副溶血弧菌Vibrio parahaemolyticus主要外膜蛋白的克隆、表达和免疫原性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
副溶血弧菌Vibrio parahaemolyticus是我国海水养殖鱼、虾、贝类的重要病原,每年由此菌引起的弧菌病给养殖业造成严重的损失。在浙江省沿海网箱养殖中,该菌与哈维氏弧菌、溶藻弧菌等重要病原弧菌一起,主要危害大黄鱼幼鱼,每年的高温季节可引起大量的死亡。前期研究中以福尔马林灭活的副溶血弧菌全菌苗免疫大黄鱼,获得了较好的保护效果。本研究开展该菌主要保护性抗原成份之一—外膜蛋白的克隆、表达和免疫原性研究,为高效疫苗的研制提供依据。
     以饱和硫酸铵梯度盐析法结合琼脂糖柱sephadex G200凝胶过滤法初步纯化了大黄鱼血清免疫球蛋白,再经割胶回收法得到进一步纯化的重链片段,分子量约为75kDa,免疫新西兰兔后获得兔抗大黄鱼免疫球蛋白血清,为ELISA和Western blotting检测技术奠定了基础。采用十二烷基肌氨酸钠法(Sarkosyl)提取不同来源的4株副溶血弧菌分离株的主要外膜蛋白,通过SDS-PAGE比较分析主要条带和分子量组成。SDS-PAGE显示4株菌的主要外膜蛋白由5-6条组成,分子量分布在21-54kDa,其中,21kDa、28 kDa和35 kDa的条带是所有菌株共有的,表明副溶血弧菌中部分主要外膜蛋白条带可能是保守的。制备了不同抗血清,对4菌株的外膜蛋白进行免疫印迹分析表明,副溶血弧菌的主要外膜蛋白具有免疫原性,全菌兔抗血清主要与一分子量为21kDa的主要外膜蛋白条带发生印迹反应;感染后恢复期大黄鱼血清识别分子量为21kDa、28 kDa、35 kDa和44 kDa的蛋白条带,可能与抗感染免疫应答有关;其中21 kDa的条带是所有抗血清均识别的,提示了该蛋白良好的免疫原性。
     以N端氨基酸测序法初步确定了21kDa的主要免疫原性外膜蛋白为ompW,设计引物从浙江省养殖大黄鱼分离株zj2003株基因组DNA克隆到该蛋白成熟肽的编码序列,基因登录号为DQ425109。亚克隆到原核表达载体pET30a中获得重组载体pET30a-ompW,转染大肠杆菌Escherichia coli BL21,在IPTG诱导下表达出预期分子量(27kDa)的重组蛋白,重组蛋白以包涵体形式存在。以镍柱亲合层析法获得纯化的重组蛋白,免疫新西兰兔获得高免血清,该血清在免疫印迹中识别重组蛋白,提示了重组蛋白得到正确表达。重组蛋白同时被全菌兔抗血清和感染恢复期大黄鱼血清所识别,进一步验证了与21kDa外膜蛋白免疫反应性的一致。研究结果显示了OmpW具有良好的免疫原性,可能应用于种的快速鉴定和疫苗开发。
     克隆了副溶血弧菌zj2003株的4种外膜蛋白ompV、ompK、ompU和TolC及两种铁调外膜蛋白psuA和pvuA,基因登录号分别为DQ016303、DQ016304、DQ006287、DQ141606、DQ141607和DQ141608。并亚克隆到原核表达载体pET30a,获得重组质粒pET30a-OMP,转化到大肠杆菌BL21,在IPTG诱导下实现大量表达,重组蛋白均以包涵体形式表达。除重组蛋白TolC在SDS-PAGE中显示的分子量(47kDa)大于预期分子量(39.6kDa),其他重组蛋白的分子量与预期相符,分别为32kDa、33 kDa、48 kDa、80kDa和78 kDa。以镍柱Ni-IDA亲和层析法纯化得到重组蛋白,结合不同抗血清进行免疫印迹,分析了各蛋白的免疫反应性及在体外培养中的表达情况。常规培养条件下提取的外膜蛋白制备的兔抗血清存针识别ompK、ompU和YolC三种重组蛋白的抗体,发生了印迹反应,显示了此三种蛋白具有免疫反应性,并且对应天然蛋白在菌体中得到表达;但未与重组的ompV、pvuA和psuA发生识别反应;提示了对应的三种外膜蛋白在本研究培养条件下未得到表达或未能引起抗体应答,有必要进一步摸索合适的培养条件使更多的抗原蛋白得到表达。副溶血弧菌ompK与哈维氏弧菌ompK多抗发生交叉识别反应,提示了两种蛋白具有同源性。
     纯化的7种副溶血弧菌重组外膜蛋白ompW、ompV、ompK、ompU、TolC、psuA和pvuA依生物功能的不同分为四组:ompW和ompV组,ompK组,ompU和TolC组,及psuA和pvuA组,采用腹腔注射的方式免疫1~+龄大黄鱼,以间接ELISA法检测免疫后4-8周内特异性抗体水平;在免疫后第28天进行活菌攻击测试各组的免疫保护率;通过免疫印迹法检测了感染后恢复期大黄鱼血清对重组外膜蛋白的抗体产生情况,分析了各重组外膜蛋白的免疫原性。免疫后4-8周,重组蛋白免疫鱼血清抗体效价持续升高,在28天后的攻击试验中获得80%以上的免疫保护率;感染后恢复期大黄鱼血清识别除TolC外的所有重组蛋白。研究结果显示了6种副溶血弧菌外膜蛋白ompW、ompV、ompK、ompU、psuA和pvuA具有良好的免疫原性,是宿主免疫应答的保护性抗原;尤其是ompK单个蛋白免疫组获得90%的保护率,由于该蛋白是弧菌中广泛存在的保守性蛋白,极有可能作为制备亚单位疫苗等高效弧菌疫苗的候选抗原。
     将副溶血弧菌重要的免疫原性铁调外膜蛋白pvuA的部分编码片段pvuA1与绿色荧光蛋白EGFP基因一起,构建入真核表达载体pCI,获得重组载体pCI-pvuA1-EGFP,其中pvuA1与下游EGFP形成一完整的1551bp的ORF,预期编码一分子量为57.16kDa的融合蛋白;纯化质粒转化Vero细胞后观察到绿色荧光的表达。以20μg/尾的剂量肌肉注射均重为75g的大黄鱼,4周后以活菌攻击,获得了中等程度的保护;免疫印迹法检测到了重组质粒免疫鱼血清内存在pvuA重组蛋白的抗体,指示了DNA疫苗免疫后鱼体表达了目的蛋白,并诱导产生了相应抗体。
Vibrio parahaemolyticus has been listed one of the pathogenic vibrios endangeringnet-cage cultured large yellow croaker(Pseudosciaena crocea) in coastal areas of China.Immunoglobulins of large yellow croaker was purified after salting out with gradientconcentration of saturate ammonium sulfate and filtering with Sephadex G200, thenrecovered from SDS-PAGE gel. And polycolonal antibody was prepared with Newzealand rabbits for ELISA and Western blotting detection. Outer membrane proteins(OMP) were extracted from four strains of V. parahaemolyticus by method of detergenttreatment with Sarkosyl and separated by SDS-PAGE. Three different antiserum, rabbitantiserum against formalin-killed-cells (FKC) of V. parahaemolyticus zj2003 (apathogenic strain isolated from diseased large yellow croaker, from Xiangshan bay,Zhejiang province), rabbit antiserum against OMP of the bacteria and large yellowcroaker convalescent antiserum were prepared for western blotting of the OMPpreparation. SDS-PAGE profiles appeared 5-6 main bands with molecular weights(MW) about 21kDa to 54kDa, four common bands with MW of about 21kDa, 28 kDa,and 35 kDa were present among the strains. Western blotting results showed that theOMP preparations were differently recognized by various antiserum. Both of the twomost abundant bands with MW of about 28kDa and 35kDa were recognized bY rabbitantiserum against OMP, which indicated that the main outer membrane proteins ofV.parahaemolyticus are immunogenic. The other main band with MW of about 21kDawas the dominantly one that reacted with rabbit antiserum against FKC; and mainly fourbands with MW of about 21kDa, 28kDa, 35kDa and 44kDa were recognized by the fishconvalescent sera, it is suggested such OMPs should have been exposed to the host'simmune system during vaccination and in vivo infection and may be of some significancefor vaccine development. The protein band with MW of about 21 kDa reacted with all theantiserum, which well displayed the strong immunogenicity of this protein.
     The immunogenic OMP of Vibrio parahaemolyticus zj2003 with MW of about21kDa was preliminary confirmed as ompW by method of N terminal amino acidresidues sequencing. Primers were designed to amplify the mature peptide codingsequence of the protein, and the sequence was sent to GenBank under the accessionnumber DQ425109. The sequence was ligated into prokaryotic expression vector pET30a,then the recombinant plasmid pET30a-ompW was transferred to Escherichia coli BL21,the strain was induced to express the recombinant protein by addition of IPTG.SDS-PAGE showed the recombinant protein appeared the expected MW of 27kDa. The recombinant protein was expressed in fusion bodies and purified with Ni-IDA affinitychromatography. Rabbit antiserum prepared against the purified protein well recognizedthe protein, which indicated that the protein was appropriately expressed. And therecombinant protein also reacted with rabbit antiserum against FKC of V.parahaemolyticus and large yellow croaker convalescent sera. The results suggested thatomp W was strong immunogenic and may act as target gene for species specific rapididentification of V.parahaemolyticus and may be considered a powerful vaccine Candidateagainst the bacteria.
     Four OMPs and two iron-regulated outer membrane proteins (IROMPs) ofV.parahaemolyticus zj2003, ompV, ompK, ompU, TolC, psuA and pvuA were cloned andthe genes were registered in GenBank (the accession number DQ016303, DQ016304,DQ006287, DQ141606, DQ141607 and DQ141608, respectively). Then the maturepeptide coding sequences of the proteins were ligated into prokaryotic expression vectorpET30a, the recombinant plasmids pET30a-OMP were transferred to E.coli BL21 and thestrains were induced to express the recombinant proteins by addition of IPTG. Therecombinant proteins were expressed in fusion bodies and purified with Ni-IDA affinitychromatography. Except ompU, the other five recombinant proteins showed expectedMW in SDS-PAGE, 32kDa, 33 kDa, 48 kDa, 80kDa and 78 kDa, respectively.Recombinant ompU moved more slowly in SDS-PAGE, appeared a MW of 47kDa, somehigher than the calculated value (39.6kDa). Western blotting results showed that threerecombinant proteins, ompK, ompU and TolC reacted with rabbit antiserum against OMPof V. parahaemolyticus, while the other three proteins not. It is suggested that the formerthree proteins were expressed under routinely culture condition and they remained thereactivity of native proteins. Combined with results of SDS-PAGE, it is indicated thatompV, psuA and pvuA were not expressed under the present culture condition or notenough expressed to elicit antibody response. Further study must carry out to solve theproblem for expression of these proteins. And rabbit antiserum against ompK of V.harveyicross-reacted with recombinant ompK of V.parahaemolyticus, which indicated thehomology of the protein between the two vibrio species. That's may be of somesignificance for vaccine development.
     The purified seven OMPs of V. parahaemolyticus were classified into four groupsconsidering of their biological function: (1) ompW&ompV; (2) ompK; (3) ompU&TolC;(4) psuA & pvuA. The protein or proteins combination was administrated to large yellowcroaker by method of intraperitoneall injection (i. p.) with the dose of 100μg per fish. Specific antibody level was detected by indirect ELISA during 4-8 weeks postvaccination and challenge experiment was undertaken for determination of relativepercent survival (RPS) of the immunized fish. Western blotting was carried out with largeyellow croaker convalescent sera. The results showed that antibody titers to theimmunized recombinant proteins increased 4-8 weeks post vaccination. The recordedRPS of vaccinated groups reached above 80%. And the fish convalescent sera reactedwith all recombinant proteins except TolC. It is suggested that six OMPs ofV.parahaemolyticus ompV, ompW, ompK, ompU, psuA and pvuA, are immunogenicduring in vivo infection, and may be of great significance for vaccine development.Especially, fish group immunized with recombinant ompK achieved a high protection of90%. For the wide expression of this conserved protein among vibrio species, ompKmust be paid enough attention for vaccine development against vibriosis.
     Partial sequence of pvuA of Vibrio parahaemolyticus zj2003, was ligated intoeukaryotic expression vector pCI together with EGFP, the gene encoding enhanced greenfluorescent protein, resulted the recombinant plasmid pCI-pvuAl-EGFP with a targetORF of 1551bp, encoding a fusion protein with the expected MW of 57.16kDa. EGFPexpression by Vero cells transferred with the recombinant vector was observed withfluorescent microscope. The DNA vaccine prepared with the purified plasmids wasadministrated to large yellow croaker by intramuscular injection (i.m., 20μg per fish).Challenge experiment with live bacteria resulted with a RPS of 50% 4 weeks postvaccination. And antibody against the recombinant pvuA was detected by Westernblotting with antiserum of the immunized fish. It is indicated that the target Protein wasexpressed in vivo and elicited antibody reponse.
引文
Bej A K, Patterson D P, Brasher C W, Vickery M C L, Jones D D, and Kaysner C. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J Microbiol Methods, 1999, 36: 215-25.
    Bej A K, Patterson D P, Brasher C W, Vickery M C L, Jones D D, and Kaysner C. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J Microbiol Methods, 1999, 36: 215-25.
    Cook D W, Bowers J C, and DePaola A. Density of total and pathogenic (tdh_) Vibrio parahaemolyticus in Atlantic and Gulf Coast molluscan shellfish at harvest. J Food Prot. 2002a,65:1873-80.
    Cook D W, Leary P O, Hunsucker J C, Sloan E M, Bowers J C, Blodgett R J, and DePaola A. Vibrio vulnificus and Vibrio parahaemolyticus in U.S. retail shell oysters: a national survey from June 1998 to July 1999. J Food Prot. 2002b, 65:79-87.
    Croci L, Suffredini D, Cozzi L, Toti L, Ottaviani D, Pruzzo C, Serratore P, Fischetti R, Goffredo E, Loffredo G, Mioni Rand the Vibrio parahaemolyticus Working Group. Comparison of different biochemical and molecular methods for the identification of Vibrio parahaemolyticus. J Appl Microbiol. 2007, 102:229-37.
    Daniels N A, Ray B, Easton A, Marano N, Kahn E, McShan A L, Del Rosario L, Baldwin T, Kingsley M A, Puhr N D, Wells J G, and Angulo F J. Emergence of a new Vibrio parahaemolyticus serotype in raw oysters: A prevention quandary. JAMA. 2000,284:1541-5.
    DePaola A, Kaysner C A, Bowers J C and Cook D W. Environmental investigations of Vibrio parahaemolyticus in oysters following outbreaks in Washington, Texas, and New York (1997 and 1998). Appl Environ Microbiol. 2000, 66:4649-54.
    DePaola A, Ulaszek J, Kaysner C A, Tenge B J, Nordstrom J L, Wells J, Puhr N and Gende S M. Molecular, serological, and virulence characteristics of Vibrio parahaemolyticus isolated from environmental, food, and clinical sources in North America and Asia. Applied and Environmental Microbiology, 2003, 69(7): 3999-4005.
    DePaola A, Ulaszek J, Kaysner C A, Tenge B J, Nordstrom J L, Wells J, Puhr N and Gende S M. Molecular, serological, and virulence characteristics of Vibrio parahaemolyticus isolated from environmental, food, and clinical sources in North America and Asia. Applied and Environmental Microbiology, 2003, 69(7): 3999-4005.
    
    Gendel SM, Ulaszek J, Nishibuchi M, DePaola A. Automated ribotyping differentiates vibrio parahaemolyticus O3:K6 strains associated with a Texas outbreak from other clinical strains. J Food Prot. 2001, 64(10): 1617-20.
    Honda S, Goto I, Minematsu N, Ikeda N, Asano N, Ishibashi M, Kinoshita Y, Nishibuchi M, Honda T,and Miwatani T. Gastroenteritis due to Kanagawa negative Vibrio parahaemolyticus. Lancet. 1987,1:331-2.
    Honda T, Ni Y and Miwatani T. Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infect Immun. 1988, 56:961-5.
    Joseph S W, Colwell R R and Kaper J B. Vibrio parahaemolyticus and related halophilic vibrios. Crit Rev Microbiol. 1983, 10:77-123.
    Kaysner C A and DePaola A, Jr. Vibrio, 2001, p. 405-420. In F. P. Downes and K. Ito (ed.),Compendium of methods for the microbiological examination of foods. American Public Health Association, Washington, D.C.
    
    Kim SK, Yang JY, Cha J. Cloning and sequence analysis of a novel metalloprotease gene from Vibrio parahaemolyticus 04. Gene, 2002,283(1-2):277-86.
    Lee JH, Ann SH, Lee EM, Kim YO, Lee SJ and Kong IS. Characterization of the enzyme activity of an extracellular metalloprotease (VMC) from Vibrio mimicus and its C-terminal deletions.FEMS Microbiol Lett. 2003,223(2): 293-300.
    Matsumoto C, Okuda J, Ishibashi M, Iwanaga M, Garg P, Rammamurthy T, Wong H, DePaola A,
    Kim Y B, Albert M J, and Nishibuchi M. Pandemic spread of an O3:K6 clone of Vibrio parahaemolyticus and emergence of related strains evidenced by arbitrarily primed PCR and toxRS sequence analysis. J Clin Microbiol. 2000, 38:578-85.
    McCarthy S A, DePaola A, Kaysner C A, Hill W E, and Cook D W. Evaluation of nonisotopic DNA hybridization methods for detection of the tdh gene of V. parahaemolyticus. J Food Prot. 2000, 63:1660-4.
    Miyamoto Y, Kato T, Obara Y, Akiyama S, Takizawa K, and Yamai S. In vitro hemolytic characteristic of Vibrio parahaemolyticus: its close correlation with human pathogenicity. J Bacteriol. 1969, 100:1147-9.
    Miyamoto Y, Kato T, Obara Y, Akiyama S, Takizawa K, and Yamai S. In vitro hemolytic characteristic of Vibrio parahaemolyticus: its close correlation with human pathogenicity. J Bacteriol. 1969, 100:1147-9.
    Nishibuchi M and Kaper JB. Nucleotide sequence of the thermostable direct hemolysin gene of Vibrio parahaemolyticus. J Bacteriol. 1985, 162, 558-64.
    Nishibuchi M and Seidler R J. Medium-dependent production of extracellular enterotoxin by non-O1 Vibrio cholerae, Vibrio mimicus, and Vibrio fluvialis. Appl Environ Microbiol. 1983,45:228-31.
    Nishibuchi, M., and J. B. Kaper. Thermostable direct hemolysin gene of Vibrio parahaemolyticus: a virulence gene acquired by a marine bacterium. Infect Immun. 1995, 63:2093-9.
    Okuda J, Ishibashi M, Abbott S L, Janda J M and Nishibuchi M. Analysis of the thermostable direct hemolysin (tdh) gene and the tdh-related hemolysin (trh) genes in urease-positive strains of Vibrio parahaemolyticus isolated on the west coast of the United States. J Clin Microbiol. 1997a, 35:1965-71.
    Okuda J, Ishibashi M, Hayashi E, Nishino T, Takeda Y, Mukhopadhyary A K, Garg S, Bhattacharya S K, Nair B G, and Nishibuchi M. Emergence of a unique O3:K6 clone of Vibrio parahaemolyticus in Calcutta, India, and isolation of strains from the same clonal group from Southeast Asian travelers arriving in Japan. J Clin Microbiol. 1997b, 35:3150-3155.
    Park K S, Iida T, Yamaichi Y, Oyagi Y, Yamamoto K and Honda T. Genetic characterization of DNA region containing the trh and ure genes of Vibrio parahaemolyticus. Infect Immun. 2002, 68:5742-8.
    Tada J, Ohashi T, Nishimura N, Shirasaki Y, Ozaki H, Fukushima S, Takano J, Nishibuchi M, and Takeda Y. Detection of the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus by polymerase chain reaction. Mol. Cell. Probes, 1992, 6:477-87.
    Tada J, Ohashi T, Nishimura N, Shirasaki Y, Ozaki H, Fukushima S, Takano J, Nishibuchi M, and Takeda Y. Detection of the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus by polymerase chain reaction. Mol. Cell. Probes, 1992, 6:477-87.
    Thompson C A and Vanderzant C. Serological and hemolytic characteristics of Vibrio parahaemolyticus from marine sources. J Food Sci. 1976,41:204-5.
    Wong H C, Liu S H, Ku L W, Lee I Y, Wang T K, Lee Y S, Lee C L, Kuo L P, and Shih D Y C. Characterization of Vibrio parahaemolyticus isolates obtained from foodborne illness outbreaks during 1992 through 1995 in Taiwan. J Food Prot. 2000, 63:900-6.
    Yu MC and Lee CY. Expression and characterization of the prtV gene encoding a collagenase from Vibrio parahaemolyticus in Escherichia coli. Microbiology, 1999, 145, 143-50.
    毛芝娟,刘国勇,陈昌福.大黄鱼溃疡病致病菌的初步分离与鉴定.安徽农业大学学报,2002,29(2):178~181.
    毛芝娟,卓华龙,杨季芳,吴雄飞.锯缘青蟹细菌性传染病的病原菌研究.台湾海峡,2001,20(2):187-192.
    牟海津,李筠,包振民,杨学宋,徐怀恕.副溶血弧菌胞外产物对中国对虾的致病性分析.海洋与湖沼,2000,31(3):273-80.
    纪荣兴,邹文政,李印龙.大黄鱼皮肤溃烂病病原的研究.Marine Sciences,2004:28(11):57-60.
    白杨,杨云生.幽门螺杆菌热休克蛋白60基因的克隆、表达及免疫原性研究.第一军医大学学报,2002,22(1):3-5.
    陈昌福,曾妍雄,楠田理一.接种不同种类病原菌脂多糖对翘嘴鳜细菌性败血症免疫保护力的比较.华中农业大学学报,2000,19(14):327-80.
    陈怀青.嗜水气单胞菌外毒素研究进展.国外医学:微生物分册,1992,15(6):256-9.
    陈士恩,张绳祖.细菌内毒素(脂多糖)化学结构研究的某些进展.动物毒物学,1989,4(1):3-5,17.
    戴书静;牛建昭;魏育林.LPS导致小鼠多脏器损伤的形态学研究.解剖科学进展,1997,3(3):223.
    董传甫,林天龙.嗜水气单胞菌研究进展(综述).福建农业学报,2003,18(4):243-8.
    董传甫,林天龙,龚晖,欧阳岁东,杨苏.嗜水气单胞菌主要外膜蛋白对欧洲鳗鲡的免疫保护试验.水生生物学报,2005,29(3):285-90.
    董传甫,林天龙,许斌福,龚晖,林能锋.电泳和免疫印迹分析副溶血弧菌和溶藻弧菌主要外膜蛋白和多糖抗原.中国人兽共患病杂志,2004,20(7):619-23.
    董传甫,林天龙.嗜水气单胞菌研究进展(综述).福建农业学报,2003,18(4):243-8.
    高崧,刘秀梵.禽病原性大肠杆菌外膜蛋白的研究进展.微生物学通报,1997,24(2):121-4.
    高崧,彭大新,文其乙等.禽大肠杆菌018、078分离株免疫保护机理的研究.扬州大学学报(自然科学版),1999,2(2):38-41.
    高崧,吴晓东,张扬,刘秀梵,张如宽.禽大肠杆菌外膜蛋白、脂多糖疫苗的免疫保护试验.中国兽医学报,2002,122(5):457-9.
    郭鹰,邹全明,朱永红,吴超,郭刚,毛旭虎,袁小澎.BALB/c小鼠口服重组幽门螺杆菌热休克蛋白A疫苗的免疫应答.第三军医大学学报,2004,26(9):753-5.
    黄晓,叶巧真.嗜水气单胞菌外膜蛋白基因ompTS的克隆与序列分析.水产学报,2001,25(6):552-8.
    季明春.淋病奈瑟菌孔蛋白疫苗的研究进展.国外医学:微生物学分册,2003,26(2):18-19,36.
    姜政,黄爱龙,陶小红,王丕龙。幽门螺杆菌疫苗的研究进展。世界华人消化杂志,2003;11(9):1451-6.
    姜政,蒲丹,黄爱龙,陶小红,王丕龙.人幽门螺杆菌热休克蛋白A编码基因的克隆、表达及抗原性研究.世界华人消化杂志,2003,11(10):1480-84.
    焦炳华主编.分子内毒素学[M].上海:上海科技文献出版社,1995.
    居巍 刘君炎等。结核杆菌pcHSP65真核表达载体的构建及其DNA免疫实验。中国免疫学杂志,2003,19(1):12-5.
    居巍,庄玉辉等。结核杆菌HSP65 DNA疫苗的初步研究。免疫学杂志,2002,18(2):112-5.
    李碧华.革兰氏阴性菌外膜蛋白结构、功能及遗传学.国外遗传学—微生物学分册,1991,14(5):193-6.
    李福胜,赵凤兰,胡军等.鼠伤寒杆菌外膜蛋白免疫原性及免疫保护性研究.中华微生物学和免疫学杂志,1993,13(3):156-8.
    李福胜,赵凤兰,胡军等.鼠伤寒杆菌外膜蛋白免疫原性及免疫保护性研究.中华微生物学和免疫学杂志,1993,13(3):156-8.
    李文桂。结核分支杆菌热休克蛋白DNA疫苗研究进展。热带病与寄生虫学,2005,3(2):111-4.
    栗克喜.热原质与脂多糖.微生物学免疫学进展.1990,4482(3):10-4.
    马清钧.新霍乱疫苗的研制与应用.旅行医学科学,2003,91(21):18-25.
    彭明利,凌宁,许红梅,卿玉玲,任红。结核杆菌热休克蛋白70在毕赤酵母中的分泌表达与鉴定。生物工程学报,2003,19(3):286-90.
    孙建和,严亚贤.嗜水气单胞菌亚单位疫苗的研制.中国兽医学报,1996,16(1):11-5.
    孙建和,严亚贤.致病性嗜水气单胞菌保护性抗原的研究.中国人兽共患病杂志,1997,13(3):20-3.
    王庆敏,胡振林,肖存杰,章建程,孙树汉。结核杆菌抗原HSP65基因在大肠杆菌中的表达及纯化。中国生物工程杂志,2004,24(4):74-6.
    谢俊锋,叶巧真.嗜水气单胞菌外膜蛋白基因ompTS的高效表达及其免疫原性.生物工程学报,2002,181(3):300-3.
    谢茂超.绿脓杆菌组分疫苗研究进展.微生物学免疫学进展,2003,31(1):55-7.
    徐灿,李兆申,杜奕奇,屠振兴,龚燕芳,金晶,吴红玉,许国铭.幽门螺杆菌热休克蛋白60核酸疫苗的构建和免疫原性鉴.胃肠病学,2005,10(1):20-3.
    鄢庆枇;苏永全;王军:周永灿.溶藻弧菌脂多糖对大黄鱼的毒性与免疫保护性试验.台湾海峡,2003,22(2):163-7.
    叶剑敏,简纪常,吴后波,吴灶和.溶藻弧菌脂多糖的化学成分分析及其对石斑鱼的毒性.水生生物学报,2004,28(15):574-6.
    鱼艳荣,刘希成.革兰氏阴性菌外膜蛋白研究进展.动物医学进展,2000,21(2):35-39.
    赵香汝,杨汉春.细菌外膜蛋白的研究现状.中国兽医杂志,1997,23(2):41-2.
    周丽,刘洪明,战文斌,宋微波.鳗弧菌、镕藻胶弧菌外膜蛋白的分离及特性.中国水产科学,2003,10(1):31-5.
    朱大玲,李爱华,钱冬,汪建国.嗜水气单胞菌毒力基因的研究进展.水生生物学报,2004,28(1):80-4.
    朱沛轩.致病性奈瑟菌脂寡糖研究进展.《国外医学》预防、诊断、治疗用生物制品分册,2000,33(5):200-2.
    Andersson K, Magnusson KE, Majeed M, Stendahl O, Fallman M. Yersinia
    pseudotuberculosis-induced calcium signaling in neutrophils is blocked by the virulence effectorYopH. Infect Immun. 1999, 67(5):2567-74.
    Benz R, Maier E, Chakraborty T. Purification of OmpU from Vibrio cholerae classical strain 569B: evidence for the formation of large cation-selective ion-permeable channels by OmpU. Microbiologia. 1997, 13(3):321-30.
    Boesen H T, Pedersen K, Larsen J L, Koch C, and Ellis A E. Vibrio anguillarum resistance to rainbow trout (Oncorhynchus mykiss) serum: role of O-antigen structure of lipopolysaccharide. Infect. Immun. 1999,67:294-301.
    
    Bolin CA, Jensen AE. Passive immunization with antibodies against iron-regulated outer membrane proteins protects turkeys from Escherichia coli septicemia. Infect Immun. 1987, 55(5): 1239-42
    Boutonnier A, Villeneuve S, Nato F, Dassy B, Fournier JM. Preparation, immunogenicity, and protective efficacy, in a murine model, of a conjugate vaccine composed of the polysaccharide moiety of the lipopolysaccharide of Vibrio cholerae 0139 bound to tetanus toxoi. Infect Immun. 2001, 69(5):3488-93.
    Bricknell IR, King JA, Bowden TJ, Ellis AE. Duration of protective antibodies, and the correlation with protection in Atlantic salmon (Salmo salar L.), following vaccination with an Aeromonas salmonicida vaccine containing iron-regulated outer membrane proteins and secretory polysaccharide. Fish Shellfish Immunol.1999, 9: 139-51.
    
    Bulieris PV, Behrens S, Hoist O, Kleinschmidt JH. Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide. J Biol Chem. 2003, 278(11): 9092-9.
    
    Chakrabarti SR, Chaudhuri K, Sen K, Das J. Porins of Vibrio cholerae: purification and characterization of OmpU. J Bacteriol. 1996, 178(2):524-30.
    Coleman G, Bennett AJ, Whitby PW, Bricknell IR. A 70 kDa Aeromonas salmonicida serine protease - beta-galactosidase hybrid protein as an antigen and its protective effect on Atlantic salmon (Salmo salar L.) against a virulent A. salmonicida challenge. Biochem Soc Trans. 1993, 21(1): 49.
    Collado R, Fouz B, Sanjuan E, Amaro C. Effectiveness of different vaccine formulations against vibriosis caused by Vibrio vulnificus serovar E (biotype 2) in European eels Anguilla anguilla. Dis Aquat Organ. 2000, 43(2):91-101.
    
    Dalmo RA, Kjerstad AA, Arnesen SM, Tobias PS, Bogwald J. Bath exposure of Atlantic halibut (Hippoglossus hippoglossus L.) yolk sac larvae to bacterial lipopolysaccharide (LPS): absorption and distribution of the LPS and effect on fish survival. Fish Shellfish Immunol. 2000, 10(2):107-28.
    Dekker N. Outer-membrane phospholipase A: known structure, unknown biological function. Mol Microbiol. 2000, 35(4):711-7.
    Duchene M, Barron C, Schweizer A, et al. Pseudomonas aeruginosa outer membrane lipoprotein I gene; molecular cloning, sequence, and expression in E. coli. J bacteriol. 1989, 171(8): 4130-7.
    Eisenhauer HA, Shames S, Pawelek PD, Coulton JW. Siderophore transport through Escherichia coli outer membrane receptor FhuA with disulfide-tethered cork and barrel domains. J Biol Chem. 2005, 280(34): 30574-80.
    Ellis AE, do Vale A, Bowden TJ, Thompson K, Hastings TS. In vivo production of A-protein, lipopolysaccharide, iron-regulated outer membrane proteins and 70-kDa serine protease by Aeromonas salmonicida subsp. salmonicida. FEMS Microbiol Lett. 1997, 149(2): 157-63
    
    Fang HM, Ge R, Sin YM. Cloning, characterisation and expression of Aeromonas hydrophila major adhesion. Fish Shellfish Immunol. 2004 , 16(5): 645-58.
    
    Fantinatti F, Silveriva W D, Castro A F P. Characteristics associated with pathogenicity of Avian septicaemic Escherichia coli strains. Vet Microbiol. 1994,41: 75-86.
    Finke M, Duchene M, Eckhardt A, et al. Protection against Pseudomonas aeruginosa infection by recombinant P.aeruginosa lipoprotein I expressed in Escherichia coli. Infect Immun. 1990, 58(7): 2241-4.
    Finke M. MuthG, Reichhelm T, et al. Protection of immunosupressed mice against infection of Pseudomonas aeruginosa by recombinant P. aeruginosa lipoprotein I and lipoprotein I-specific monoclonal antibodies. Infect Immun. 1991, 59(4):1251-4.
    Freudenberg, M. A., U. Meier-Dieter, T. Staehelin, and C. Galanos. 1991. Analysis of LPS released from Salmonella abortus equi in human serum. Microb. Pathog. 10:93-104.
    Gilleland HE, Parker MG, Mathews JM et al. Use of a purified outer membrane protein F (Porin) preparation of Pseudomonas aeruginosa as a protective vaccine in mice. Infect Immun. 1984, 44(1): 49-54.
    Greer JMM, Gilleland HE Jr. Outer membrane protein F(Porin) preparation of pseudomonas aeruginosa as a protective vacine against heterologous immunotype strains in a burned mouse model. J Infect Dis. 1987, 155(6): 1282-91.
    
    Gudmundsdottir A, Bell PE, Lundrigan MD, Bradbeer C, Kadner RJ. Point mutations in a conserved region (TonB box) of Escherichia coli outer membrane protein BtuB affect vitamin B12 transport. J Bacteriol. 1989, 171(12): 6526-33.
    
    Hara-Kaonga B, Pistole TG. OmpD but not OmpC is involved in adherence of Salmonella enterica serovar typhimurium to human cells. Can J Microbiol. 2004, 50(9): 719-27.
    
    Hastein T, Gudding R, Evensen O. Bacterial vaccines for fish--an update of the current situation worldwide. Dev Biol (Basel). 2005, 121:55-74.
    
    Heine HG, Kyngdon J, Ferenci T. Sequence determinants in the lamB gene of Escherichia coli influencing the binding and pore selectivity of maltoporin. Gene. 1987, 53(2-3): 287-92.
    Hellman J, Loiselle PM, Tehan MM, Allaire JE, Boyle LA, Kurnick JT, Andrews DM, Sik Kim K, Warren HS. Outer membrane protein A, peptidoglycan-associated lipoprotein, and murein lipoprotein are released by Escherichia coli bacteria into serum. Infect Immun. 2000b, 68(5):2566-72.
    Hellman J, Loiselle PM, Zanzot EM, Allaire JE, Tehan MM, Boyle LA, Kurnick JT, Warren HS. Release of gram-negative outer-membrane proteins into human serum and septic rat blood and their interactions with immunoglobulin in antiserum to Escherichia coli J5. J Infect Dis. 2000a, 181(3):1034-43.
    Hellman J, Roberts JD Jr, Tehan MM, Allaire JE, Warren HS. Bacterial peptidoglycan-associated lipoprotein is released into the bloodstream in gram-negative sepsis and causes inflammation and death in mice. J Biol Chem. 2002, 277(16): 14274-80.
    
    Hellman J, Tehan MM, Warren HS. Murein lipoprotein, peptidoglycan-associated lipoprotein, and outer membrane protein A are present in purified rough and smooth lipopolysaccharides. J Infect Dis.2003,188(2):286-9.
    
    Hsieh YC, Liang SM, Tsai WL, Chen YH, Liu TY, Liang CM. Study of capsular polysaccharide from Vibrio parahaemolyticus. 2003, ;71(6):3329-36.
    
    Hwang BY, Varadarajan N, Li H, Rodriguez S, Iverson BL, Georgiou G. Substrate specificity of the Escherichia coli outer membrane protease OmpP. J Bacteriol. 2007, 189(2):522-30.
    
    Kawai K, Liu Y, Ohnishi K, Oshima S. A conserved 37 kDa outer membrane protein of Edwardsiella tarda is an effective vaccine candidate. Vaccine 2004, 22(25-26): 3411-8.
    
    Kawakami H, Shinohara N, Fukuda Y, Yamashita H, Kihara H, Sakai M. The efficacy of lipopolysaccharide mixed chloroform-killed cell ( LPS-CKC) bacterin of Pasteurella piscicida on Yellowtail, Seriola Quinqueradiata. Aquaculture, 1997, 154: 95-105.
    
    Khushiramani R, Girisha SK, Karunasagar I, Karunasagar I. Cloning and expression of an outer membrane protein ompTS of Aeromonas hydrophila and study of immunogenicity in fish. Protein Expr Purif. 2007a, 51(2):303-7.
    Khushiramani R, Girisha SK, Karunasagar I, Karunasagar I. Protective efficacy of recombinant OmpTS protein of Aeromonas hydrophila in Indian major carp. Vaccine. 2007b, 25(7): 1157-8.
    Kingma RL, Snijder HJ, Dijkstra BW, Dekker N, Egmond MR. Functional importance of calcium binding sites in outer membrane phospholipase A. Biochim Biophys Acta. 2002,1561(2):230-7.
    Korn A, Rajabi Z, Wassum B, Ruiner W, Nixdorff K. Enhancement of uptake of lipopolysaccharide in macrophages by the major outer membrane protein OmpA of gram-negative bacteria. Infect Immun. 1995, 63(7):2697-705.
    
    Kossaczka Z, Shiloach J, Johnson V, Taylor DN, Finkelstein RA, Robbins JB, Szu SC. Vibrio cholerae O139 conjugate vaccines: synthesis and immunogenicity of V. cholerae O139 capsular polysaccharide conjugates with recombinant diphtheria toxin mutant in mice. Infect Immun. 2000, 68(9):5037-43.
    Kramer RA, Zandwijken D, Egmond MR, Dekker N. In vitro folding, purification and characterization of Escherichia coli outer membrane protease ompT. Eur J Biochem. 2000, 267(3):885-93.
    Lee HK, Lee J, and Tobias PS. Two lipoproteins extracted from Escherichia coli K-12 LCD25 lipopolysaccharide are the major components responsible for Toll-like receptor 2-mediated signaling. J Immunol 2002, 168:4012-7.
    Lima K M, Santos R R, Brandao I T, et al. Efficacy of DNA HSP65 vaccination for tuberculosis varies with method of DNA introduction in vivo. Vaccine, 2003, 22(1): 49-56.
    Liu Y, Oshima S, Kurohara K, Ohnishi K, Kawai K. Vaccine efficacy of recombinant GAPDH of Edwardsiella tarda against Edwardsiellosis. Microbiol Immunol. 2005, 49(7): 605-12.
    Lundrigan MD, Koster W, Kadner RJ. Transcribed sequences of the Escherichia coli btuB gene control its expression and regulation by vitamin B12. Proc Natl Acad Sci U S A. 1991, 88(4): 1479-83.
    Lutwyche P, Exner MM, Hancock RW, Trust TJ. A Conserved Aeromonas salmonicida porin provides protective immunity to rainbow trout. Infection Immun. 1995; 63: 3137-42.
    Maier C, Bremer E, Schmid A, Benz R. Pore-forming activity of the Tsx protein from the outer membrane of Escherichia coli. Demonstration of a nucleoside-specific binding site. J Biol Chem. 1988 ,263(5): 2493-9.
    Masayori I. Bacterial outer membrane[M ]. 1979, 255-92.
    Matsui K, Arai T. Specificity of Salmonella porin as an eliciting antigen for cell-mediated immunity (CMI) reaction in murine salmonellosis. Microbiol Immunol. 1989, 33(12):1063-7.
    Matsui K, Arai T. The comparison of cell-mediated immunity induced by immunization with porin, viable cells and killed cells of Salmonella typhimurium. Microbiol Immunol. 1992, 36(3): 269-78
    Matthias F. Protection against experimental Pseudomous aeruginosa infection by Recombinant P. aeruginosa Lipoprotein I expressed in Escherichia coli. Infect Immun. 1990, 58 (1): 2241-4.
    McCarter ID, Stephens D, Shoemaker K, Rosenberg S, Kirsch JF, Georgiou G. Substrate specificity of the Escherichia coli outer membrane protease OmpT. J Bacteriol. 2004, 186(17): 5919-25.
    Moser I, Schroder W. Binding of outer membrane preparations of Campylobacter jejuni to INT 457 cell membranes and extracellular matrix proteins. Med Microbiol Immunol. 1995, 184(3):147-53.
    Moser I, Schroder WF, Hellmann E. In vitro binding of Campylobacter jejuni outer membrane preparations to INT 407 cell membranes. Med Microbiol Immunol. 1992, 180(6):289-303.
    Moser I, Schroeder W, Salnikow J. Campylobacter jejuni major outer membrane protein and a 59-kDa protein are involved in binding to fibronectin and INT 407 cell membranes. FEMS Microbiol Lett. 1997, 157(2): 233-8.
    Nakasone N, Iwanaga M. Characterization of outer membrane protein OmpU of Vibrio cholerae O1. Infect Immun. 1998, 66(10):4726-8.
    Nikaido H, Rosenberg EY. Cir and Fiu proteins in the outer membrane of Escherichia coli catalyze transport of monomeric catechols: study with beta-lactam antibiotics containing catechol and analogous groups. J Bacteriol. 1990, 172(3): 1361-7.
    Prasadarao NV, Wass CA, Weiser JN, Stins MF, Huang SH, Kim KS. Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect Immun. 1996 , 64(1):146-53.
    Price BM, Galloway DR, Baker NR, et al. Protection against Pseudomonas aerugnosa chronic lung infection in mice by genetic immunization against outer membrane proteinF(OprF) of P.aeruginosa. Infect Immun. 2001, 69(5): 3510-5.
    Provenzano D, Klose KE. Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc Natl Acad Sci U S A. 2000, 97(18): 10220-4.
    Rahman MH, Kawai K. Outer membrane proteins of Aeromonas hydrophila induce protective immunity in goldfish. Fish Shellfish Immunol. 2000, 10(4): 379-82.
    Richand N. Immunogenicity of Actinobaciffus pleuropneumoniae outer membrane proteins and enhancement of phagocytosis by antibodies to the protein. Infect Immun. 1991, 59 (2): 544-9.
    Santiviago CA, Fuentes JA, Bueno SM, Trombert AN, Hidalgo AA, Socias LT, Youderian P, and Mora GC. The Salmonella enterica sv. Typhimurium smvA, yddG and ompD porin genes are required for the efficient efflux of methyl viologen. Mol. Microbiol. 2002, 46:687-98.
    Santiviago CA, Toro CS, Bucarey SA, and Mora GC. A chromosomal region surrounding the ompD porin gene marks a genetic difference between Salmonella typhi and the majority of Salmonella serovars. Microbiology 2001, 147:1897-907.
    
    Santiviago CA, Toro CS, Hidalgo AA, Youderian P, Mora GC. Global regulation of the Salmonella enterica serovar typhimurium major porin, Omp. J Bacteriol. 2003, 185(19):5901-5.
    Singh SP, Miller S, Williams YU, Rudd KE, Nikaido H. Immunochemical structure of the OmpD porin from Salmonella typhimurium. Microbiology. 1996, 142 (11): 3201-10.
    Srivastava, P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 2002, 20: 395.
    Staezek J, Gilleland HE, Gilleand LB et al. A Chimeric influenza virus expressing an epitope of outer membrane protein F of Pseudomonas aeruginosa affords protection against challenge with P.aerugnosa in a murine model of chronic pulmonary infection. Infect Immun. 1998, 66(8): 3990-4.
    Todoroki I, Joh T, Watanabe K, Miyashita M, Seno K, Nomura T, Ohara H, Yokoyama Y, Tochikubo K, Itoh M. Suppressive effects of DNA vaccines encoding heat shock protein on Helicobacter pylori-induced gastritis in mice. Biochem Biophys Res Commun 2000,277: 159-63.
    Ulevitch RJ. Recognition of bacterial endotoxins by receptor-dependent mechanisms. Adv Immunol. 1993, 53:267-89.
    van Specht BU, Knapp B, Muth G, et al. Protection of immunocompromised mice against lethal infection with Pseudomonas aeruginosa by active or passive immunization with recombinant P.aeruginosa outer membrane protein F and outer membrane protein I fusion proteins. Infect Immun. 1995, 63(5): 1855-62.
    Von Specht BU, Lucking HC, BlumB, et al. Safety and imunogenity of a Pseudomonas aeruginosa outer membrane protein I vaccine in human volunteers. Vaccine 1996, 14(2): 1111-7.
    Wagegg W, Braun V. Ferric citrate transport in Escherichia coli requires outer membrane receptor protein fecA. J Bacteriol. 1981, 145(1):156-63.
    Welch T J and Crosa J H. Novel role of the lipopolysaccharide O1 side chain in ferric siderophore transport and virulence of Vibrio anguillarum. Infect. Immun., 2005, 73(9): 5864-72
    Zakharian E, Reusch RN. Outer membrane protein A of Escherichia coli forms temperature-sensitive channels in planar lipid bilayers. FEBS Lett. 2003, 555(2):229-35.
    
    Zakharian E, Reusch RN. Kinetics of folding of Escherichia coli OmpA from narrow to large pore conformation in a planar bilayer. Biochemistry, 2005,44(17):6701-7.
    
    Zhang H, Niesel DW, Peterson JW, Klimpel GR. Lipoprotein release by bacteria: potential factor in bacterial pathogenesis. 1998, 66(11):5196-201.
    Zhang H, Peterson JW, Niesel DW, Klimpel GR. Bacterial lipoprotein and lipopolysaccharide act synergistically to induce lethal shock and proinflammatory cytokine production. J Immunol. 1997, 159(10): 4868-78.
    Zhou XH, van der Helm D, Adjimani J. Purification of outer membrane iron transport receptors from Escherichia coli by fast protein liquid chromatography: FepA and FecA. Biometals. 1993a, 6(1):25-35.
    Zhou XH, van der Helm D, Venkatramani L. Binding characterization of the iron transport receptor from the outer membrane of Escherichia coli (FepA): differentiation between FepA and FecA. Biometals. 1995, 8(2): 129-36.
    Zhou XH, van der Helm D. A novel purification of ferric citrate receptor (FecA) from Escherichia coli UT5600 and further characterization of its binding activity. Biometals. 1993b, 6(1):37-44.
    Actis L A, Potter S A, Crpsa J H. Iron-Regulated outer membrane protein OM2 of Vibrio anguillarum is encoded by virulence plasmid pJM1. J Bacteriol. 1985, 161(2):736-42.
    Actis, L. A., W. Fish, J. H. Crosa, K. Kellerman, S. R. Ellenberger, F. M. Hauser, and J. Sanders-Loehr. Characterization of anguibactin, a novel siderophore from Vibrio anguillarum 775(pJM1). J Bacteriol. 1986, 167: 57-65.
    Aeckersberg F, Lupp C, Feliciano B, Ruby EG. Vibrio fischeri outer membrane protein OmpU plays arole in normal symbiotic colonization. J Bacteriol. 2001, 183(22):6590-7.
    Ahn SH, Han JH, Lee JH, Park KJ, Kong IS. Identification of an iron-regulated hemin-binding outer membrane protein, HupO, in Vibrio fluvialis: effects on hemolytic activity and the oxidative stress response. Infect Immun. 2005, 73(2):722-9.
    Albrecht R, Zeth K, Soding J, Lupas A, Linke D. Expression, crystallization and preliminary X-ray crystallographic studies of the outer membrane protein OmpW from Escherichia coli. Acta Crystallograph Sect F Struct Biol Cryst Commun. 2006, 62(4):415-8.
    Andersen C, Hughes C, Koronakis V. Chunnel vision: export and efflux through bacterial ehannel-tunnels. EMBO Rep 2000, 1: 313-8.
    Bina J E and Mekalanos J J. Vibrio cholerae tolC is required for bile resistance and colonization. Infect Immun. 2001, 69(7): 4681-5.
    Butterton JR, Stoebner JA, Payne SM, Calderwood SB. Cloning, sequencing, and transcriptional regulation of viuA, the gene encoding the ferric vibriobactin receptor of Vibrio cholerae. J Bacteriol. 1992, 174(11):3729-38.
    Chakrabarti SR, Chaudhuri K, Sen K, Das J. Porins of Vibrio cholerae: purification and characterization of OmpU. J Bacteriol. 1996, 178(2):524-30.
    Benz R, Maier E, Chakraborty T. Purification of OmpU from Vibrio cholerae classical strain 569B: evidence for the formation of large cation-selective ion-permeable channels by OmpU. Microbiologia. 1997, 13(3):321-30.
    Dai J H, Lee Y S, Wong H C. Effects of iron limitation on production of a siderophore, outer membrane proteins, and hemolysin and on hydrophobicity, cell adherence, and lethality for mice of Vibrio parahaemolyticus. Infect Immun. 1992, 60(7): 2952-6.
    
    Duret G, Delcour AH. Deoxycholic acid blocks Vibrio cholerae OmpT but not OmpU porin. J Biol Chem. 2006, 281(29):19899-905.
    Funahashi T, Moriya K, Uemura S, et al. Identification and characterization of pvuA, a gene encoding the ferric vibrioferrin receptor protein in Vibrio parahaemolyticus. Bacteriol, 2002, 184(4): 936-6.
    Funahashi T, Tanabe T, Aso H, Nakao H, Fujii Y, Okamoto K, Narimatsu S and Yamamoto S. An iron-regulated gene required for utilization of aerobactin as an exogenous siderophore in Vibrio parahaemolyticus. Microbiology, 2003, 149: 1217-25.
    
    Goo SY, Lee HJ, Kim WH, Han KL, Park DK, Lee HJ, Kim SM, Kim KS, Lee KH, Park SJ. Identification of OmpU of Vibrio vulnificus as a fibronectin-binding protein and its role in bacterial pathogenesis. Infect Immun. 2006, 74(10):5586-94.
    Henderson DP, Payne SM. Characterization of the Vibrio cholerae outer membrane heme transport protein HutA: sequence of the gene, regulation of expression, and homology to the family of TonB-dependent proteins. J Bacteriol. 1994, 176(11):3269-77.
    Hong H, Patel DR, Tamm LK, Berg BVD. The outer membrane protein OmpW forms an eight-stranded β-barrel with a hydrophobic channel. J Biol Chem. 2006,281: 7568-77.
    Inoue T, Matsuzaki S, Tanaka S. A 26-kDa outer membrane protein, OmpK, common to Vibrio species is the receptor for a broad-host-range vibriophage, KVP40. FEMS Microbiol Lett. 1995b, 125(1):101-5.
    Inoue T, Matsuzaki S, Tanaka S. Cloning and sequence analysis of Vibrio parahaemolyticus ompK gene encoding a 26-kDa outer membrane protein, OmpK, that serves as receptor for a broad-host-range vibriophage, KVP40. FEMS Microbiol Lett. 1995a, 134(2-3):245-9.
    Jalajakumari MB and Manning PA. Nucleotide sequence of the gene, ompW, encoding a 22kDa immunogenic outer membrane protein of Vibrio Cholerae. Nucleic Acids res. 1990, 18( 8): 2180.
    Jung CR, Park MJ, Heo MS. Immunization with major outer membrane protein of Vibrio vulnificus elicits protective antibodies in a murine model. J Microbiol. 2005,43: 437-42.
    Koronakis V, Eswaran J, Hughes C. Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem. 2004, 73.467-89.
    Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 2000,405:914-9.
    Koronakis V. TolC--the bacterial exit duct for proteins and drugs. FEBS Lett. 2003, 555(1):66-71.
    Koster W L, Actis U A, Waldbeser L S, Tolmasky M E, Crosa J H. Molecular characterization of the iron transport system mediated by the pJM1 plasmid in Vibrio anguillarum 775. J Biol CHEM. 1991, 266(35): 23829-33.
    
    Litwin CM, Quackenbush J. Characterization of a Vibrio vulnificus LysR homologue, HupR, which regulates expression of the haem uptake outer membrane protein, HupA. Microb Pathog. 2001, 31(6):295-307.
    Mazoy R, Vazquez F and Lemos M L. Isolation of heme-binding proteins from Vibrio anguillarum using affinity chromatography. FEMS Microbiol Lett. 1996, 141(1): 19-
    
    Merrell DS, Bailey C, Kaper JB, Camilli A. The ToxR-mediated organic acid tolerance response of Vibrio cholerae requires OmpU. J Bacteriol. 2001, 183(9):2746-54.
    Nakasone N, Iwanaga M. Characterization of outer membrane protein OmpU of Vibrio cholerae O1. Infect Immun. 1998, 66(10):4726-8.
    Nandi B, Nandy RK, Sarkar A, Ghose AC. Structural features, properties and regulation of the outer-membrane protein W(OmpW) of Vibrio cholerae. Microbiology 2005, 151: 2975-86.
    Pohlner J, Meyer TF, Jalajakumari MB, Manning PA. Nucleotide sequence of ompV, the gene for a major Vibrio cholerae outer membrane protein. Mol Gen Genet. 1986a, 205(3):494-500.
    Pohlner J, Meyer TF, Manning PA. Serological properties and processing in Escherichia coli K12 of OmpV fusion proteins of Vibrio cholerae. Mol Gen Genet. 1986b, 205(3):501-6.
    Provenzano D, Klose KE. Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc Natl Acad Sci U S A. 2000 ,97(18): 10220-4.
    
    Provenzano D, Lauriano CM, Klose KE. Characterization of the role of the ToxR-modulated outer membrane porins OmpU and OmpT in Vibrio cholerae virulence. J Bacteriol. 2001, 183(12):3652-62.
    Rogers MB, Sexton JA, DeCastro GJ, Calderwood SB. Identification of an operon required for ferrichrome iron utilization in Vibrio cholerae. J Bacteriol. 2000, 182(8):2350-3.
    Simonet VC, Basle A, Klose KE, Delcour AH. The Vibrio cholerae porins OmpU and OmpT have distinct channel properties. J Biol Chem. 2003,278(19):17539-45.
    
    Sperandio V, Bailey C, Giron JA, DiRita VJ, Silveira WD, Vettore AL, Kaper JB. Cloning and characterization of the gene encoding the OmpU outer membrane protein of Vibrio cholerae. Infect Immun. 1996, 64(12):5406-9.
    Sperandio V, Giron J A, Silveira W D and Kaper J B. The OmpU outer membrane protein, a potential adherence factor of Vibrio cholerae. Infect Immun. 1995, 63(11): 4433-8.
    Spreng S, Dietrich G, Goebel W, Gentschev I. Protection against murine listeriosis by oral vaccination with recombinant Salmonella expressing protective listerial epitopes within a surface-exposed loop of the TolC-protein. Vaccine 2003,21: 746-52.
    Stevenson G, Leavesley DI, Lagnado CA, Heuzenroeder MW, Manning PA. Purification of the 25-kDa Vibrio cholerae major outer-membrane protein and the molecular cloning of its gene: OmpV. Eur J Biochem. 1985, 148: 385-90.
    
    Tashima KT, Carroll PA, Rogers MB, Calderwood SB. Relative importance of three iron-regulated outer membrane proteins for in vivo growth of Vibrio cholerae. Infect Immun. 1996, 64(5): 1756-61.
    Wibbenmeyer JA, Provenzano D, Landry CF, Klose KE, Delcour AH. Vibrio cholerae OmpU and OmpT porins are differentially affected by bile. Infect Immun. 2002, 70(1): 121 -6.
    Wu L, Lin X, Wang F, Ye D, Xiao X, Wang S, et al. OmpW and OmpV are required for NaCl regulation in Photobacterium damsela. J Proteome Res. 2006, 5: 2250-7.
    Xu CX, Ren HX, Wang SY, Peng XX. Proteomic analysis of salt-sensitive outer membrane proteins of Vibrio parahaemolyticus. Res Microbiol. 2004, 155: 835-42.
    Xu CX, Wang SY, Ren HX, Lin XM, Wu L, Peng XX. Proteomic analysis on the expression of outer membrane proteins of Vibrio alginolyticus at different sodium concentrations. Proteomics 2005, 5: 3145-52.
    
    Yamamoto S, Akiyama T, Okujo N, Matsu-ura S, Shinoda S. Demonstration of a ferric vibrioferrin-binding protein in the outer membrane of Vibrio parahaemolyticus. Microbiol Immunol. 1995a, 39(10):759-66.
    Yamamoto S, Hara Y, Tomochika K, et al. Utilization of hemin and hemoglobin as iron sources of Vibrio parahaemolyticus and identification of an iron-repressible hemin-binding protein. FEMS Microbiol Lett. 1995b, (128): 195-200.
    Zadnova SP, Toporkov AV, Smimova NI. Isolation and phenotyping of Vibrio cholerae strains with the enhanced production of main protective antigens. Molekuliarnaia Genetika, mikrobiologiia i virusologiia 2001, (2): 3-6.
    Biswas T, Chakrabarti MK. Antigenicity and antigenic cross-reactivity of outer membrane proteins of Vibrio parahaemolyticus. Zentralbl Bakteriol. 1994, 281 (4): 475-80.
    Chakrabarti MK, Bhattacharya J, Sinha AK, De SP. Role of outer membrane proteins on the adherence of Vibrio parahaemolyticus to rabbit intestinal epithelial cell in vitro. Zentralbl Bakteriol. 1995, 282(4): 436-41.
    Das M, Chopra AK, Cantu JM, Peterson JW. Antisera to selected outer membrane proteins of Vibrio cholerae protect against challenge with homologous and heterologous strains of V. cholera. FEMS Immunol Med Microbiol. 1998, 22(4): 303-8.
    DePaola A, Kaysner C A, Bowers J C, Cook D W. Environmental investigations of Vibrio parahaemolyticus in oysters following outbreaks in Washington, Texas, and New York (1997 and 1998). Appl Environ Infect Immun. 2000, 63: 2093-9.
    Koga T, Kawata T. Isolation and characterization of the outer membrane from Vibrio paraheamolyticus. J Gen Microbiolo. 1983, 129: 3185-96.
    Nishibuchi M and Kaper J B. Thermostable direct hemolysin gene of Vibrio parahaemolyticus: a virulence gene acquired by a marine bacterium. Microbiol. 1995, 66: 4649-54.
    Sciortino CV. Human immune response to the 18-kDa outer-membrane antigen of Vibrio cholerae. J Med Microbiol. 1993a, 39(2): 135-40.
    Sciortino CV. Prevalence of a Vibrio cholerae 18-kDa antigen in vibrios. FEMS Microbiol Lett. 1993b, 111(1): 49-55.
    Sciortino CV. Protection against infection with Vibrio cholerae by passive transfer of monoclonal antibodies to outer membrane antigens. J Infect Dis. 1989, 160(2): 248-52.
    Sciortino CV. Protection against mortality due to Vibrio cholerae infection in infant rabbits caused by immunization of mothers with cholera protective antigen. J Diarrhoeal Dis Res. 1996, 14(1): 16-26.
    Sengupta DK, Sengupta TK, Ghose AC. Antibodies to outer membrane proteins of Vibrio cholerae induce protection by inhibition of intestinal colonization of vibrios. FEMS Microbiol Immunol. 1992, 4(5): 261-6.
    Xu C, Wang S, Zhaoxia Z, Peng X. Immunogenic cross-reaction among outer membrane proteins of Grarn-negative bacteria. Int Immunonharmacol. 2005. 5(7-8): 1151-63.
    邓先余,王智学,何建国.三株杂色鲍致病菌—副溶血弧菌的16S-23SrDNA间区序列的分析微生物学报,2004,44(3):304-8.
    董传甫,林天龙,许斌福,龚晖,林能锋.电泳和免疫印迹分析副溶血弧菌和溶藻弧菌主要外膜蛋白和多糖抗原.中国人兽共患病杂志,2004,20(7):619-23.
    樊景凤,宋立超,王斌.一株引起凡纳滨对虾红体病的病原菌—副溶血弧菌的初步研究.海洋科学,2006,30(4):40-4.
    冯娟,胡超群.四种海水养殖鱼类血清免疫球蛋白的分离纯化及分子量测定.热带海洋学报,2002,21(4):8-13.
    毛芝娟,刘国勇,陈昌福.大黄鱼溃疡病病原的分离和鉴定.安徽农业大学学报,2001a,20(4):435-38.
    毛芝娟,卓华龙,杨季芳,吴雄飞.锯缘青蟹细菌性传染病的病原菌研究.台湾海峡,2001b,20 (2):187-92.
    张建设,周丽,邢婧等.致病性副溶血弧菌脂多糖的制备及对其牙鲆的免疫效应.中国海洋大学学报,2004,34(4):571-6.
    张晓华,徐怀恕,Robertson P,Austin B.副溶血弧菌的外膜蛋白及其抗原性研究.中国水产科学,1997,4(4):49-53.
    鄢庆枇,韩一凡,高天翔,庄峙厦,王小如.大黄鱼血清IgM纯化及其兔抗血清的制备.中国水产科学,2006,13(3):475-479.
    Albrecht R, Zeth K, Soding J, Lupas A, Linke D. Expression, crystallization and preliminary X-ray crystallographic studies of the outer membrane protein OmpW from Escherichia coli. Acta Crystallograph Sect F Struct Biol Cryst Commun. 2006, 62(Pt 4):415-8.
    Hong H, Patel DR, Tamm LK, van den Berg B. The outer membrane protein OmpW forms an eight-stranded beta-barrel with a hydrophobic channel. J Biol Chem. 2006, 281(11):7568-77.
    Nandi B, Nandy RK, Mukhopadhyay S,Nair GB, Shimada T, Ghose AC. Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein ompW. J Clin Microbiol. 2000, 4145-51.
    Nandi B, Nandy RK, Sarkar A, Ghose AC. Structural features, properties and regulation of the outer-membrane protein W(OmpW) of Vibrio cholerae. Microbiology, 2005, 151(Pt 9):2975-86.
    Pilsl H, Smajs D, Braun V. Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane. J Bacteriol. 1999, 181(11):3578-81.
    Wu L, Lin X, Wang F, Ye D, Xiao X, Wang S, Peng X. OmpW and OmpV are required for NaCl regulation in Photobacterium damsela. J Proteome Res. 2006, 5(9):2250-7.
    Xu C X, Ren H X, Wang S Y, Peng X X. Proteomic analysis of salt-sensitive outer membrane proteins of Vibrio parahaemolyticus. Res Microbiol. 2004, 155: 835-42.
    Jalajakumari MB, Manning PA. Nucleotide sequence of the gene, ompW, encoding a 22kDa immunogenic outer membrane protein of Vibrio cholerae. Nucleic Acids Research, 1990, 18(8): 2180.
    Xu C, Ren H, Wang S, Peng X. Proteomic analysis of salt-sensitive outer membrane proteins of Vibrio parahaemolyticus. Res Microbiol. 2004, 155(10): 835-42.
    Xu C, Wang S, Ren H, Lin X, Wu L, Peng X. Proteomic analysis on the expression of outer membrane proteins of Vibrio alginolyticus at different sodium concentrations. Proteomics. 2005, 5(12):3142-52.
    Aeckersberg F, Lupp C, Reliciano B. Vibrio fischeri outer membrane protein ompU plays a role in normal symbiotic colonization. J Bacteriol. 2001, 183(22): 6590-7.
    Bolin C A, Jensen A E. Passive immunization with antibodies against iron-regulated outer membrane proteins protects turkeys from Escherichia coli septicemia. Infect Immun. 1987, 55(5): 1239-42.
    Funahashi T, Moriya K, Uemura S. Identification and characterization of pvuA, a gene encoding the ferric vibrioferrin receptor protein in Vibrio parahaemolyticus. J Bacteriol. 2002, 184(4): 936-46.
    Goo SY, Lee HJ, Kim WH, Han KL, Park DK, Lee HJ, Kim SM, Kim KS, Lee KH, Park SJ. Identification of OmpU of Vibrio vuinificus as a fibronectin-binding protein and its role in bacterial pathogenesis. Infect Immun. 2006, 74(10):5586-94.
    Graceffa P, Jancso A, Mabuchi K. Modification of acidic residues normalizes sodium dodecyl sulfate-polyacrylamide gel electrophoresis of caldesmon and other proteins that migrate anomalously. Arch Biochem Biophys. 1992, 297: 46-51.
    Heijine GV, Rydstrom J, Brzezinski P. TolC-the bacterial exit duct for proteins and drugs. FEBS Letters 2003; 555: 66-71.
    Inoue T, Matsuzaki S, Tanaka S. Cloning and sequence analysis of Vibrio parahaemolyticus ompK gene encoding a 26-kDa outer membrane protein, that serves as a receptor for a broad-host-range vibriophage, KVP40. FEMS Microbiol Lett. 1995, 134: 245-9.
    Marciani D J, Papamatheakis J D. Anomalous behavior of the major avian myeloblastosis virus glycoprotein in the presence of sodium dodecyl sulfate. J Virol. 1978, 26: 825-7.
    Martinez J, Cazzulo JJ. Anomalous electrophoretic behaviour of the major cysteine proteinase (cruzipain) from Trypanosoma cruzi in relation to its apparent molecular mass. FEMS Microbiol Lett. 1992, 74: 225-9.
    Matagne A, Joris B, Frere J M. Anomalous behaviour of a protein during SDS/PAGE corrected by chemical modification of carboxylic groups. Biochem J. 1991, 280: 553-6.
    Stevenson G, Leavesley DI, Lagnado CA, Heuzenroeder MW, Manning PA. Purification of the 25-kDa Vibrio cholerae major outer-membrane protein and the molecular cloning of its gene: OmpV. Eur J Biochem. 1985, 148: 385-90.
    Wibbenmeyer J A, Provenzano D, Candice F. Landry. Vibrio cholerae ompU and ompT porins are differentially affected by bile. Infect Immun. 2002, 70(1): 121-6.
    Xu CX, Ren HX, Wang SX. Proteomic analysis of salt-sensitive outer membrane proteins of Vibrio parahaemolyticus. Res Microbiol. 2004, 155: 835-42.
    Ala'Aldeen D A, Borriello S P. The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine, 1996, 14(1): 49-53.
    Ala'Aldeen D A. Transferrin receptors of Neisseria meningitidis: promising candidates for a broadly cross-protective vaccine. J Med Microbiol. 1996, 44(4): 237-43.
    Alcorn SW, Pascho RJ. Antibody responses by chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) to various protein antigens. Fish Shell Immunol. 2002, 13: 327-33.
    Amend D F. Potency testing of fish vaccines. Developments in Biological Standardisation 1981, 49: 447-54.
    Bolin C A, Jensen A E. Passive immunization with antibodies against iron-regulated outer membrane proteins protects turkeys from Escherichia coli septicemia. Infect Immun. 1987, 55(5): 1 239-42.
    Bondre VP, Sinha VB, Srivastava BS. Evaluation of different subcellular fractions of Vibrio cholerae O139 in protection to challenge in experimental cholera. FEMS Immunol Med Microbiol. 1997, 19: 323-9.
    Bricknell IR, King JA, Bowden TJ, Ellis AE. Duration of protective antibodies, and the correlation with protection in Atlantic salmon (Salmo salar L.), following vaccination with an Aeromonas salmonicida vaccine containing iron-regulated outer membrane proteins and secretory polysaccharide. Fish Shell Immunol. 1999, (9): 139-51.
    
    Chakrabarti MK, Bhattacharya J, Sinha AK, De SP. Role of outer membrane proteins on the adherence of Vibrio parahaemolyticus to rabbit intestinal epithelial cell in vitro. Zentralbl Bakteriol. 1995,282(4):436-41.
    Chibber S and Bhardwaj S B. Protection in a mouse peritonitis model mediated by iron-regulated outer-membrane protein of Salmonella typhi coupled to its Vi antigen. Med Microbiol. 2004, 53:705-9.
    Funahashi T, Moriya K, Uemura S. Identification and characterization of pvuA, a gene encoding the ferric vibrioferrin receptor protein in Vibrio parahaemolyticus. Bacteriol. 2002, 184(4): 936-46.
    Graceffa P, Jancso A, Mabuchi K. Modification of acidic residues normalizes sodium dodecyl sulfate-polyacrylamide gel electrophoresis of caldesmon and other proteins that migrate anomalously. Arch Biochem Biophys. 1992, 297: 46-51.
    Heijine GV, Rydstrom J, Brzezinski P. TolC-the bacterial exit duct for proteins and drugs. FEBS Lett. 2003, 555: 66-71.
    Inoue T, Matsuzaki S, Tanaka S. A 26-kDa outer membrane protein, OmpK, common to Vibrio species is the receptor for a broad-host-range vibriophage, KVP40. FEMS Microbiol Lett. 1995a, 125: 101-5.
    Inoue T, Matsuzaki S, Tanaka S. Cloning and sequence analysis of Vibrio parahaemolyticus OmpK gene encoding a 26-kDa outer membrane protein, that serves as a receptor for a broad-host-range vibriophage, KVP40. FEMS Microbiol Lett. 1995b, 134: 245-9.
    Jung CR, Park MJ, Heo MS. Immunization with major outer membrane protein of Vibrio vulnificus elicits protective antibodies in a murine model. J Microbiol. 2005, 43: 437-42.
    Kawai K, Liu Y, Ohnishi K, Oshima S. A conserved 37 kDa outer membrane protein of Edwardsiella tarda is an effective vaccine candidate. Vaccine, 2004, 22: 3411-8.
    
    Khushiramani R, Girisha SK, Karunasagar I, Karunasagar I. Cloning and expression of an outer membrane protein ompTS of Aeromonas hydrophila and study of immunogenicity in fish. Protein Expr Purif. 2007a, 51(2):303-7.
    Khushiramani R, Girisha SK, Karunasagar I, Karunasagar I. Protective efficacy of recombinant OmpTS protein of Aeromonas hydrophila in Indian major carp. Vaccine. 2007b, 25(7): 1157-8.
    Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature, 2000, 405: 914-9.
    Lutwyche P, Exner MM, Hancock RW, Trust TJ. A Conserved Aeromonas salmonicida porin provides protective immunity to rainbow trout. Infect Immun. 1995, 63: 3137-42.
    Marciani D J, Papamatheakis J D. Anomalous behavior of the major avian myeloblastosis virus glycoprotein in the presence of sodium dodecyl sulfate. J Virol. 1978,26: 825-7.
    Martinez J, Cazzulo JJ. Anomalous electrophoretic behaviour of the major cysteine proteinase (cruzipain) from Trypanosoma cruzi in relation to its apparent molecular mass. FEMS Microbiol Lett. 1992, 74: 225-9.
    Matagne A, Joris B, Frere J M. Anomalous behaviour of a protein during SDS/PAGE corrected by chemical modification of carboxylic groups. Biochem J. 1991, 280: 553-6.
    Mathur J, Waldor MK. The Vibrio cholerae toxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect Immun. 2004, 72: 3577-83.
    Nandi B, Nandy R.K, Sarkar A, Ghose AC. Structural features, properties and regulation of the outer-membrane protein W(OmpW) of Vibrio cholerae. Microbiol. 2005, 151: 2975-86.
    Pintor M, Ferron L, Gomez J A, Gorringe A, Criado M T, Ferreiros C M. Blocking of iron uptake by monoclonal antibodies specific for the Neisseria meningitidis transferrin-binding protein 2. J Med Microbiol. 1996, 45(4): 252-7.
    Prado M E, Dabo S M, Confer A W. Immunogenicity of iron-regulated outer membrane proteins of Pasteurella multocida A:3 in cattle: molecular characterization of the immunodominant heine acquisition system receptor (HasR) protein. Veterin Microbiol. 2005, (105): 269-80.
    Sengupta DK, Sengupta TK, Ghose AC. Major outer membrane proteins of Vibrio cholerae and their role in induction of protective immunity through inhibition of intestinal colonization. Infect Immun. 1992, 60: 4848-55.
    Simonet VC, Basle A, Klose KE, Delcour AH. The Vibrio cholerae porins OmpU and OmpT have distinct channel properties. J Biol Chem. 2003, 278: 17539-45.
    Stevenson G, Leavesley DI, Lagnado CA, Heuzenroeder MW, Manning PA. Purification of the 25-kDa Vibrio cholerae major outer-membrane protein and the molecular cloning of its gene: OmpV. Eur J Biochem. 1985, 148: 385-90.
    Wibbenmeyer JA, Provenzano D, Landry CF, Klose KE, Delcour AH. Vibrio cholerae OmpU and ompT porins are differentially affected by bile. Infect Immun. 2002, 70: 121-6.
    Wu L, Lin X, Wang F, Ye D, Xiao X, Wang S, et al. OmpW and OmpV are required for NaCl regulation in Photobacterium damsela. J Proteome Res. 2006, 5: 2250-7.
    Xu CX, Ren HX, Wang SY, Peng XX. Proteomic analysis of salt-sensitive outer membrane proteins of Vibrio parahaemolyticus. Res Microbiol. 2004, 155: 835-42.
    Xu CX, Wang SY, Ren HX, Lin XM, Wu L, Peng XX. Proteomic analysis on the expression of outer membrane proteins of Vibrio alginolyticus at different sodium concentrations. Proteomics, 2005, 5: 3145-52.
    Yamamoto S, Akiyama T, Okujo N, Matsu-ura S, Shinoda S. Demonstration of a ferric vibrioferrin-binding protein in the outer membrane of Vibrio parahaemolyticus. Microbiol Immunol. 1995a, 39(10):759-66.
    Yamamoto S, Hara Y, Tomochika K, et al. Utilization of hemin and hemoglobin as iron sources of Vibrio parahaemolyticus and identification of an iron-repressible hemin-binding protein. FEMS Microbiol Lett. 1995b, (128):195-200.
    Zadnova SP, Toporkov AV, Smirnova NI. Isolation and phenotyping of Vibrio cholerae strains with the enhanced production of main protective antigens. Zh Mikrobioi Epidemiol Immunobiol. 2001, (2): 3-6.
    闫茂仓.哈维氏弧菌主要保护性抗原的研究.华中农业大学硕士生毕业论文,2005.
    Alonso M, Johnson M, Simon B, Leong JA. A fish specific expression vector containing the interferon regulatory factor 1A (IRF1A) promoter for genetic immunization of fish. Vaccine, 2003, 21:1591-600.
    Anderson E D, Mourich D V, Leong A C. Gene expression in rainbow trout (Oncorhynchus my kiss) following intramuscular injection of DNA. Mol Mar Bio, 1996, 5 (2): 105-13.
    Caipang C M A, Takano T, Hirono I, Aoki T. Genetic vaccines protect red seabream, Pagrus major, upon challenge with red seabream iridovirus (RSIV). Fish Shell Immunol. 2006, 21: 130-8.
    Coil J M. The glycoprotein G of rhabdoviruses. Brief review. Arch Virol. 1995, 140: 827-51.
    Corbeil S, Kurath G, Lapatra S E. Fish DNA vaccine against infectious hematopoietic necrosis virus: efficacy of various routes of immunization. Fish Shell Immunol. 2000, 10:711-23.
    Einer-Jensen K, Krogh T N, Roepstorff P. Characterization of intramolecular disulphide bonds and secondary modifications of the glycoprotein from viral haemorrhagic septicaemia virus, a fish rhabdovirus. J Virol. 1998, 72: 189-96.
    Go'mez-Chiarri M, Chiaverini L A. Evaluation of eukaryotic promoters for the construction of DNA vaccines for aquaculture. Genetic Analysis: Biomolecular Engineering 1999, 15: 121-4.
    Jiang W, Reich CF, Pisetsky DS. In vitro assay of immunostimulatory activities of plasmid vectors. Methods Mol Med. 2006, 127:55-70.
    Kanellos T, Sylvester ID, Howard CR, Russell PH. DNA is as effective as protein at inducing antibody in fish. Vaccine, 1999, 17: 965-72.
    Lin T-L, Dicker son H W. Purification and partial characterization of immobilization antigens for Ichthyophthi riusmultifiliis. J Protozool. 1992, 39:457-63.
    Lorenzen E, Lorenzen N, Einer-Jensen K, Brudeseth B, Evensen O. Time course study of in situ expression of antigens following DNA-vaccination against VHS in rainbow trout (Oncorhynchus mykiss Walbaum) fry. Fish Shellfish Immunol. 2005, 19(1):27-41.
    Lorenzen N, Lorenzen E, Einer-Jensen K. Immunity to viral haemorrhagic septicaemia (VHS) following DNA vaccination of rainbow trout at an early life stage. Fish Shell Immunol. 2001, 11 (7): 585-91.
    Pasnik D J, Smith S A. Immunogenic and protective effects of a DNA vaccine for Mycobacterium marinum in fish. Veter Immunol Immunopathol. 2005, 103:195-206.
    Seo J Y, Kim K H, Kim S G, Oh M J, Nam S W, Kim Y T, Choi T J. Protection of flounder against hirame rhabdovirus (HIRRV) with a DNA vaccine containing the glycoprotein gene. Vaccine, 2006, 24: 1009-15.
    Traxler GS, Anderson E, LaPatra SE, Richard J, Shewmaker B, Kurath G. Naked DNA vaccination of Atlantic salmon Salmo salar against IHNV. Dis Aquat Organ. 1999, 38(3): 183-90.
    Vazquez-Juarez R C, Gomez-Chiarri M, BarreraoSaldana H, Hemandez-Saavedra N, Dumas S, Ascencio F. Evaluation of DNA vaccination of spotted sand bass (Paralabrax maculatofasciatus) with two major outer-membrane protein-encoding genes from Aeromonas veronii. Fish Shell Immunol. 2005, 19: 153-63.
    Verfaillie T, Cox E, Goddeeris BM. Immunostimulatory capacity of DNA vaccine vectors in porcine PBMC: a specific role for CpG-motifs? Vet Immunol Immunopathol. 2005, 103 (1-2): 141-51.
    Wang X T, Theodore G, Clark J N. Immunisation of channel catfish, Ictalurus punctatus, with Ichthyophthi riusmultifiliis immobilisation antigens elicits serotype-specific protection. Fish Shell Immtmol. 2002, 13 (5): 337-50.
    Zelenay S, Elias F, Flo J. Immunostimulatory effects of plasmid DNA and synthetic oligodeoxynucleotide. Eur J Immunol. 2003, 33(5): 1382-92.
    靳彦文.DNA疫苗接种的安全性.生物技术通讯,2001,12(1):56.
    李德昌,陈启军.寄生虫虫苗的研究概况.中国兽医寄生虫病,2000,8(1):51.
    李文桂.结核分枝杆菌Ag85 DNA疫苗研究进展。中国人兽共患病杂志,2005,21(8):723-7.
    廖国阳,姜述德.基因疫苗生物学特征及影响其免疫应答的因素,国外医学,生理、病理科学与临床分册,2002,22(4):422.
    萨母布鲁克等著,黄培堂译.分子克隆实验指南.北京:科学出版社,2002,p 32-36.
    石军,陈安国,洪奇华.DNA疫苗在鱼类中的应用研究进展.中国兽药杂志,2002,36(5):41-5.
    苏小凤,邵庆均.DNA疫苗及其在水产养殖业中的应用.齐鲁渔业,2002,19(8):10-3.
    孙树汉.核酸疫苗及其在疾病免疫防治中的应用.第二军医大学学报,2000,21(6):519.
    吴乃虎.基因工程原理(第二版).北京:科学出版社,2001,135-9.
    于善谦,王洪海,朱乃硕.免疫学导论.北京:高等教育出版社,1999,38-9.
    周世力.DNA疫苗的研究进展.江汉大学学报(自然科学版),2002,19(2):82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700