of an amino acid based on GA-PLS and SVMs, Journal of Chemical Information and Computer Sciences, 2004, 44 (1): 161-167.
    [20] Krokhin, O. V., Sequence-specific retention calculator. algorithm for peptide retention prediction in ion-pair RP-HPLC: Application to 300- and 100- Pore Size C18 Sorbents, Analytical Chemistry, 2006, 78 (22): 7785-7795.
    [21] Wehrens, R., Putter, H., Buydens, L. M. C., The bootstrap: a tutorial, Chemometrics and Intelligent Laboratory Systems, 2000, 54 (1): 35-52.
    [22] Baczek, T., Chemometric evaluation of relationships between retention and physicochemical parameters in terms of multidimensional liquid chromatography of peptides, Journal of Separation Science, 2006, 29 (4): 547-554.
    [23] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA training manual,University of Florida, Gainesville, FL, USA, 1995.
    [24] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA reference manual,University of Florida, Gainesville, FL, USA, 1994.
    [25] Alexandridis, A., Patrinos, P., Sarimveis, H., Tsekouras, G., A two-stage evolutionary algorithm for variable selection in the development of RBF neural network models, Chemometrics and Intelligent Laboratory Systems, 2005, 75 (2):149-162.
    [26] Liu, H. X., Yao, X. J., Liu, M. C., Hu, Z. D., Fan, B. T., Prediction of gas-phase reduced ion mobility constants (K0) based on the multiple linear regression and projection pursuit regression, Talanta, 2007, 71 (1): 258-263.
    [27] Patankar, S. J., Jurs, P. C., Classification of inhibitors of protein tyrosine phosphatase 1B using molecular structure based descriptors, Journal of Chemical Information and Computer Sciences, 2003, 43 (3): 885-899.
    [28] Friedman, J. H., Stuetzle, W., Projection pursuit regression, Journal of the American Statistical Association, 1981, 76: 817-823.
    [29] Huber, P. J., Projection pursuit (with discussion), Annals of Statistics, 1985 13 (2):435 -525.
    [30] Diaconis, P., Shahshahani, M., On nonlinear functions of linear combinations, SIAM: SIAM Journal on Scientific Computing, 1984, 5 (1): 175-191.
    [31] Du, Y. P., Liang, Y. Z., Yun, D., Data mining for seeking an accurate quantitative relationship between molecular structure and gc retention indices of alkenes by projection pursuit, Journal of Chemical Information and Computer Sciences, 2002,42 (6): 1283-1292.
    [32] Wang, J., Du, H. Y., Liu, H. X., Yao, X. J., Hu, Z. D., Fan, B. T., Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine, Talanta, 2007, 73 (1): 147-156.
    [33] Venables, W. N., Smith, D. M., The R Development Core Team, An Introduction to R, Network Theory Ltd, 2004.
    [34] Karelson, M., Lobanov, V. S., Katritzky, A. R., Quantum-chemical descriptors in QSAR/QSPR studies, Chemical Reviews, 1996, 96 (3): 1027-1044.
    [35] Katritzky, A. R., Tatham, D. B., Maran, U., Correlation of the solubilities of gases and vapors in methanol and ethanol with their molecular structures, Journal of Chemical Information and Computer Sciences, 2001,41 (2): 358-363.
    [36] Hiob, R., Karelson, M., Quantitative relationship between rate constants of the gas-phase homolysis of C-X bonds and molecular descriptors, Journal of Chemical Information and Computer Sciences, 2000, 40 (4): 1062-1071.
    [37] Wolters, D. A., Washburn, M. P., Yates, J. R., An automated multidimensional protein identification technology for shotgun proteomics, Analytical Chemistry,2001, 73 (23): 5683-5690.
    [38] Henderson, D. E., Mello, J. A., Physicochemical studies of biologically active peptides by low - temperature reversed-phase high-performance liquid chromatography, Journal of Chromatography A, 1990, 499: 79-88.
    [39] Geng, X. D., Chang, X. Q., High-performance hydrophobic interaction chromatography as a tool for protein refolding, Journal of Chromatography A, 1992, 599 (1-2): 185-194.
    [40] Kunitani, M., Dollinger, G., Johnson, D., Kresin, L., On-line characterization of polyethylene glycol-modified proteins, Journal of Chromatography A, 1991, 588 (1-2): 125-137.
    [41] Zhou, Y. P., Jiang, J. H., Lin, W. Q., Xu, L., Wu, H. L., Shen, G. L., Yu, R. Q., Artificial neural network-based transformation for nonlinear partial least-square regression with application to QSAR studies, Talanta, 2007, 71 (2): 848-853.
    [42] Takeuchi, K., Takahashi, K., Abe, M., Nishida, W., Hiwada, K., Nabeya, T., Maruyama, K., Co-localization of immunoreactive forms of calponin with actin cytoskeleton in platelets, Fibroblasts, and Vascular Smooth Muscle, Journal of Biochemistry, 1991, 109 (2): 311-316.
    [43] Watts, M. T., Escarzaga, M., Williams, C. H., Gas chromatographic headspace analysis of sevoflurane in blood, Journal of Chromatography: Biomedical Applications, 1992, 577 (2): 289-298.
    [44] Varady, L., Ning, M., Yang, Y. B., Cook, S. E., Afeyan, N., Regnier, F. E.,Fimbriated stationary phases for proteins, Journal of Chromatography A, 1993,631 (1-2): 107-114.
    [45] Patel, A., O'Hara, M., Callaway, J. E., Greene, D., Martin, J., Nishikawa, A. H.,Affinity purification of tissue plasminogen activator using transition-state analogues, Journal of Chromatography A, 1990, 510: 83-93.
    [46] Issaq, H. J., Janini, G. M., Atamna, I. Z., Muschik, G. M., Lukszo, J., Capillary electrophoresis separation of small peptides: effect of ph, buffer additives, and temperature, Journal of Liquid Chromatography & Related Technologies, 1992, 15 (6): 1129 -1142.
    [47] Porath, J., Carlsson, J. A. N., Olsson, I., Belfrage, G., Metal chelate affinity chromatography, a new approach to protein fractionation, Nature, 1975, 258(5536): 598-599.
    [48] Waugh, D. S., Making the most of affinity tags, Trends in Biotechnology, 2005,23 (6): 316-320.
    [49] Chaga, G. S., Twenty - five years of immobilized metal ion affinity chromatography: past, present and future, Journal of Biochemical and Biophysical Methods, 2001, 49 (1-3): 313-334.
    [50] Gaberc-Porekar, V., Menart, V., Perspectives of immobilized-metal affinity chromatography, Journal of Biochemical and Biophysical Methods, 2001, 49 (1-3):335-360.
    [51] Zachariou, M., Immobilized metal ion affinity chromatography of proteins,Methods in Molecular Biology, 2004, 251: 89-102.
    [52] Posewitz, M. C., Tempst, P., Immobilized gallium(Ⅲ) affinity chromatography of phosphopeptides, Analytical Chemistry, 1999, 71 (14): 2883-2892.
    [53] Hanora, A., Bernaudat, F., Plieva, F. M., Dainiak, M. B., Biilow, L., Galaev, I. Y.,Mattiasson, B., Screening of peptide affinity tags using immobilised metal affinity chromatography in 96-well plate format, Journal of Chromatography A, 2005,1087 (1-2): 38-44.
    [54] Hochuli, E., D(?)beli, H., Schacher, A., New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues, Journal of Chromatography, 1987, 411: 177-184.
    [55] Noble, R., Smith, E. P., Ye, K.-Y., Model selection in canonical correlation analysis (CCA) using bayesian model averaging, Environmetrics, 2004, 15 (4):291-311.
    [56] Mohanty, A. K., Wiener, M. C., Membrane protein expression and production:effects of polyhistidine tag length and position, Protein Expression and Purification, 2004, 33 (2): 311-325.
    [57] Kaliszan, R., van Straten, M. A., Markuszewski, M., Cramers, C. A., Claessens,H. A., Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure-retention relationships, Journal of Chromatography A, 1999,855 (2): 455-486.
    [58] Golmohammadi, H., Fatemi, M. H., Artificial neural network prediction of retention factors of some benzene derivatives and heterocyclic compounds in micellar electrokinetic chromatography, Electrophoresis, 2005, 26 (18):
    3438-3444.
    [59] Baczek, T., Wiczling, P., Marszall, M., Heyden, Y. V., Kaliszan, R., Prediction of peptide retention at different hplc conditions from multiple linear regression models,Journal of Proteome Research, 2005, 4 (2): 555-563.
    [60] Kaliszan, R., Baczek, T., Cimochowska, A., Juszczyk, P., Kornelia Wisniewska,Grzonka, Z., Prediction of high-performance liquid chromatography retention of peptides with the use of quantitative structure-retention relationships, Proteomics,2005, 5 (2): 409-415.
    [61] Shinoda, K., Sugimoto, M., Tomita, M., Ishihama, Y., Informatics for peptide retention properties in proteomic LC-MS, Proteomics, 2008, 8 (4): 787-798.
    [62] Hellberg, S., Eriksson, L., Jonsson, J., Lindgren, R, Sjostrom, M., Skagerberg, B., Wold, S., Andrews, P., Minimum analogue peptide sets (MAPS) for quantitative structure-activity relationships, International Journal of Peptide and Protein Research, 1991, 37 (5): 414-424.
    [63] Kermani, B. G., Kozlov, I., Melnyk, P., Zhao, C., Hachmann, J., Barker, D., Lebl,M., Using support vector machine regression to model the retention of peptides in immobilized metal-affinity chromatography, Sensors and Actuators B: Chemical,2007,125 (1): 149-157.
    [64] Hoerl, A. E., Kennard, R. W., Ridge regression: applications to nonorthogonal problems, Technometrics, 1970,12 (1): 69-82.
    [65] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA version 2.0 reference manual., University of Florida, Gainesville, FL, USA, 1995-1997.
    [66] Katritzky, A. R., Lobanov, V. S., Karelson, M., QSPR: the correlation and quantitative prediction of chemical and physical properties from structure,Chemical Society Reviews, 1995, 24: 279-287.
    [67] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA: training manual,University of Florida, Gainesville, FL, USA, 1995.
    [68] Zhang, S., Golbraikh, A., Oloff, S., Kohn, H., Tropsha, A., A novel automated lazy learning QSAR (ALL-QSAR) approach: Method development, applications,and virtual screening of chemical databases using validated ALL-QSAR models,Journal of Chemical Information and Modeling, 2006, 46 (5): 1984-1995.
    [69] Vendrame, R., Takahata, Y, Structure-activity relationship (SAR) of substituted 17[alpha]-acetoxyprogesterones studied with principal component analysis and neural networks using calculated physicochemical parameters, Journal of Molecular Structure: THEOCHEM, 1999, 489 (1): 55-66.
    [70] Atkeson, C. G., Moore, A. W., Schaal, S., Locally weighted learning, Artificial Intelligence Review, 1997,11 (1): 11-73.
    [71] Cleveland, W. S., Devlin, S. J., Grosse, E., Regression by local fitting: Methods, properties, and computational algorithms, Journal of Econometrics, 1988, 37 (1): 87-114.
    [72] Birattari, M.; Bontempi, G., Bersini, H., Lazy learning meets the recursive least squares algorithm in M.S. Kearns, S. A. Solla, and D. A. Cohn, editors, Adcances in Neural Information Processing Systems 11, MIT Press, Cambridge, MA, 1999, p 375-381.
    [73] Bontempi, G., Birattari, M., Bersini, H., Lazy learning for local modelling and control design, International Journal of Control, 1999, 72 (7&8): 643-658.
    [74] Guha, R., Dutta, D., Jurs, P. C., Chen, T., Local lazy regression: making use of the neighborhood to improve QSAR predictions, Journal of Chemical Information and Modeling, 2006, 46 (4): 1836-1847.
    [75] Pan, T. H., Li, S. Y., Cai, W. J., Lazy learning-based online identification and adaptive PID control: A case study for CSTR process, Industrial & Engineering Chemistry Research, 2007,46 (2): 472-480.
    [76] Birattari, M., Bontempi, G., The lazy package for R, technical report IRIDIA-ULB, TR/IRIDIA/2003-38,2003.
    [77] Zefirov, N. S., Kirpichenok, M. A., Izmailov, F. F., Trofimov, M. I., Scheme for the calculation of the electronegativities of atoms in a molecule in the framework of Sanderson's principle, Doklady Akademii Nauk SSSR, 1987, 296: 883-887.
    [1]Roy-Barman,S.,Chattoo,B.B.,Rice blast fungus sequenced,Current Science,2005,86 (6):930-931.
    [2]Jordan,D.B.,Basarab,G.S.,Liao,D.-I.,Johnson,W.M.P.,Winzenberg,K.N.,Winkler,D.A.,Structure-based design of inhibitors of the rice blast fungal enzyme trihydroxynaphthalene reductase,Journal of Molecular Graphics and Modelling,2001,19 (5):434-447.
    [3]Yamaguchi,I.,Kubo,Y.,Target sites of melanin biosynthesis inhibitors.,CRC Press:London,U.K.,1992,p 101-118.
    [4]Cawley,G.C.,Talbot,N.L.C.,Improved sparse least-squares support vector machines,Neurocomputing,2002,48 (1-4):1025-1031.
    [5]Bell,A.A.,Wheeler,M.H.,Biosynthesis and functions of fungal melanins,Annual Review of Phytopathology,1986,24:411-45 1.
    [6]Nakasako,M.,Motoyama,T.,Kurahashi,Y,Yamaguchi,I.,Cryogenic X-ray crystal structure analysis for the complex of scytalone dehydratase of a rice blast fungus and its tight-binding inhibitor,carpropamid:the structural basis of tight-binding inhibition,Biochemistry,1998,37 (28):9931-9939.
    [7]Camargo,A.B.,Marchevsky,E.,Luco,J.M.,QSAR study for the soybean 15-lipoxygenase inhibitory activity of organosulfur compounds derived from the essential oil of garlic,Journal of Agricultural and Food Chemistry,2007,55 (8): 3096-3103.
    [8] Jalali-Heravi, M., Asadollahi-Baboli, M., Shahbazikhah, P., QSAR study of heparanase inhibitors activity using artificial neural networks and levenberg-marquardt algorithm, European Journal of Medicinal Chemistry, 2008,43 (3): 548-556.
    [9] Jalali-Heravi, M., Kyani, A., Comparison of shuffling-adaptive neuro fuzzy inference system (shuffling-ANFIS) with conventional ANFIS as feature selection methods for nonlinear systems, QSAR & Combinatorial Science, 2007, 26 (10): 1046-1059.
    [10] Pripp, A. H., Quantitative structure-activity relationship of prolyl oligopeptidase inhibitory peptides derived from Β-casein using simple amino acid descriptors, Journal of Agricultural and Food Chemistry, 2006, 54 (1): 224-228.
    [11] Hansch, C., Kurup, A., Garg, R., Gao, H., Chem-bioinformatics and QSAR: A review of QSAR lacking positive hydrophobic terms, Chemical Reviews, 2001,101 (3): 619-672.
    [12] Draper, N. R., Smith, H., Applied regression analysis, 3rd ed., John Willy and Sons: New York,, 1998.
    [13] Lindberg, W., Persson, J.-A., Wold, S., Partial least-squares method for spectrofluorimetric analysis of mixtures of humic acid and lignin sulfonate, Analytical Chemistry, 1983, 55 (4): 643-648.
    [14] Hemmateenejad, B., Safarpour, M. A., Taghavi, E, Application of ab initio theory for the prediction of acidity constants of some 1-hydroxy-9, 10-anthraquinone derivatives using genetic neural network, Journal of Molecular Structure: THEOCHEM, 2003, 635 (1-3): 183-190.
    [15] Suykens, J. A. K., Vandewalle, J., Least squares support vector machine classifiers, Neural Processing Letters, 1999, 9 (3): 293-300.
    [16] Friedman, J. H., Stuetzle, W, Projection pursuit regression, Journal of the American Statistical Association, 1981, 76: 817-823.
    [17] Huber, P. J., Projection pursuit ( with discussion), Annals of Statistics, 1985 13 (2): 435 -525.
    [18] Katritzky, A. R.; Lobanov, V. S., Karelson, M., Comprehensive descriptors for structural and statistical analysis, reference manual, Version 2.0, University of Florida, 1994.
    [19] Todeschini, R.; Consonni, V.; Mauri, A., Pavan, M., DRAGON-software for the calculation of molecular descriptors. Version 5.4 for Windows, Talete srl, Milan, Italy, 2006.
    [20] Song, J. S., Moon, T., Nam, K. D., Lee, J. K., Hahn, H.-G., Choi, E.-J., Yoon, C.N., Quantitative structural-activity relationship (QSAR) study for fungicidal activities of thiazoline derivatives against rice blast, Bioorganic & Medicinal Chemistry Letters, 2008,18 (6): 2133-2142.
    [21] ISIS Draw 2.3 (1990-200), MDLInformation Systems, Inc.
    [22] Hyperchem, Release 6.0 for windows, Hypercube, Inc., 1995.
    [23] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA: training manual, University of Florida, Gainesville, FL, USA, 1995.
    [24] Todeschini, R., Consonni, V, Handbook of molecular descriptors, Wiley-VCH:Weinheim, Germany, 2000.
    [25] Lucasius, C. B., Kateman, G., Genetic algorithms for large-scale optimization in chemometrics: An application, TrAC Trends in Analytical Chemistry, 1991,10 (8):254-261.
    [26] Hou, T. J., Wang, J. M., Xu, X. J., Applications of genetic algorithms on the structure-activity correlation study of a group of non-nucleoside HIV-1 inhibitors,Chemometrics and Intelligent Laboratory Systems, 1999, 45 (1-2): 303-310.
    [27] Suykens, J. A. K., De Brabanter, J., Lukas, L., Vandewalle, J., Weighted least squares support vector machines: robustness and sparse approximation, Neurocomputing, 2002, 48 (1-4): 85-105.
    [28] LS-SVMlab: A Matlab/C toolbox for least squares support vector machines, Internal Report 02-44, ESATSISTA, K. U. Leuven, Leuven, 2002.
    [29] Du, Y. P., Liang, Y. Z., Yun, D., Data Mining for Seeking an Accurate Quantitative Relationship between Molecular Structure and GC Retention Indices of Alkenes by Projection Pursuit, Journal of Chemical Information and Computer Sciences, 2002, 42 (6): 1283-1292.
    [30] Du, H. Y., Wang, J., Zhang, X. Y., Yao, X. J., Hu, Z. D., Prediction of retention times of peptides in RPLC by using radial basis function neural networks and projection pursuit regression, Chemometrics and Intelligent Laboratory Systems, 2008, 92 (1): 92-99.
    [31] Donoho, D., Johnstone, I., Rousseeuw, P., Stahel, W., Discussion: projection pursuit, Analys of Statistics, 1985,13 (2): 496-500.
    [32] Diaconis, P., Shahshahani, M., On nonlinear functions of linear combinations, SIAM: SIAM Journal on Scientific Computing, 1984, 5: 175-191.
    [33] Birattari, M., Bontempi, G., The lazy package for R, technical report IRIDIA-ULB, TR/IRIDIA/2003-38, 2003.
    [34] Todeschini, R., Gramatica, P., SD-modelling and prediction by WHIM descriptors, part 5. theory development and chemical meaning of WHIM descriptors, Quantitative Structure-Activity Relationships, 1997,16 (2): 113-119.
    [35] Strouf, O., Chemical pattern recognition, research studies press: Hertfordshire, U.K, 1986.
    [36] Gasteiger, J., Sadowski, J., Schuur, J., Selzer, P., Steinhauer, L., Steinhauer, V., Chemical information in 3D space, Journal of Chemical Information and Computer Sciences, 1996, 36 (5): 1030-1037.
    [37] Gupta, R. A., Gupta, A. K., Soni, L. K., Kaskhedikar, S. G., Exploration of physicochemical properties and molecular modeling studies of furanylamide analogs as antituberculosis agents, QSAR & Combinatorial Science, 2007, 26 (8):897-907.
    [38] Fernandez, J. A., Biology, biotechnology and biomedicine of saffron, Recent Research for Development Plant Sceinces, 2004, (2): 127-159.
    [39] Nair, S. C., Pannikar, B., Panikkar, K. R., Antitumour activity of saffron (Crocus sativus), Cancer Letters, 1991, 57 (2): 109-114.
    [40] Nair, S. C., Kurumboor, S. K., Hasegawa, J. H., Saffron chemoprevention in biology and medicine: a review, Cancer biotherapy, 1995, 10 (4): 257-264.
    [41] Basker, D., Negbi, M., Uses of saffron, Economic Botany, 1983, 37: 228-236.
    [42] Hoerl, A. E., Kennard, R. W., Ridge regression: Applications to nonorthogonal problems, Technometrics, 1970, 12 (1): 69-82.
    [43] Pawliszyn, J., Solid phase microextraction: Theory and practice Wiley-VCH, New York, 1997.
    [44] Augusto, F., Valente, A. L. P., dos Santos Tada, E., Rivellino, S. R., Screening of Brazilian fruit aromas using solid-phase microextraction-gas chromatography -mass spectrometry, Journal of Chromatography A, 2000, 873 (1): 117-127.
    [45] Jahouach-Rabai, W., Trabelsi, M., Van Hoed, V., Adams, A., Verh, R., De Kimpe, N., Frikha, M. H., Influence of bleaching by ultrasound on fatty acids and minor compounds of olive oil. Qualitative and quantitative analysis of volatile compounds (by SPME coupled to GC/MS), Ultrasonics Sonochemistry, 2008, 15(4): 590-597.
    [46] Matich, A. J., Rowan, D. D., Banks, N. H., Solid phase microextraction for quantitative headspace sampling of apple volatiles, Analytical Chemistry, 1996, 68(23): 4114-4118.
    [47] Auria, M., Mauriello, G., Racioppi, R., Rana, G. L., Use of SPMEGCMS in the study of time evolution of the constituents of saffron aroma: modifications of the composition during storage, Journal of Chromatographic Science, 2006, 44:18-21.
    [48] Du, H. Y., Zhang, X. Y., Wang, J., Yao, X. J., Hu, Z. D., Novel approaches to predict the retention of histidine-containing peptides in immobilized metal-affinity chromatography, Proteomics, 2008, 8 (11): 2185-2195.
    [1]Lundahl,P.,Beigi,F.,Immobilized liposome chromatography of drugs for model analysis of drug-membrane interactions,Advanced Drug Delivery Reviews,1997,23 (1-3):221-227.
    [2]Yang,C.Y.,Cai,S.J.,Liu,H.L.,Pidgeon,C.,Immobilized artificial membranes--screens for drug membrane interactions,Advanced Drug Delivery Reviews,1997,23 (1-3):229-256.
    [3]Turowskil,M.,Kaliszan,R.,Keratin immobilized on silica as a new stationary phase for chromatographic modelling of skin permeation,Journal of Pharmaceutical and Biomedical Analysis,1997,15 (9-10):1325-1333.
    [4]Pang,D.C.,Amidon,G.L.,Preusch,P.C.,Sad(?)e,W.,Second AAPS-NIH frontier symposium 1999:membrane transporters and drug therapy.American Association of Pharmaceutical Scientists,AAPSpharmsci,1999,1 (2):E7.
    [5]Swaan,P.W.,Koops,B.C.,Moret,E.E.,Tukker,J.J.,Mapping the binding site of the small intestinal peptide carrier (PepT1)using comparative molecular field analysis,Recept Channels,1998,6:189-200.
    [6]Natic,M.,Markovic,R.,Milojkovic-Opsenica,D.,Tesic,Z.,Structure-retention relationship study of diastereomeric (Z)- and (E)-2-alkylidene-4-oxothiazolidines, Journal of Separation Science, 2007, 30 (14): 2241-2248.
    [7] Tulasamma, P., Reddy, K. S., Quantitative structure and retention relationships for gas chromatographic data: Application to alkyl pyridines on apolar and polar phases, Journal of Molecular Graphics and Modelling, 2006, 25 (4): 507-513.
    [8] Liu, F. P., Liang, Y. Z., Cao, C. Z., QSPR modeling of thermal conductivity detection response factors for diverse organic compound, Chemometrics and Intelligent Laboratory Systems, 2006, 81 (2): 120-126.
    [9] Beigi, F., Qing, Y., Lundahl, P., Immobilized-liposome chromatographic analysis of drug partitioning into lipid bilayers, Journal of Chromatography A, 1995, 704 (2): 315-321.
    [10] Kotecha, J., Shah, S., Rathod, I., Subbaiah, G., Relationship between immobilized artificial membrane chromatographic retention and human oral absorption of structurally diverse drugs, International Journal of Pharmaceutics,2007, 333 (1-2): 127-135.
    [11] Ong, S. W., Cai, S. J., Bernal, C., Rhee, D. M., Qiu, X. X., Pidgeon, C., Phospholipid immobilization on solid surfaces Analytical Chemistry, 1994, 66 (6): 782-792.
    [12] Yen, T. E., Agatonovic-Kustrin, S., Evans, A. M., Nation, R. L., Ryand, J.,Prediction of drug absorption based on immobilized artificial membrane (IAM)chromatography separation and calculated molecular descriptors, Journal of Pharmaceutical and Biomedical Analysis, 2005, 38 (3): 472-478.
    [13] Kolar, J., (?)tolfa, A., Strlic, M., Pompe, M., Pihlar, B., Budnar, M., Simcic, J.,Reissland, B., Historical iron gall ink containing documents - Properties affecting their condition, Analytica Chimica Acta, 2006, 555 (1): 161-11 A.
    [14] Lambert, W. J., Modeling oil-water partitioning and membrane permeation using reversed-phase chromatography, Journal of Chromatography A, 1993, 656 (1-2):469-484.
    [15] Brekkan, E., Lu, L. L., Lundahl, P., Properties of immobilized -liposome -chromatographic supports for interaction analysis, Journal of Chromatography A, 1995, 711 (1): 33-42.
    [16] Jalali-Heravi, M., Kyani, A., Comparison of shuffling-adaptive neuro fuzzy inference system (shuffling-ANFIS) with conventional ANFIS as feature selection methods for nonlinear systems, QSAR & Combinatorial Science, 2007, 26 (10):1046-1059.
    [17] Friedman, J. H., Stuetzle, W., Projection pursuit regression, Journal of The American Statistical Association, 1981, 76: 817-823.
    [18] Huber, P. J., Projection pursuit, Annals of Statistics, 1985,13: 435-475.
    [19] Diaconis, P., Shahshahani, M., On nonlinear functions of linear combinations, SLAM: SIAM Journal on Scientific Computing, 1984, 5:175-191.
    [20] Du, Y. P., Liang, Y. Z., Yun, D., Data mining for seeking an accurate quantitative relationship between molecular structure and GC retention indices of alkenes by projection pursuit, Journal of Chemical Information and Computer Sciences, 2002,42 (6): 1283-1292.
    [21] Liu, H. X., Yao, X. J., Liu, M. C., Hu, Z. D., Fan, B. T., Prediction of gas-phase reduced ion mobility constants (K0) based on the multiple linear regression and projection pursuit regression, Talanta, 2007, 71 (1): 258-263.
    [22] Shahshahani, M., Diaconis, P., On nonlinear functions of linear combinations, SIAM: SIAM Journal on Scientific Computing, 1984, 5: 175-191.
    [23] Atkeson, C. G., Moore, A. W., Schaal, S., Locally weighted learning, Artificial Intelligence Review, 1997,11 (1): 11-73.
    [24] Cleveland, W. S., Devlin, S. J., Grosse, E., Regression by local fitting: Methods,properties, and computational algorithms, Journal of Econometrics, 1988, 37 (1):87-114.
    [25] Birattari, M., Bontempi, G., The lazy package for R, Technical report IRIDIA-ULB, R/IRIDIA/2003-38, 2003.
    [26] Zhang, S. X., Golbraikh, A., Oloff, S., Kohn, H., Tropsha, A., A Novel Automated Lazy Learning QSAR (ALL-QSAR) Approach: Method Development,Applications, and Virtual Screening of Chemical Databases Using Validated ALL-QSAR Models, Journal of Chemical Information and Modeling, 2006, 46 (5): 1984-1995.
    [27] Guha, R., Dutta, D., Jurs, P. C., Chen, T., Local lazy regression: making use of the neighborhood to improve QSAR predictions, Journal of Chemical Information and Modeling, 2006, 46 (4): 1836-1847.
    [28] Pan, T. H., Li, S. Y., Cai, W. J., Lazy learning-based online identification and adaptive PID control: A case study for CSTR process, Industrial & Engineering Chemistry Research, 2007, 46 (2): 472-480.
    [29] Badros, G. J., Borning, A., Stuckey, P., The cassowary linear arithmetic constraint solving algorithm, ACM Transactions on Computer-Human Interaction, 2001, 8 (4): 267-306.
    [30] Schefzick, S., Kibbey, C., Bradley, M. P., Prediction of HPLC conditions using QSPR techniques: an effective tool to improve combinatorial library design Journal of Combinatorial Chemistry, 2004, 6 (6): 916-927.
    [31] Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., Seiki, M., A matrix metalloproteinase expressed on the surface of invasive tumour cells, Nature, 1994, 370 (6484): 61-65.
    [32] Stetler-Stevenson, W. G., Aznavoorian, S., Liotta, L. A., Tumor cell interactions with the extracellular matrix during invasion and metastasis, Annual Review of Cell Biology, 1993, 9 (1): 541-573.
    [33] Malemud, C. J., Matrix metalloproteinases (MMPs) in health and disease: an overview, Frontiers in Bioscience, 2006,11:1696-1701.
    [34] Whittaker, M., Floyd, C. D., Brown, P., Gearing, A. J. H., Design and therapeutic application of matrix metalloproteinase inhibitors, Chemical Reviews, 1999, 99 (9): 2735-2776.
    [35] Nagase, H., Woessner, J. E, Jr., Matrix metalloproteinases, Journal of Biological Chemistry, 1999, 274 (31): 21491-21494.
    [36] Takino, T., Sato, H., Shinagawa, A., Seiki, M., Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library, Journal of Biological Chemistry, 1995, 270 (39):23013-23020.
    [37] Morgunova, E., Tuuttila, A., Bergmann, U., Isupov, M., Lindqvist, Y., Schneider, G., Tryggvason, K., Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed, Science, 1999, 284 (5420): 1667-1670.
    [38] Pikul, S., McDow Dunham, K. L., Almstead, N. G., De, B., Natchus, M. G., Anastasio, M. V., McPhail, S. J., Snider, C. E., Taiwo, Y. O., Chen, L.-Y., Dunaway, C. M., Gu, F., Mieling, G. E., Design and synthesis of phosphinamide -based hydroxamic acids as inhibitors of matrix metalloproteinases, Journal of Medicinal Chemistry, 1999,42 (1): 87-94.
    [39] Amin, E. A., Welsh, W. J., A Preliminary in silico lead series of 2-phthalimidinoglutaric acid analogues designed as MMP-3 inhibitors, Journal of Chemical Information and Modeling, 2006, 46 (5): 2104-2109.
    [40] Keynan, S.; Hooper, N. M., Turner, A. J., Molecular and functional aspects of membrane dipeptidase. In Hooper NM, ed. zinc metalloproteases in health and disease, London, Taylor & Francis, 1996, p 285-309.
    [41] Nunez, M. B., Maguna, F. P., Okulik, N. B., Castro, E. A., QSAR modeling of the MAO inhibitory activity of xanthones derivatives, Bioorganic & Medicinal Chemistry Letters, 2004,14 (22): 5611-5617.
    [42] Geldenhuys, W. J., Lockman, P. R., McAfee, J. H., Fitzpatrick, K. T., Van der Schyf, C. J., Allen, D. D., Molecular modeling studies on the active binding site of the blood-brain barrier choline transporter, Bioorganic & Medicinal Chemistry Letters, 2004,14 (12): 3085-3092.
    [43] Almstead, N. G., Bradley, R. S., Pikul, S., De, B., Natchus, M. G., Taiwo, Y. O., Gu, F., Williams, L. E., Hynd, B. A., Janusz, M. J., Dunaway, C. M., Mieling, G. E., Design, synthesis, and biological evaluation of potent thiazine- and thiazepine-based matrix metalloproteinase inhibitors, Journal of Medicinal Chemistry, 1999, 42 (22): 4547-4562.
    [44] Donini, O. A. T., Kollman, P. A., Calculation and prediction of binding free energies for the matrix metalloproteinases, Journal of Medicinal Chemistry, 2000, 43 (22): 4180-4188.
    [45] Pirard, B., Matter, H., Matrix metalloproteinase target family landscape: a chemometrical approach to ligand selectivity based on protein binding site analysis, Journal of Medicinal Chemistry, 2006, 49 (1): 51-69.
    [46] Gupta, R. A., Gupta, A. K., Soni, L. K., Kaskhedikar, S. G., Exploration of physicochemical properties and molecular modeling studies of furanylamide analogs as antituberculosis agents, QSAR & Combinatorial Science, 2007, 26 (8):897-907.
    [47] Friedman, J. H., Exploratory projection pursuit, Journal of The American Statistical Association, 1987, 82: 249-266.
    [48] Fernandez, M., Caballero, J., QSAR modeling of matrix metalloproteinase inhibition by N-hydroxy-[alpha]-phenylsulfonylacetamide derivatives, Bioorganic & Medicinal Chemistry, 2007,15 (18): 6298-6310.
    [49] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA reference manual,University of Florida, Gainesville, FL, USA, 1994.
    [50] Gonzalez, M. P., Moldes, M. d. C. T., A TOPS-MODE approach to predict adenosine kinase inhibition, Bioorganic & Medicinal Chemistry Letters, 2004, 14 (12): 3077-3079.
    [51] Fatemi, M. H., Gharaghani, S., A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine, Bioorganic & Medicinal Chemistry, 2007,15 (24): 7746-7754.
    [52] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA: training manual, University of Florida, Gainesville, FL, USA, 1995.
    [53] Aldrin, M., Moderate projection pursuit regression for multivariate response data, Computational Statistics & Data Analysis, 1996, 21 (5): 501-531.
    [54] van Leeuwen, J. A., Jonker, R. J., Gill, R., Octane number prediction based on gas chromatographic analysis with non-linear regression techniques, Chemometrics and Intelligent Laboratory Systems, 1994, 25 (2): 325-340.
    [55] Venables, W. N., Smith, D. M., the R Development Core Team, An Introduction to R, Network Theory Ltd, 2004.
    [56] Zefirov, N. S., Kirpichenok, M. A., Izmailov, F. F., Trofimov, M. I., Scheme for the calculation of the electronegativities of atoms in a molecule in the framework of Sanderson's principle, Doklady Akademii Nauk SSSR, 1987, 296: 883-887.
    [57] Nosjean, O., Nicolas, J. P., Klupsch, F., Delagrange, P., Canet, E., Boutin, J. A., Comparative pharmacological studies of melatonin receptors: mt1, mt2 and mt3/qr2. tissue distribution of mt3/qr2, Biochemical Pharmacology, 2001, 61 (11):1369-1379.
    [58] Reiter, R. J., Pineal Melatonin: Cell Biology of Its Synthesis and of Its Physiological Interactions, Endocrine Reviews, 1991,12 (2): 151-180.
    [59] Nosjean, O., Ferro, M., Coge, R, Beauverger, P., Henlin, J.-M., Lefoulon, R, Fauchere, J.-L., Delagrange, P., Canet, E., Boutin, J. A., Identification of the Melatonin-binding Site MT3 as the Quinone Reductase 2, Journal of Biological Chemistry, 2000, 275 (40): 31311-31317.
    [60] Morgan, P. J., Barrett, P., Howell, H. E., Helliwell, R., Melatonin receptors: Localization, molecular pharmacology and physiological significance, Neurochemistry International, 1994, 24 (2): 101-146.
    [61] Delagrange, P., Guardiola-Lemaitre, B., Melatonin, its receptors, and relationships with biological rhythm disorders, Clinical Neuropharmacology, 1997, 20 (6): 482-510.
    [62] Redman, J., Armstrong, S., Ng, K. T., Free-running activity rhythms in the rat: entrainment by melatonin, Science, 1983, 219 (4588): 1089-1091.
    [63] Maestroni, G. J., The immunoneuroendocrine role of melatonin, Journal of Pineal Research, 1993, 14 (1): 1-10.
    [64] Scalbert, E., Guardiola-Lemaitre, B., Delagrange, P., [Melatonin and regulation of the cardiovascular system], Therapie, 1998, 53 (5): 459-465.
    [65] Reppert, S. M., Weaver, D. R., Ebisawa, T., Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses, Neuron, 1994, 13 (5): 1177-1185.
    [66] Reppert, S. M., Godson, C., Mahle, C. D., Weaver, D. R., Slaugenhaupt, S. A., Gusella, J. F., Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mellb melatonin receptor, The Proceedings of the National Academy of Sciences (USA), 1995, 92 (19): 8734-8738.
    [67]Farce,A.,Dilly,S.,Sabaouni,A.,Yous,S.,Berthelot,P.,Boutin.J.A.,Delagrange,P.,Renard,P.,Chavatte,P.,Three-dimensional quantitative structure-activity relationship of MT3 melatonin binding site ligands:A comparative molecular field analysis,QSAR & Combinatorial Science,2007,26(7):820-827.
    [68]Dubocovich,M.L.,Melatonin receptors:are there multiple subtypes?,Trends in Pharmacological Sciences,1995,16 (2):50-56.
    [69]Duncan,M.J.,Takahashi,J.S.,Dubocovich,M.L.,2-[125I]iodomelatonin binding sites in hamster brain membranes:pharmacological characteristics and regional distribution,Endocrinology,1988,122 (5):1825-1833.
    [70]Molinari,E.J.,North,P.C.,Dubocovich,M.L.,2-[125I]iodo-5-methoxycarbonylamino-N-acetyltryptamine:a selective radioligand for the characterization of melatonin ML2 binding sites,European Journal of Pharmacology,1996,301 (1-3):159-168.
    [71]Paul,P.,Lahaye,C.,Delagrange,P.,Nicolas,J.P.,Canet,E.,Boutin,J.A.,Characterization of 2-[125I]iodomelatonin binding sites in Syrian hamster peripheral organs,The Journal of Pharmacology and Experimental Therapeutics,1999,290 (1):334-340.
    [72]Katritzky,A.R.,Maran,U.,Lobanov,V.S.,Karelson,M.,Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties,Journal of Chemical Information and Computer Sciences,2000,40 (1):1-18.
    [73]Hemmateenejad,B.,Safarpour,M.A.,Taghavi,F.,Application of ab initio theory for the prediction of acidity constants of some 1-hydroxy-9,10-anthraquinone derivatives using genetic neural network,Journal of Molecular Structure:THEOCHEM,2003,635 (1-3):183-190.
    [74]Wang,J.,Du,H.Y.,Liu,H.X.,Yao,X.J.,Hu,Z.D.,Fan,B.T.,Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine,Talanta,2007,73 (1):147-156.
    [75] Daszykowski, M., Stanimirova, I.. Walczak, B., Daeyaert, F., de Jonge, M. R., Heeres, J., Koymans, L. M. H., Lewi, P. J., Vinkers, H. M., Janssen, P. A., Massart, D. L, Improving QSAR models for the biological activity of HIV Reverse Transcriptase inhibitors: Aspects of outlier detection and uninformative variable elimination, Talanta, 2005, 68 (1): 54-60.
    [76] http://www.codessa-pro.com
    [77] Leclerc, V., Yous, S., Delagrange, P., Boutin, J. A., Renard, P., Lesieur, D., Synthesis of nitroindole derivatives with high affinity and selectivity for melatoninergic binding sites MT(3), Journal of Medicinal Chemistry, 2002, 45 (9): 1853-1859.
    [78] Garc(?)a-(?)lvarez-Coque, M. C., Torres-Lapasi, J. R., Baeza-Baeza, J. J., Models and objective functions for the optimisation of selectivity in reversed-phase liquid chromatography,Analytica Chimica Acta, 2006, 579 (2): 125-145.
    [79] Luan, F., Xue, C. X., Zhang, R. S., Zhao, C. Y., Liu, M. C., Hu, Z. D., Fan, B. T., Prediction of retention time of a variety of volatile organic compounds based on the heuristic method and support vector machine, Analytica Chimica Acta, 2005, 537 (1-2): 101-110.
    [80] Rogers, D., Hopfinger, A. J., Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships, Journal of Chemical Information and Computer Sciences, 1994, 34 (4): 854-866.
    [81] Lucasius, C. B., Kateman, G., Genetic algorithms for large-scale optimization in chemometrics: An application, TrAC Trends in Analytical Chemistry, 1991,10 (8): 254-261.
    [82] Riccardo, L., Genetic algorithms in chemometrics and chemistry: a review, Journal of Chemometrics, 2001,15 (7): 559-569.
    [83] Barakat, N. A. M., Jiang, J. H., Liang, Y. Z., Yu, R. Q., Piece-wise quasi-linear modeling in QSAR and analytical calibration based on linear substructures detected by genetic algorithm, Chemometrics and Intelligent Laboratory Systems, 2004, 72 (1): 73-82.
    [84] Maeder, M., Neuhold, Y.-M., Puxty, G., Application of a genetic algorithm: near optimal estimation of the rate and equilibrium constants of complex reaction mechanisms, Chemometrics and Intelligent Laboratory Systems, 2004, 70 (2):193-203.
    [85] PVapnik, V., Estimation of dependences based on empirical data, Springer, Belin, 1982.
    [86] Vapnik, V., The nature of statistical learning theory, Springer, New York, 1995.
    [87] Cristianini, N., Shawe-Taylor, J., An introduction to support vector machines,Cambridge University Press, 2000.
    [88] Burges, C. J. C., A tutorial on support vector machines for pattern recognition,Data Mining and Knowledge Discovery, 1998, 2 (2): 121-167.
    [89] Stanton, D. T., Jurs, P. C., Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies Analytical Chemistry, 1990, 62 (21): 2323-2329.
    [90] Stanton, D. T., Egolf, L. M., Jurs, P. C., Hicks, M. G., Computer-assisted prediction of normal boiling points of pyrans and pyrroles, Journal of Chemical Information and Computer Sciences, 1992, 32 (4): 306-316.
    [1]Maroni,M.,Seifent,B.,Lindvall,T.,Indoor air quality a comprehensive reference book Elsevier:Amsterdam,1995.
    [2] Weetman, D. F., Volatile organic chemicals in the environment, Indoor Environment, 1994, 3 (1): 55- 57.
    [3] Molhave, T. J., Volatile organic compounds, indoor air quanlity and health, Indoor Air, 1991,1(1): 357-376.
    [4] Kelly, D. P., Spillane, W. J., Newell, J., Development of structure - taste relationships for monosubstituted phenylsulfamate sweeteners using classification and regression tree (CART) analysis, Journal of Agricultural and Food Chemistry,2005, 53 (17): 6750-6758.
    [5] LaGrone, S. F., Potential community exposure to toxic chemicals, Environmental Science & Technology, 1991, 25 (3): 366-368.
    [6] Woodruff, T. J., Axelrad, D. A., Caldwell, J., Morello-Frosch, R., Rosenbaum, A.,Public health implications of 1990 air toxics concentrations across the United States, Environ Health Perspect, 1998,106 (5): 245-251.
    [7] Ramanathan, K., Debler, V. L., Kosusko, M., Evaluation of control strategies for volatile organic compounds in indoor air, Environmental Progress, 1988, 7 (4):230- 235.
    [8] Derwent, R. G., Jenkin, M. E., Saunders, S. M., Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions, Atmospheric Environment, 1996, 30 (2): 181-199.
    [9] Blanchard, C. L., Ozone process insights from field experiments - Part Ⅲ: extent of reaction and ozone formation, Atmospheric Environment, 2000, 34 (12-14):2035-2043.
    [10] Szczurek, A., Szecowka, P. M., Licznerski, B. W., Application of sensor array and neural networks for quantification of organic solvent vapours in air, Sensors and Actuators B: Chemical, 1999, 58 (1-3): 427-432.
    [11] Pompe, M., Veber, ML, Prediction of rate constants for the reaction of O3 with different organic compounds, Atmospheric Environment, 2001, 35 (22): 3781-3788.
    [12] Horner, G., Keil, E. M., Chemosensory system for rapid automated quality control,Journal of Chromatography A, 1999, 845 (1-2): 85-92.
    [13] Hodgins, D., Simmonds, D., Sensory technology for flavor analysis, Cereal Foods World, 1995, 40:186-191.
    [14] Mielle, P., 'Electronic noses': Towards the objective instrumental characterization of food aroma, Trends in Food Science & Technology, 1996, 7 (12): 432-438.
    [15] Cometto-Mu(?)(?)z, J. E., Garcia-Medina, M. R., Calvino, A. M., Perception of pungent odorants alone and in binary mixtures, Chemical Senses, 1989, 14 (1):163-173.
    [16] Cometto-Mu(?)(?)z, J. E., Cain, W. S., Thresholds for odor and nasal pungency,Physiology & Behavior, 1990, 48 (5): 719-725.
    [17] Jacquot, L., Monnin, J., Brand, G., Influence of nasal trigeminal stimuli on olfactory sensitivity (Influence de stimuli trig(?)minaux nasaux sur la sensibilite olfactive), Comptes Rendus Biologies, 2004, 327 (4): 305-311.
    [18] Doty, R. L., Brugger, W. E., Jurs, P. C., Orndorff, M. A., Snyder, P. J., Lowry, L. D., Intranasal trigeminal stimulation from odorous volatiles: Psychometric responses from anosmic and normal humans, Physiology & Behavior, 1978, 20 (2):175-185.
    [19] Cain, W. S., Murphy, C. L., Interaction between chemoreceptive modalities of odour and irritation, Nature, 1980, 284 (5753): 255-257.
    [20] Warren, D. W., Odont, D., Walker, J. C., Drake, A. F., Lutz, R. W., Effects of Odorants and Irritants on Respiratory Behavior, Laryngoscope, 1994, 104 (5): 623-626.
    [21] Th(?)rauf, N., Hummel, T, Kettenmann, B., Kobal, G., Nociceptive and reflexive responses recorded from the human nasal mucosa, Brain Research, 1993, 629 (2): 293-299.
    [22] Th(?)rauf, N., G(?)nther, M., Pauli, E., Kobal, G., Sensitivity of the negative mucosal potential to the trigeminal target stimulus CO_2, Brain Research, 2002,942 (1-2): 79-86.
    [23] Stone, H., Rebert, C. S., Observations on trigeminal olfactory interactions, Brain Research, 1970, 21 (1): 138-142.
    [24] Cometto-Mu(?)(?)z, J. E., Hernandez, S. M., Odorous and pungent attributes of mixed and unmixed odorants, Perception and Psychophysics, 1990, 47 (4): 391-399.
    [25] Abraham, M. H., S(?)nchez-Moreno, R., Cometto-Mu(?)(?)z, J. E., Cain, W. S., A Quantitative structure activity analysis on the relative sensitivity of the olfactory and the nasal trigeminal chemosensory systems, Chemical Senses, 2007, 32 (7):711-719.
    [26] Hemmateenejad, B., Miri, R., Safarpour, M. A., Mehdipour, A. R., Accurate prediction of the blood-brain partitioning of a large set of solutes using ab initio calculations and genetic neural network modeling, Journal of Computational Chemistry, 2006, 27 (11): 1125-1135.
    [27] Fern(?)ndez, M., Caballero, J., Bayesian-regularized genetic neural networks applied to the modeling of non-peptide antagonists for the human luteinizing hormone-releasing hormone receptor, Journal of Molecular Graphics and Modelling, 2006, 25 (4): 410-422.
    [28] Kermani, B. G., Kozlov, I., Melnyk, P., Zhao, C., Hachmann, J., Barker, D., Lebl, M., Using support vector machine regression to model the retention of peptides in immobilized metal-affinity chromatography, Sensors and Actuators B: Chemical,2007,125 (1): 149-157.
    [29] Campod(?)nico, P. R., Contreras, R., Structure-reactivity relationships for electrophilic sugars in interaction with nucleophilic biological targets, Bioorganic & Medicinal Chemistry, 2008,16 (6): 3184-3190.
    [30] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA reference manual,University of Florida, Gainesville, FL, USA, 1994.
    [31] Todeschini, R.; Consonni, V.; Mauri, A., Pavan, M., DRAGON-software for the calculation of molecular descriptors. Version 5.4 for Windows, Talete srl, Milan, Italy, 2006.
    [32] Hyperchem, Release 4.0 for windows, Hypercube, Inc., 1995.
    [33] Katritzky, A. R.; Lobanov, V. S., Karelson, M., CODESSA version 2.0 reference manual, University of Florida, Gainesville, FL, USA, 1995-1997.
    [34] Katritzky, A. R., Lobanov, V. S., Karelson, M., QSPR: the correlation and quantitative prediction of chemical and physical properties from structure, Chemical Society Reviews, 1995, 24: 279-287.
    [35] Todeschini, R., Consonni, V., Handbook of molecular descriptors, Wiley-VCH, Weinheim, Germany, 2000.
    [36] Zhang, S., Golbraikh, A., Oloff, S., Kohn, H., Tropsha, A., A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications,and virtual screening of chemical databases using validated all-qsar models,Journal of Chemical Information and Modeling, 2006, 46 (5): 1984-1995.
    [37] Vendrame, R., Takahata, Y., Structure-activity relationship (SAR) of substituted 17[alpha]-acetoxyprogesterones studied with principal component analysis and neural networks using calculated physicochemical parameters, Journal of Molecular Structure: THEOCHEM, 1999, 489 (1): 55-66.
    [38] Atkeson, C. G., Moore, A. W., Schaal, S., Locally weighted learning, Artificial Intelligence Review, 1997,11 (1): 11-73.
    [39] Guha, R., Dutta, D., Jurs, P. C., Chen, T., Local lazy regression: making use of the neighborhood to improve QSAR predictions, Journal of Chemical Information and Modeling, 2006,46 (4): 1836-1847.
    [40] Pan, T.-H., Li, S.-Y., Cai, W.-J., Lazy learning-based online identification and adaptive PID control: A case study for CSTR process, Industrial & Engineering Chemistry Research, 2007, 46 (2): 472-480.
    [41] Du, H. Y., Wang, J., Zhang, X. Y., Yao, X. J., Hu, Z. D., Prediction of retention times of peptides in RPLC by using radial basis function neural networks and projection pursuit regression, Chemometrics and Intelligent Laboratory Systems,2008, 92 (1): 92-99.
    [42] Venables, W. N., Smith, D. M., the R Development Core Team, An introduction to R, http: //www. r-project.org/, 2003.
    [43] Borg, I., Groenen, P., Modern multidimensional scaling, theory and applications, New York, Springer-Verlag, 1997.
    [44] http://www.r-project.org/ (2008)
    [45] Stanton, D. T., Jurs, P. C., Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies, Analytical Chemistry, 1990, 62 (21): 2323-2329.
    [46] Duchowicz, P. R., Gonz(?)rez, M. P., Helguera, A. M., Natalia Dias Soeiro Cordeiro, M., Castro, E. A., Application of the replacement method as novel variable selection in QSPR. 2. Soil sorption coefficients, Chemometrics and Intelligent Laboratory Systems, 2007, 88 (2): 197-203.
    [47] Karelson, M., Molecular Descriptors in QSAR/QSPR analysis, Wiley & Sons, New York, 2000.
    [48] Mahadevan, S., Shah, S. L., Marrie, T. J., Slupsky, C. M., Analysis of metabolomic data using support vector machines, Analytical Chemistry, 2008, 80 (19): 7562-7570.
    [49] Hou, T. J., Wang, J. M., Li, Y. Y., ADME Evaluation in Drug Discovery. 8. The Prediction of Human Intestinal Absorption by a Support Vector Machine, Chemometrics and Intelligent Laboratory Systems, 2007, 47 (6): 2408-2415.
    [50] Fatemi, M. H., Gharaghani, S., A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine, Bioorganic & Medicinal Chemistry, 2007,15 (24): 7746-7754.
    [51] Wang, J., Du, H.-Y., Yao, X.-J., Hu, Z.-D., Using classification structure pharmacokinetic relationship (SCPR) method to predict drug bioavailability based on grid-search support vector machine, Analytica Chimica Acta, 2007, 601 (2):156-163.
    [52] Pugalenthi, G., Kumar, K. K., Suganthan, P. N., Gangal, R., Identification of catalytic residues from protein structure using support vector machine with sequence and structural features, Biochemical and Biophysical Research Communications, 2008, 367 (3): 630-634.
    [53] Abraham, M. H., Kumarsingh, R., Cometto-Muniz, J. E., Cain, W. S., An algorithm for nasal pungency thresholds in man, Archives of Toxicology, 1998, 72 (4): 227-232.
    [54] Abraham, M. H., Gola, J. M. R., Cometto-Muniz, J. E., Cain, W. S., A model for odour thresholds, Chemical Senses, 2002, 27 (2): 95-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700