Grb2抑制剂peptidimer-c抗K_(562)细胞的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Grb2分子是细胞内一个重要的连接蛋白,在细胞内信号传递中起重要作用,尤其介导由生长因子诱发的Ras活化,并启动了MAPK通路上的系列磷酸化反应,参与细胞生长和分化的调控。一些肿瘤的恶性生长总伴随着Grb2蛋白表达的增加,Grb2分子SH3的突变可抑制Grb2的信号传递功能,从而影响肿瘤细胞的生长、增殖,及其恶性化。Cussac等设计并合成了可与Grb2-SH3特异性结合的二聚肽peptidimer-c,能阻断Grb2与下游分子的连接。本研究以Bcr-abl阳性表达的K562细胞为对象,观察peptidimer-c对K562细胞生长和增殖的影响,探讨其可能的作用机制。
     一、peptidimer-c的合成、鉴定
     应用N端基团保护的Fmoc化学,固相合成针对Grb2-SH3的二聚肽peptidimer,载体肽penetratin以及含有载体肽的二聚肽peptidimer-c,用C18层析柱纯化合成的肽,高压液相色谱技术(HPLC)分析肽的纯度,质谱法分析肽的结构,应用pull-down实验,观察peptidimer与K562细胞裂解物中Grb2分子的结合。
     结果显示,所合成的肽纯度高,HPLC图谱上只见一样品峰而无其它杂峰,质谱分析显示,所合成的化合物与设计的肽是一致的,peptidimer-c的分子量为4794.0,penetratin分子量为2246.7。为了观察peptidimer与K562细胞中Grb2的结合,将合成的peptidimer和penetratin分别结合于琼脂糖凝胶微球(CNBr-Sepharose)上,并与K562细胞裂解液共孵育,Western blot结果显示,peptidimer可与K562细胞中的Grb2分子特异性结合,而penetratin不与Grb2结合。
     二、peptidimer-c对K562细胞生长增殖的影响
     在慢性粒细胞白血病中,Bcr-abl可激活胞内多条信号传导通路,维持细胞存活和增生,以及相应的生物学功能。Grb2介导的Ras-MAPK是其主要的信号途径,并与细胞生长的调控息息相关。本部分应用苔盼兰拒染法,观察不同浓度peptidimer-c,作用不同时间对K562增殖的影响,应用克隆形成法观察peptidimer-c对K562细胞生长的影响,通过WST-1法了解peptidimer-c对K562的细胞毒作用,并与Gleevec作比较,分析二者对K562细胞作用的差异。进一步,通过克隆形成实验,探讨peptidimer-c与常用的CML治疗药物Gleevec,羟基脲,及阿糖胞苷联合应用,对K562克隆形成的影响,应用金式公式计算q值,并根据q值的大小,制定两种药物的合并效应。
     苔盼兰计数法结果提示,peptidimer-c可明显抑制K562细胞的生长,且在加药后短时间内(3-6h)即有明显作用。peptidimer-c对K562的生长增殖的抑制呈浓度依赖型,而非时间依赖型。单用载体penetratin,未见明显的增殖抑制。而Gleevec则在加药24h后才出现明显的生长增殖抑制,其作用方式既表现为浓度依赖性,亦表现时间依赖性。peptidimer-c与Gleevec对K562均有细胞毒作用,且Gleeve的细胞毒作用远大于peptidimer-c。WST-1检测结果显示,peptidimer-c杀伤K562细胞的半致死剂量为(17.85±2.10)μM,而Gleevec的半致死剂量为(0.25±0.05)μM。
     在甲基纤维素半固体培养体系中,K562细胞的克隆形成受peptidimer-c抑制,并随着peptidimer-c浓度的增加克隆数逐渐减低,在浓度达到2μM以上时,即有显著性抑制。几种化合物对K562克隆形成抑制的半致死剂量为:peptidimer-c(3.90±0.86)μM,Gleevec(0.03±0.02)μM,羟基脲(15.00±7.07)μM,阿糖胞苷(0.014±0.012)μM。peptidimer-c分别与Gleevec,阿糖胞苷,羟基脲联合应用时,对K562克隆形成抑制均表现为相加作用或协同作用,其中1.5μM peptidimer-c与0.05μM Gleevec联合应用,表现协同作用,1.5μM peptidimer-c与0.006μM阿糖胞苷或0.01μM阿糖胞苷联用,也显示协同抑制效应。提示peptidimer-c可与其它类型的药物合用,以提高抗肿瘤的综合效应。
     三、peptidimer-c诱导K562细胞的凋亡
     细胞生长的抑制总是伴随着细胞的死亡,包括坏死和凋亡。本部分应用免疫印迹技术,观察peptidimer-c对K562细胞主要信号分子的影响;通过光镜和透射电镜形态观察,TUNEL法,流式细胞术检测亚二倍体形成、annexin V/PI比例、Caspase-3和Fas的表达水平,探讨peptidimer-c诱导K562细胞死亡的方式和可能的机制。
     结果表明,用peptidimer-c处理K562细胞后3-6h,细胞就发生明显形态学改变,细胞涨大,进而出现皱缩,并进入死亡阶段,透射电镜观察提示,经peptidimer-c处理,细胞形态改变,核内异染色质增多,边集现象明显,出现典型的凋亡特征。胞内内质网,线粒体结构改变。随着peptidimer-c浓度增加,坏死细胞比例加大。Annexin V/P测定结果也证实,中低浓度peptidimer-c主要诱导K562细胞凋亡,高浓度(27μM)的peptidimer-c在诱导凋亡的同时,直接导致细胞坏死。peptidimer-c的作用可使K562细胞Caspase-3的比例显著增加,提示其通过Caspase-3途径促进K562细胞凋亡,但peptidimer-c并不增加K562细胞死亡受体Fas以及Bcl-2的表达,可以确定,Fas-FasL系统不是peptidimer-c诱导K562细胞的凋亡途径,也与Bcl-2相关途径无关。peptidimer-c通过影响MAPK、PI3K、STAT5信号通路而抑制细胞生长、增殖。
     四、peptidimer-c对K562细胞周期的改变
     细胞生长的调节是通过细胞周期的调控得以实现的。本部分应用碘化丙啶一步插入DNA定量荧光染色法,检测peptidimer-c作用后,K562细胞周期各时项的比例,应用免疫印迹法(Western blot)和免疫细胞化学染色法观察K562细胞周期素Cyclin A, Cyclin B,以及周期素依赖性激酶Cdk2,p-Cdk2,,Cdk1, p-Cdk1的表达,探讨peptidimer-c对K562细胞周期的影响及其机制。
     结果显示,随着peptidimer-c浓度的增加,K562细胞的S期比例明显上升,同时,G0/G1期比例以及G2/M期比例下降,将2细胞阻滞于S期,而Penetratin不改变K562细胞周期。Gleevec亦可使K562细胞周期比例发生改变,但却使细胞阻滞于G0/G1期。Western blot检测结果提示,随着peptidimer-c浓度加大,K562细胞的Cyclin A水平被显著抑制,同时P-Cdk2表达水平亦降低,而CyclinB,Cdk1以及p-Cdk1的表达均未改变。免疫细胞化学染色结果亦显示,peptidimer-c可明显降低K562细胞CyclinA
     的表达;对Cdk2的抑制不明显,但却使Cdk2分子在细胞核内的分布发生变化,呈现不均一分布,并向核的一边浓聚。以上结果说明,peptidimer-c通过下调细胞内S期相关蛋白CyclinA和p-Cdk2的表达而使K562细胞阻滞于S期,抑制了细胞周期进程。
     五、peptidimer-c对K562细胞基因表达谱的影响
     基因芯片法技术通过同时对细胞或个体内的大量基因表达的平行分析,实现从整体上分析细胞表达状况的信息。本部分采用美国Affimetrix公司的人类U133 Plus3.0基因表达谱芯片,探讨经peptidimer-c作用后K562细胞基因表达谱的改变,并用RT-PCR方法对部分有显著差异的基因进行验证。
     结果显示,应用人类U133 plus 3.0基因表达谱芯片检测经peptidimer-c处理后K562细胞,发现有455个上调表达的基因,以及74个下调表达基因,涉及细胞凋亡,血管生成,细胞周期,信号转导,细胞趋化,蛋白合成、蛋白折叠,转录因子,以及一些功能不明的基因等等。RT-PCR检测结果与基因表达谱芯片检测结果吻合。
     凋亡相关基因分析表明,petidimer-c可能通过上调TNF及其受体家族成员,和JUN家族,启动K562细胞凋亡;通过抑制热休克蛋白导致细胞死亡。
     细胞周期相关基因分析表明,petidimer-c可能通过上调细胞周期抑制因子P21、低氧诱导基因95(Hi95, sestrin2)等改变细胞周期进程。
Grb2 (growth factor receptor-bound protein 2) is an important adaptor protein in the cells, and plays a pivotal role in the cellular signal transduction. Grb2 activates MAPK cascade which contributes to the cellular growth and differentiation by Ras activation. In some cancer cells, Grb2 is over-expressed, and the mutation of Grb2 could inhibit its signal transferation and impair the cell proliferation and transformation. In 1999, a peptide dimmer (peptidimer-c) was designed to bind the two domains of Grb2 and blocked the link of Grb2 and the down-stream molecule Sos which is a guanine nucleotide exchange factor for Ras. K562 is a Bcr-abl positive cell line. Grb2 plays an important role in the Bcr-abl induced signal transductian. In this study the effect of peptidimer-c on K562 cells was investigated and the possible mechanisms would be disussed in the following five sections.
     1. The synthesis of peptides and identity
     The peptidimer ( VPPPVPPRRR-K-RRRPPVPPPV ), penetratin (RQIKIWFQNRRMKWKK) and peptidimer-c (peptidimer linked to penetratin) were synthesized by solid-phase synthesis using Fmoc chemistry, and purified by high performance liquid chromatography (HPLC) on a C18 column. Purity was evaluated by HPLC, and the identity of the peptides was checked by electrospray mass spectroscopy(MS). A pull-down assay was used to observe the specific binding of peptidimer to the Grb2 from K562 cells.
     The result showed that a single protein peak was observed by HPLC, which meant that the peptide was in high purity. MS analysis showed the peptides were coinsident with the design. The molecular weight of peptidimer-c was 4794.0 and that of the penetratin was 2246.7. In order to determine the binding of peptidimer to Grb2, the peptidimer and penetratin were respectively coupled to CNBr sepharose beads and incubated with cell lysate of K562. Pull down assay demonstrated that the peptidimer, not the penetratin, could bind to Grb2 specifically.
     2. The influence of peptidimer-c on K562 cell growth
     In chronic myelogenous leukemia (CML) cells, Bcr-abl fusion protein activates many signal pathways to maintain the cell survival, proliferation and transformation. Among these signalings, the MAPK cascade activated by Ras is the key pathway, and the coupling of Bcr-abl and Ras is mediated by Grb2. In this section we investigated the inhibition of peptidimer-c on K562cell proliferation by trypan blue exclusion assay; the cytostatic effect by clonogenic assay, and the cytotoxicity by WST-1 method. A further experiment was performed with clonogenic assay to explore the effect of peptidimer alone and in combination with Gleevec, Hydroxyurea and Cytarabine respectively. Jing’s method was used for analysis.
     The results showed that the peptidimer-c could inhibit the proliferation of K562 significantly in a dose-dependent manner, shortly (3-6h) after the cells were exposed to the drug, and the penetratin alone did not influence the cell proliferation. Gleevec inhibited the growth of K562 not only in a dose-dependent manner, but also in a time-dependent manner. WST-l test showed the cytotoxicity of peptidimer-c or gleevec on K562 cells, the IC50 of peptidimer-c was (17.85±2.10)μM and the IC50 of gleevec was (0.25±0.05)μM.
     In the methylcellulose semi-solid medium system, the colony formation of K562 was greatly decreased by peptidimer-c as compared to the penetratin, and the colony number decreased as the dose of peptidimer-c increased. For IC50 value of colony formation on K562, peptidimer-c was (3.9±0.86)μM, Gleevec was (0.03±0.02)μM, Hydroxyurea was (15.00±7.07)μM, and cytarabine was (0.014±0.012)μM. There were synergistic effects of peptidimer-c with Gleevec, Hydroxyurea or Cytarabine on K562 by colonogenic assay. Combination of 1.5μM peptidimer-c and 0.05μM Gleevec showed synergistic effect on K562, as well as the combination of 1.5μM peptidimer-c and 0.006μM or 0.01μM Cytarabine. These results suggested that combination of peptidimer-c with other drugs would increase the anti-cancer effects.
     3. peptidimer-c induced apoptosis in K562 cells
     The inhibition of cell growth is always concomitant with the cell death, including necrosis and apoptosis. By morphological observation, TUNEL technique, flow cytometry for determining the hypodiploid formation; annexin V/PI percentage; and expression of caspase-3, Fas and Bcl-2, K562 cell death induced by peptidimer-c would be analyzed in this section.Some signal molecules were detected by Western blot to observe the influence of peptidimer-c on the signal pathways of K562.
     The results showed that under the microscope, the K562 cells got some morphological changes: cells became swelling and crimpling after 6h exposure to the peptidimer-c. At the same time, it was found that the hetero-chromatin increased and accumulated in the margin of nucleus under the electronic microscope. The structure of endoplasmic reticulum and mitochondria changed. The percentage of necrosis increase as the dose of peptidimer-c increased. Annexin V/PI test demonstrated that medium or low dose of peptidimer-c mainly induced the apoptosis of K562 cells, and high dose of peptidimer-c (27μM) induced both the apoptosis and the necrosis of K562 cell. Peptidimer-c might induce the apoptosis of K562 by activating the caspase-3. Neither the Fas expression, nor the Bcl-2 of the K562 cells was changed.Peptidiemer-c may inhibit the growth of K562 cells by decreasing the transduction of MAPK, PI3K, and STAT5 pathways.
     4. Peptidimer-c changed the cell cycle phase distribution of K562 cells
     Cell growth is regulated by the control of cell cycle progression. In this section, the cell cycle modifications of K562 by peptidimer-c were detected with PI staining method in flow cytometer and analyzed by ModFit software. The role of the cyclins (Cyclin A/B) and cylin-dependent kinases (Cdk2, P-Cdk2, Cdk1 P-Cdk1) on cell cycle modification were investigated by western blot and immunocytochemistry techniques.
     The results showed that the percentage of K562 cells in S phase inceased, and those of G0/G1 phase and G2/M phase decreased when K562 cells were treated with increasing concentrations of peptidimer-c for 6h. Peptidimer-c induced an S phase arrest in K562 cells, and penetratin had no effect on the cell cycle phase distribution. Gleeve also changed the cell cycle phase distribution, but it induced a G0/G1 phase arrest in K562 cells. Western blot demonstrated that the peptidimer-c treatment resulted in a significant reduction in the protein levels of cyclin A and P-cdk2, and a slight decrease in the protein level of Cdk2 by high dose of peptidimmer-c. Peptidimer-c did not influence the protein expression level of cyclin B, Cdk1, P-Cdk. Immunocytochemistical results also indicated that the cyclin A level decreased in K562 treated with increasing peptidimer-c, and the Cdk2 level decreased a little. Peptidimer-c resulted in the change of Cdk2 distribution in the nucleus. Cdk2 protein was enriched in the inner margin of the nuclear membrane. These results suggested that peptidimer led to an S phase arrest of K562 cells by down-regulating the cyclin A and P-Cdk2 and inhibited the cell cycle progression.
     5. The influence of peptidimer-c on K562 gene expression profiles
     Gene expression profiles analysis is a powerful technology to gain valuable information of cells in general by a synchronous detection of plentiful genes in the cells or the organisms. In this section, the human U133 plus 3.0 gene expression profiles from Affimetrix Company were used to detect the gene expression changes in K562 cells treated with poptidimer-c. RT-PCR assays were performed to confirm some significantly changed genes.
     The results showed that the expression of 455 genes in K562 cells treated with peptidimer-c was up-regulated and that of 74 genes was down-regulated in the gene profiles. These genes are those for apoptosis, angiogenesis, cell cycle, signal transduction, chemotaxis, protein synthesis, protein folding, transcript factors, and some other unknown functions. The results of RT-PCR were coincident with those of gene expression profiles.
     Apoptosis related genes analysis suggested that peptidimer-c may induce apoptosis of K562 cells by activating TNF/TNFR family and the JUN family, and lead to cell death by inhibiting some hot shock proteins (HSP).
     Cell cycle related genes analysis indicated that peptidimer-c also modified the cell cycle progression of K562 through up-regulation of cyclin-dependent kinase inhibitor P21, and the hypoxia-induced gene 95(Hi95, sestrin2).
引文
1. 林果为,等,白血病,选自《实用内科学》第 12 版,陈灏珠主编,人民卫生出版社 2005:2307-2309。
    2. 李利、孟凡义,成人白血病发生的环境危险因素。环境与职业医学,2006,23 卷第 4 期:349-351
    3. 黄一微,慢性粒细胞白血病,选自《实用内科学》第 12 版,陈灏珠主编,人民卫生出版社 2005:2322-2328。
    4. Rowley JD et al, A new consistent chromosoncd abnormality in chronic myelogenous leukemia identified by quinacrine fluroscence and Giemsa staining, Nature, 1973; 243:290-293
    5. Pane F, Frigeri F1 Sindona M. Neutrophilic-chronic myeloid leukemia:a distinct disease with a specific molecalar marker (BCR/ABL with C3/A2 junction). Blood, 1996; 88:2410-2414.
    6. smith KM, yacobi R, Van Etten RA. Auto inhibition of Bcr-Abl through its SH3 domain. Mol cell 2003;12:27-37.
    7. Li S, Couvillon AD, Brasher BB, et al. Tyrosine phosphorylation of mechanism for tyrosine kinase signaling, EMBO J. 2001; 20:6793-6804.
    8. Maru Y. Molecular biology of chronic myeloid leukemia. International Journal of Hematology. 2001; 73(3):308-322.
    9 . Lowenstein EJ, Daly RJ, Batzer AG, et al. The SH2 and SH3 domain-containing protein Grb2 links receptor tyrosine kinases to ras signaling. Cell. 1992; 70: 431-442.
    10.Chardin P, Camonis JH,Gale NW et al Human SOS1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 1993,260:1338-1343.
    11.Seger R and Krebs EG. The MAPK signaling cascade. FASEB Journal.1995;9:726-735.
    12. Ravelli, R. B., Gigant, B., Curmi, P. A., et al. Insight into tubulinregulation from a complex with colchicine and a stathmin-like domain. Nature 2004; 428, 198-202.
    13. Gadek, T. R., and Nicholas, J. B. Small molecule antagonists of proteins. Biochem Pharmacol 2003; 65, 1-8.
    14. Shakespeare, W., Yang, M., Bohacek, R., et al. Structure-based design of an osteoclast-selective, nonpeptide src homology 2 inhibitor with in vivo antiresorptive activity. Proc Natl Acad Sci U S A 2000; 97, 9373-9378.
    15. Shakespeare, W. C., Metcalf, C. A., Wang, Y., et al. Novel bone-targeted Src tyrosine kinase inhibitor drug discovery. Curr Opin Drug Discov Devel 2003; 6, 729-741.
    16. Susva, M., Missbach, M., and Green, J. Src inhibitors: drugs for the treatment of osteoporosis, cancer or both? Trends Pharmacol Sci 2000; 21, 489-495.
    17. Gay, B., Suarez, S., Caravatti, G., et al. Selective GRB2 SH2 inhibitors as anti-Ras therapy. Int J Cancer 1999; 83, 235-241.
    18. Liu, W. Q., Vidal, M., Gresh, N., et al.. Small peptides containing phosphotyrosine and adjacent alphaMe-phosphotyrosine or its mimetics as highly potent inhibitors of Grb2 SH2 domain. J Med Chem 1999; 42, 3737-3741.
    19. Liu, W. Q., Vidal, M., Olszowy, C., et al.. Structure-activity relationships of small phosphopeptides, inhibitors of Grb2 SH2 domain, and their prodrugs. J Med Chem 2004; 47, 1223-1233.
    20. Vidal, M., Liu, W. Q., Lenoir, C., et al. Design of peptoid analogue dimers and measure of their affinity for Grb2 SH3 domains. Biochemistry 2004; 43, 7336-7344.
    21. Cussac D, Vidal M, Leprince C, et al. A Sos-derived peptidimer blocks the Ras signaling pathway by binding both Grb2 SH3 domains and displays antiproliferative activity. FASEB J. 1999,13(1):31-38
    22. Sawyers CL. Chronic myeloid leukemia. N Engl J Med. 1999 ; 340 :1330-1340.
    23.Van Oosterom AT, Verweij J, Verweij J, et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet. 2001; 358(9291):1421-1423.
    24.Melo JV, Chuah C. Resistance to imatinib mesylate in chronic myeloid leukaemia. Cancer Lett. 2006 Aug 31;
    25.BroxtermanHJ,and Georgopapadakou NH. New cancer therapeutics: target-specific in, cytotoxics out? Drug Resistance Updates. 2004; 7:79-87.
    26. Sawyer CI, Hochhaus A, Feldman E, et al. Imatinib induces hematologic and cytogenetic response in patients with chronic myelogenous leukemia in myeloid blast: results of a phase II study. Blood 2002; 99:3530-3539.
    27.Baselga J, Norton L, Albanell J, et al. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res. 1998;58(13):2825-31.
    28.Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol. 2003; 21: 2237-2246.
    29.Herrera R, Sebolt-Leopold JS. Unraveling the complexities of the Raf/MAPK kinase pathway for pharmacological intervention. Trends Mol Med. 2002; 8:S27-S31.
    30.vasilevskaya I, and O’Dwyer PJ. Role of Jun and jun kinase in resistance of cancer cells to therapy. Drug Resistance Update. 2003; 6: 231-238.
    31.Chen YL, Law PY, Loh HH. Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Curr Med Chem Anticancer Agents. 2005;5(6):575-589.
    32.Bouchet BP, de Fromentel CC, Puisieux A, et al. p53 as a target for anti-cancer drug development. Crit Rev Oncol Hematol. 2006;58(3):190-207.
    33.Isaacs JS, Xu W, and Neckers L. heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 2003, 3: 213-217.
    34.Garbay C, Liu WQ, Vidal M, et al. Inhibitors of Ras signal transduction as antitumor agents. Biochem Pharmacol. 2000 Oct 15;60(8):1165-1169. Review.
    35.Dharmawardana PG, Peruzzi B, Giubellino A, et al. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anti-cancer Drugs 2006; 17:13-20
    36. Simon JA and Schreiber SL. Grb2 SH3 bingding to peptides from Sos: Evaluation of a general model for SH3-ligand interactions. 1995; Chem Biol 2: 53-60.
    37.Bollag G,McCormick F.Regulators and effectors of Ras proteins.Annu Rev Cell Biol 1991;7:601-632.
    38.Chardin P, Cussac D, Maignan S, et al. The Grb2 adaptor. FEBS letters 1995; 369:47-51.
    39.Daly RJ, Binder MD, Sutherland RL. Overexpression of the Grb2 gene in human breast cancer cell lines. Oncogene. 1994, 9:2723-2727
    40.Janes PW, Daly RJ, De Fazio A, et al. Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene. 1994, 9:3601-3608.
    41.Puil L, Liu J, Gish G, et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J. 1994; 13:764-773.
    42.Tari AM and Lopez-Berestein G. GRB2: A pivotal protein in signaltransduction. Seminar in Oncology. 2001; 28(5): 142-147.
    43.Soriano JV, Liu N, Gao Y, et al. Inhibition of angiogenesis by growth factor receptor bound protein 2-Src homology 2 domain bound antagonists. Mol Cancer Ther. 2004 Oct;3(10):1289-1299.
    44. Hermanson, G. T., Mallia, A. K., and Smith, P. K. Activation methods. In: Immobilized Affinity Ligand Techniques, Academic Press, New York, 1992. pp. 53–56.
    45.Sastry L, Cao T, and King CR. Multiple Grb2-protein complexes in human cancer cells. Int. J. Cancer 1997; 70: 208-213.
    46.Tari AM, Arlinghaus R, Lopez-Berestein G. Inhibition of Grb2 and Crkl proteins results in growth inhibition of Philadelphia chromosome positive leukemic cells. Biochem Biophys Res Commun. 1997; 235: 383-388.
    47. Huang F and Sorkin A. Growth Factor Receptor Binding Protein 2-mediated Recruitment of the RING Domain of Cbl to the Epidermal Growth Factor Receptor Is Essential and Sufficient to Support Receptor Endocytosis. Mol Biol Cell. 2005 ; 16(3): 1268–1281.
    48.Fath I, Schweighoffer F, rey I, et al. Cloning of a Grb2 isoform with apoptotic properties. Science 1994; 264: 971-974
    49.Vidal M, Gigoux V, Garbay C, et al, SH2 and SH3 domains as targets for anti-proliferative agents. Critical Reviews in Oncology/Hematology 2001; 40:175-186.
    50.Liu WQ, Vidal M, Mathe C, et al. Inhibition of the ras-dependent mitogenic pathway by phosphopeptide prodrugs with antiproliferative properties. Bioorg Med Chem Lett. 2000; 10(7): 669-672.
    51.Derossi D, Joliot AH, Chassaing G, et al. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem. 1994; 269:10444-10450.
    52.Feller SM, Tuchscherer G, Voss J. high affinity molecules disruptingGRB2 protein complexes as a therapeutic strategy for chronic myelogenous leukaemia. Leuk. Lymphoma. 2003, 44(3):411-427.
    53 . Pendergast AM, Quilliam LA, Cripe LD, et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75: 175-185.
    54. calabretta B, Perroit D, The biology of CML blast crisis. Blood 2004; 103:4010:4022.
    55. Mauro MJ, and Druker BJ. STI571: Targeting BCR-ABL as therapy for CML. The Oncologist 2001; 6:233-238.
    56. Liem AA, Chamberlain MP, Wolf CR, et al. The role of signal transduction in cancer treatment and drug resistance. European Journal of Surgical Oncology. 2002; 28: 679-684.
    57. Hehlmann R. Current CML therapy: progress and dilemma. Leukemia. 2003; 17:1010-1012.
    58.Sonoyama J, Matsumura I, Ezoe S,et al. Functional Cooperation among Ras, STAT5, and Phosphatidylinositol 3-Kinase is Required for Full Oncogenic Activities of BCR/ABL in K562 Cells [J]. The Journal of Biological Chemistry.2002; 277:8076-8082
    59 . Cortez D, Kadlec L, Pendergast AM. Structure and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol. 1995; 15: 5531-5541.
    60.Gishizky ML, Cortez D,and Pendergast AM. Mutant forms of growth factor-binding protein-2 reverse BCR-ABL-induced transformation Proc. Natl. Acad. Sci. 1995, 92:10889-10893.
    61.Kardinal C, Konkol B, lin H, et al. Chronic myelogenous leukemia blast cell proliferation is inhibited by peptides that disrupt Grb2-SoS complexes [J]. Blood.2001; 98:1773-1781
    62.金正均. 合并用药中的相加[J]. 中国药理学学报.1980; 1:70-76
    63.Fan M, Chambers TC. Role of mitogen-activated protein kinases in theresponse of tumor cell to chemotherapy. Drug Resistance Update. 2001; 4(4): 253-267.
    64. Cheng AM, Saxton TM, Sakai R, et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell. 1998, 95:793-803.
    65. Kardinal C, Konkol B, schulz A, et al. Cell-penetrating SH3 domain blocker peptides inhibit proliferation of primary blast cells from CML patients. FASEB Journal 2000;14:1529-1538
    66. Vidal M, Liu WQ, Gril B, et al. Design of new anti-tumor agents interrupting deregulated signaling pathways induced by tyrosine kinase proteins. Inhibition of protein-protein interaction involving Grb2. J Soc Biol. 2004; 198(2):133-137.
    67. Lehnert M. Clinical multidrug resisitance in cancer: a multifactirial problem. Eur J Cancer. 1996; 32A: 912-920.
    68. Topaly J, Zeller WJ, Fruehauf S. Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells. Leukemia. 2001; 15: 342-347.
    69. Rosee PL, O’Dwyer ME and Druker BJ. Insights from pre-clinical studies for new combination treatment regimens with the Bcr-Abl kinase inhibitor imatinib mesylate (Gleevec/Glivec)in chronic myelogenous leukemia:a translational perspective. Leukemia. 2002; 16:1213-1219.
    70. Kotaki M, Motoji T, Takanashi M, et al. Anti-proliferative effect of the abl tyrosine kinase inhibitor STI571 on the P-glycoprotein positive K562/ADM cell line. Cancer Lett. 2003; 199(1):61-68.
    71.成军。 程序性细胞死亡概念。 选自《程序性细胞死亡与疾病》第一版,成军 主编, 北京医科大学/中国协和医科大学联合出版社 1997:1-12.
    72. 毛平, 许锋。细胞凋亡过程中的信号转导。环境与职业医学 2004;21(1):62-65。
    73. Koopman, G, Reutelingsperger, CP, Kuijten, GAM, et al. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994; 84: 1415.
    74. Bush JA, Cheung KJ, Li G, et al. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of P53. Exp Cell Res. 2001; 271(2):305-314.
    75. Allen RT, Cluck MW, Agrawal DK. Mechanisms controlling cellular suicide: role of Bcl-2 and caspase. Cell Mol Life Sci. 1998; 54(5): 427-445.
    76. Yang L-Q, Fang D-C, Wang R-Q, et al. Effect of NF-κB, survivin, Bcl-2 and caspase3 on apoptosis of gastric cancer cells induced by tumor necrosis factor related apoptosis inducing ligand. World J Gastroenterol. 2004; 10(1): 22-25.
    77. 何英,王东武。Fas 信号传导研究。国外医学·生理、病理科学与临床分册。1997;17(4):292-294。
    78. 金琳芳,陈同钰。Bcl-2 基因蛋白家族与细胞凋亡。医学综述,2005;11(5):446-447。
    79. Morgan DO. Cyclin-dependent kinases: Engines, Clocks, and Microprocessors [J]. Annu. Rev. Cell.Dev.Biol.1997; 13:261-291
    80. Rosenthal ET, Hunt T, Ruderman JV. Selective translation of mRNA controls the pattern of protein synthesis during early development of the Surt clam, Spisula solidissima. Cell. 1980; 20:4 87-494.
    81. Yue X, Connolly T, Futcher B, et al. Human D-type cyclin. Cell. 1991; 65: 691-699.
    82. Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin-dependent kinase(CDKs), growth suppression genes and cyclin-dependent kinase inhibitors(CKIs). Oncogene. 1995; 11: 211-219.
    83. Yam CH, Fung TK and Poon RYC. Cyclin A in cell cycle control and cancer.Cell. Mol. Life. Sci. 2002; 59: 1317-1326.
    84. Kastan MB, and Bartek J. Cell-cycle checkpoints and cancer[J]. Nature. 2004; 432:316-323
    85.马洪德,蒋明德,曾维政. Erk 信号通路与细胞周期调控. 西南国防医药. 2003;13(5):556-558.
    86. Morgan MA, Dolp O, Reuter CWM. Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibititors of RAS signaling. Blood. 2001; 97(6):1823-1834.
    87. Herrera R, Sebolt-Leopold JS. Unraveling the complexities of the Raf/MAPK kinase pathway for pharmacological intervention. Trends Mol Med. 2002; 8:S27-S31.
    88. 许民,乔振华,鹿育晋,等。FTI-277 对髓系白血病细胞的抗增生作用与抑制 ERK/MAPK 信号途径的关系。白血病·淋巴瘤。2006;15(3):170-173。
    89. 高燕,林莉萍,丁健. 细胞周期调控的研究进展. 生命科学. 2005; 17(4):318-322.
    90.桑至剑, 朱炎. 细胞周期 G1-S 的调控与癌症. 口腔颌面外科杂志. 2004; 14(3):283-285.
    91.senderowicz AM. Development of cyclin-dependent kinase modulators as novel the rapentic approaches for nematological malignancies. Leukemia 2001;15:1-9
    92. Tsukada Y, Tanaka T, Miyazawa K, et al. Involvement of down-regulation of Cdk2 activity in hepatocyte growth factor-induced cell cycle arrest at G1 in the human hepatocellular carcinoma cell line HepG2. J Biochem . 2004;136(5):701-709.
    93. Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol. 2006;24(11): 1770-1783.
    94. Castanedon G, Clark K, Wang S, et al. CDK2/cyclinA inhibitors: Targeting the cyclinA recruitment site with small molecules derivedfrom peptide leads . Bioorganic and Medicinal Chemistry Letters. 2006; 16:1716-1720
    95. Ravenhall C, Cuida E, Harris T, et al. The importance of ERK activity in the regulation of cyclin D1 level and DNA synthesis in human cultured airway smooth muscle. Br J pharmacol. 2000; 131(1):17-28.
    96. Koshino R, Susumu, kazushi T, et al. Blockade of the extracellular signal-regulated kinase pathway induces marked G1 cell cycle arrest and apoptosis in tumor cells in which the pathway is cosstitutively activated up-regulation of p27Kipl. J Biol Chem. 2001; 276(4):2686-2692.
    97. Cheung V G, Morley M, Aguilar F et al. Making and reading microarrays. Nature G enetics(Supplement),1999,21:15.
    98. Marshall A and Hodgson J. DNA chips: An array of possibilities . Nature Biotech nology ,1998,16:731.
    99.RamsayR.DNAchips:State-of-the–art.Nature Biotechnology, 1998,16:40.
    100.DeRisi J,Penland L,Brown PO,et al.Use of a cDNA microarray to analysis gene expression patterns in human cancer .Nat Genet.1996,14:457.
    101.Brown P O, Botstein D.Eeploring the new world of genome with DNA microoarrays. Nature Genetics(Supplement),1999,21:33.
    102.Wadlow R, Ramaswamy S. DNA microarrays in clinical cancer research. Curr Mol Med. 2005; 5:111-120.
    103. Frank O, Brors B, Fabarius A, et al. Gene expression signature of primary imatinib-resistant chronic myeloid leukemia patients. Leukemia. 2006; 20:1400-1407.
    104. 郭秋野,马文丽,冯春琼,等。应用基因芯片研究 AS2O3 诱导 K562 细胞前后差异表达基因。局解手术学杂志。2006;15(4):231-233。
    105.Wolf S , Mcrtens D , Pscherer A .Ala228 variant of trial receptor 1 affecting the ligand binding site is associated with chroniclymphocytic leukemia,mantle cell lymphoma,prostate cancer,head and neck squmous cell carcinoma and bladder cancer. Int J Cancer.2006:118(7):1831.
    106.郭光明,王明荣.c-Jun 和 c-Fas 及其人类肿瘤.国外医学(遗传学分册)2005;28(4):207-211。
    107.Ishiguro H ,Tsunoda T ,Tanaka T ,Indentification of AXUD1 ,a novel human gene induced by AXUD1 and it reduced expression in human carcinomas of the lung , liver , colon and kidney. Oncogene.2001;20(36):5062-5066.
    108.吕会增,李汉贤.泛素—蛋白酶体途径在恶性肿瘤中的研究进展.中国肿瘤.2003;12(2):97-100.
    109.Bjorkoy G , Lamark T , Tohansen T :p62/SQSTM1: A missing link between protein aggregates and the autophagy machinery. Autophagy.2006;2(2):138-139
    110.Tsujimoto Y and Shimizu S. Another way to die: autophagic programmed cell death. Cell Death and Differentiation. 2005, 12: 1528-1534.
    111.李霞,热休克蛋白与肿瘤凋亡。国外医学临床生物化学与检验学分册 2005年第 26 卷 第 11 期:828-830
    112.Jolly C,Morimoto RI。Role of the heat shock response and moleculay chaperones in oncogenesis and cell death J Natl Cancer Inst 2000;92:1564-1572。
    113.Dou F,Yuan LD, and Zhu JJ, Heat shock protein 90 indirectly regulates ERK activity by affecting Raf protein Metaholism. Acta Biochimica et Biophysica Sinica. 2005;37(7):501-505
    114.Sto S, Abe K, Kawagoe J et al. Isolation of complementary DNAs for heat shock protein (HSP)70 and heat shock coynate protein (HSC) 70 genes and the expression in post-ischaemic gerbil brain Neurol Res. 1992;14:375-378
    115.黄晓兵 热休克蛋白 70 与肿瘤细胞凋亡,四川肿瘤防治 2003 年第 16 卷,第 1 期:53-55
    116 . Michaelson. D, Silletti J , Murphy G , etal. Differential localization of Rho GTPases in live cells :regulation by hypervariable regions and Rho GD I binding. J Cell Bid. 2001; 152:111-126.
    117.Adnane J , Muro-Cacho C , Mathews L , et al. suppression of RhoB expression in invasive carcinoma from head and neck cancer patients.clin cancer Res. 2002;8:2225-2232.
    118.陈玉霞,李宗斌,刁飞,等。地塞米松抑制人卵巢癌细胞 H0-8910 增殖的分子机制:Rho 信号通路的作用。中华医学杂志 2006 年,第 86 卷,第 20期:1400-1404。
    119.Jiang K, Sun JZ, Cheng J , et al. A kt mediates Ras downregulation of RhoB , a auppressor of transformation, invasion , and metastasis. Mol cell Bid ,2004;24:5565-5576.
    120.Budanov AV, Shoshani T, Faerman A, et al. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene. 2002; 21(39): 6017-6031.
    121.姜凤云, 郝长来, 王建祥 组蛋白脱乙酰化酶抑制剂在治疗白血病中的研究进展 白血病.淋巴瘤 2004; 13(5):316-318.
    122.田晓丽、郭军化,金属硫蛋白的研究进展,国外医学药学分册,2005 年,第 32 卷,第 2 期:119-124
    123.易石坚,金属硫蛋白与肿瘤研究进展,医药产业资讯,2006 年,第 3 卷第6 期:46-47
    124.Kikuno R, Nagase T, Waki M, et al. HUGE: a database for human large proteins identified in the Kazusa cDNA sequencing project. Nucleic Acids Res. 2002; 30 (1): 166-168.
    125.Lee YG, Macoska JA, Korenchuk S, et al. MIM, a potential metastasis suppressor gene in bladder cancer.Neoplasia. 2002; 4(4): 291-294.
    126. 王宏,李春海,田方,等,应用 mRNA 差异显示技术筛选卵巢癌耐药相关基因。中华医学杂志,2000 年,80 卷,第 7 期。
    1. Sell S. Cancer stem cells and differentiation therapy. Tumour Biol. 2006; 27(2): 59-70.
    2. Durand MK ; Bodker JS ; Christensen A, et al. Plasminogen activator inhibitor-I and tumour growth, invasion, and metastasis. Thromb Haemost. 2004; 91(3):438-449.
    3. Micke P ; Ostman A. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer. 2004; 45(2 supplement): S163-175.
    4. Dulak J;Jozkowicz A. Anti-angiogenic and anti-inflammatory effects of statins: relevance to anti-cancer therapy. Curr Cancer Drug Targets. 2005; 5(8): 579-594.
    5. Isayeva T;Kumar S;Ponnazhagan S. Anti-angiogenic gene therapy for cancer. Int J Oncol. 2004; 25(2): 335-343.
    6. Niv R, Assaraf YG, Segal D, et al. Targeting multidrug resistant tumor cells with a recombinant single-chain FV fragment directed to P-glycoprotein. Int J Cancer. 2001; 94(6): 864-872.
    7. 陈惠鹏 , 王清明 , 孔丽君. 肿瘤导向治疗研究进展. 生物技术通讯 2002;13(6): 1-3.
    8. 郭海霞, 李文益. 肿瘤免疫治疗进展. 国外医学(肿瘤学分册)2004; 31(9):24-26.
    9. 杨家驹, 段振玲. 肿瘤的基因治疗进展. 医学综述 2005 ; 11 (10): 883-885.
    10. Fischer PM. The design of drug candidate molecules as selective inhibitors of therapeutically relevant protein kinases. Curr Med Chem. 2004; 11(12): 1563-1583.
    11. Zhang Z, Li M, Rayburn ER, et al. Oncogenes as novel targets for cancer therapy (part I): growth factors and protein tyrosine kinases. Am JPharmacogenomics. 2005; 5(3): 173-190.
    12. Zhang Z, Li M, Rayburn ER, et al. Oncogenes as novel targets for cancer therapy (part II): Intermediate signaling molecules. Am J Pharmacogenomics. 2005; 5(4): 247-257.
    13. Brand FX, Ravanel N, Gauchez AS, et al. Prospect for anti-HER2 receptor therapy in breast cancer. Anticancer Res. 2006;26(1): 463-470.
    14. Hogdall EV, Christensen L, Kjaer SK, et al. Distribution of HER-2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma: from the Danish MALOVA Ovarian Cancer Study. Cancer. 2003; 98(1): 66-73.
    15. Hirsch FR, Langer CJ. The role of HER2/neu expression and trastuzumab in non-small cell lung cancer. Semin Oncol. 2004;31(1,S1): 75-82.
    16. Seliger B, Rongcun Y, Atkins D, et al. HER-2/neu is expressed in human renal cell carcinoma at heterogeneous levels independently of tumor grading and staging and can be recognized by HLA-A2.1-restricted cytotoxic T lymphocytes. Int J Cancer. 2000; 87(3): 349-359.
    17. Ross JS, Fletcher JA, Bloom KJ, et al. Targeted therapy in breast cancer: the HER-2/neu gene and protein. Mol Cell Proteomics. 2004; 3(4):379-98.
    18.Klapper LN Proc Natl Acad sci USA 1999 96(9):4995-5000
    19.Tan M., Yao J., and Yu D. Overexpression of the c-erbB-2 Gene Enhanced Intrinsic Metastasis Potential in Human Breast Cancer Cells without Increasing Their Transformation Abilities. Cancer Res.1997 57(6):1199-1205
    20. Yu D., Wand ss.,Dulski KM., Tsai CM.,et al. c-erbB-2/neu overexpression enhances metastatic potential of human Lung Cnacer Cells by Induction of metastasis-associated Properties. Cancer Res.1994 54:3260-3266
    21. Li YM, Pan Y. Wei Y, et al, Upregulation of CXCR4 is essential forHER2-mediated tumor metastasis. Cancer cell 2004.6:459-469.
    22. Pegram M., Finn R., Arzoo K., et al. The Effect of HER-2/neu Overexpression on Chemotherapeutic Drug Sensitivity in Human Breast and Ovarian Cancer Cells. Oncogene 1997 15(5):537-547.
    23.Allred DC, Clark GM, Molina R, et al. Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum Pathol. 1992;23(9):974-979.
    24. Gusterson BA, Gelber RD, Goldhirsch A, et al. Prognostic importance of c-erbB-2 expression in breast cancer. International (Ludwig) Breast Cancer Study Group. J Clin Oncol. 1992;10(7):1049-1056.
    25. Wright C, Cairns J, Cantwell BJ, et al. Response to mitoxantrone in advanced breast cancer: correlation with expression of c-erbB-2 protein and glutathione S-transferases. Br J Cancer. 1992; 65(2):271-274.
    26. YU D., Liu B., Tan M., et al. Overexpression of c-erbb-2/neu in Breast Cancer Cells Confers Increased resistance to Taxol via mdr-i-independent mechanisms. Omogene 1996 13(6),1359-1365.
    27. Knueferman C., Lu Y., Liu B.,et al. HER2/PI-3K/AKT Activation Leads to a Multidrug Resistance in Human Breast Adonocarcinoma Cells. Oncogene 2003. 22:3205-3212.
    28. Benz CC, Scott GK, Sarup JC, et al Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu.Breast Cancer Res and Treat 1993.24(2):85-95
    29. Baselga, J., Norton, L., Albanell, J., et al. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 1998; 58: 2825-2831.
    30.Burstein HJ, Harris LN, Celman R, et al. Preoperative therapy with trastuzumab and paclitaxel followed by sequential adjuvant doxorubicin/cyclophosphamide for HER2 overexpressing stage II or III breast cancer: a pilot study. J. Clin. Oncol. 2003,21(1):46-53.
    31. Prewett M, Rockwell P, Rockwell RF,et al The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J Immunother Emphasis Tumor Immunol. 1996,19(6):419-427.
    32. Govindan R. Cetuximab in advanced non-small cell lung cancer. Clin Cancer Res. 2004, 10: 4241s-4244s
    33.Cvetkovic RS, Perry CM. Rituximab: a review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia.Drugs. 2006; 66(6):791-820.
    34. 黄一微,慢性粒细胞白血病,选自《实用内科学》第 12 版,陈灏珠主编,人民卫生出版社 2005:2322-2328.
    35. Renshaw MW, McMhirter JR, and Wang JYJ. The human leukemia oncogene bcr-abl abrogates the anchorage requirement but not the growth factor requirement for proliferation. 1995; Molecular and Cellular Biology, 15(3): 1286-1293.
    36. Mauro MJ, and Druker BJ. STI571: Targeting BCR-ABL as therapy for CML. The Oncologist 2001; 6:233-238.
    37. Mauro MJ, O'Dwyer ME, Druker BJ. ST1571, a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia: validating the promise of molecularly targeted therapy. Cancer Chemother Pharmacol. 2001, 48 Suppl 1: 77-78.
    38. Druker, B. J. Imatinib as a paradigm of targeted therapies. Adv Cancer Res . 2004; 91: 1-30.
    39. 郭良耀 , 赵小亭 , 李葳 格列卫治疗慢性粒细胞白血病的临床疗效观察 白血病·淋巴瘤 2005 年 05 期
    40. Sanborn, R. E., and Blanke, C. D. Gastrointestinal stromal tumors and the evolution of targeted therapy. Clin Adv Hematol Oncol 2005; 3: 647-657.
    41. Gross DJ, Munter G, Bitan M, et al. The role of imatinib mesylate (Glivec) for treatment of patients with malignant endocrine tumors positive for c-kit or PDGF-R. Endocr Relat Cancer. 2006;13(2):535-540.
    42. Servidei T, Riccardi A, Sanguinetti M, et al. Increased sensitivity to the platelet-derived growth factor (PDGF) receptor inhibitor STI571 in chemoresistant glioma cells is associated with enhanced PDGF-BB-mediated signaling and STI571-induced Akt inactivation. J Cell Physiol. 2006; 208(1): 220-228.
    43.Dierov J, Xu Q, Dierova R, et al. TEL/platelet-derived growth factor receptor beta activates phosphatidylinositol 3 (PI3) kinase and requires PI3 kinase to regulate the cell cycle. Blood. 2002; 99(5): 1758-1765.
    44. Hehlmann R. Current CML therapy: progress and dilemma. Leukemia. 2003; 17:1010-1012.
    45.Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel Abl kinase inhibitor. Science. 2004; 305: 341-399.
    46. Goorre ME, Mohammed M, Euwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001; 293:876.
    47. 王立升,于海侠,郭鑫等。抗 Gleevec(ST1-571)的耐受的 Bcr-Abl 蛋白酪氨酸激酶抑制剂研究进展。广西大学学报,2006,31(1):10-14,48.
    48. O'Hare T;Corbin AS;Druker BJ. Targeted CML therapy: controlling drug resistance, seeking cure. Curr Opin Genet Dev. 2006; 16(1): 92-99.
    49. Fukuoka M., Yano S., Giaccone G., et al. Final results from a phase Ⅱtrial of ZD1839 ('Iressa') for patients with advanced non-small-cell lung cancer (IDEAL 1). Proceedings of ASCO Volume 212002, 298a, 1188.
    50. Cappuzzo F, Finocchiaro G, Metro G. Clinical experience with gefitinib: an update. Crit Rev Oncol Hematol. 2006; 58(1): 31-45.
    51. Perez-Soler R, Chachoua A, Huberman M et al. A phase II trial of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor OSI-774 following platinum-based chemotherapy, in patients (pts) with advanced, EGFR-expressing, non-small cell lung cancer (NSCLC). Proc Am Soc Clin Oncol 2001;20:310a.
    52. Forouzesh B, Hidalgo M, Takimoto C et al. Phase I, pharmacokinetic (PK), and biological studies of the epidermal growth factor-tyrosine kinase (EGFR-TK) inhibitor OSI-774 in combination with docetaxel. Proc Am Soc Clin Oncol 2002;21:21a.
    53. Pagè G, Lenormand P, L’Allemain G, et al. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc. Natl. Acad. Sci. 1993, 90:8319-8323.
    54.Chardin P, Cussac D, Maignan S, et al. The Grb2 adaptor. FEBS letters 1995,369:47-51.
    55. Patel H, Marley SB, Gordon MY. Detection in primary chronic myeloid leukaemia cells of p210BCR-ABL1 in complexes with adaptor proteins CBL, CRKL, and GRB2. Genes Chromosomes Cancer. 2006; 45(12): 1121-1129.
    56. Fukazawa T, Miyake S, Band V, et al. Tyrosine phosphorylation of Cbl upon epidermal growth factor (EGF) stimulation and its association with EGF receptor and downstream signaling proteins. J Biol Chem. 1996; 271(24): 14554-14559
    57. Kashige N, Carpino N, Kobayashi R. Tyrosine phosphorylation of p62dok by p210bcr-abl inhibits RasGAP activity. Proc Natl Acad Sci U S A. 2000; 97(5): 2093-2098.
    58. Seger R and Krebs EG. The MAPK signaling cascade. FASEBJournal.1995;9:726-735.
    59. Thomas C, Foulet A, Plat M, et al. Efficacy of rituximab in lymphomatoid granulomatosis. Rev. Mal Respir, 2004; 21(6): 1157-1165.
    60. Ren H;Tai SK;Khuri F, et al. Farnesyltransferase inhibitor SCH66336 induces rapid phosphorylation of eukaryotic translation elongation factor 2 in head and neck squamous cell carcinoma cells. Cancer Res. 2005 65(13): 5841-5847
    61. 尚振川,孙秉中,陈志南等, PD98059 对慢性髓细胞白血病 Ras-MAPK 信号转寻的作用,细胞与分子免疫学杂志,2003;19(1):54-55。
    62. 彭辉,冯文莉。PI3K 在 BCK/ABL 阳性细胞中促进细胞周期进程和抗凋亡的作用,国外医学临床生物化学与检验学分册,2005;26(10):722-724,727.
    63. Sattler M, Pride YB, Quinnan LR, et al. Differential expression and signaling of CBL and CBL-B-M BCK/ABL transformed cells. Oncogene,2002;21(9): 423-1433.
    64. 罗军,宋善俊。BCR/ABL 嵌合蛋白信号转寻研究进展。国外医学,生理、病理科学与临床分册。2003;23(4):388-390
    65. Gesbert F, sellers WR, Sigmoretti S, et al. BCR/ABL regulates expression of the cyclin-dependent kinase inhibitor P27kipl through the phosphatidylinositol 3-kinase/AKT pathway.J.Biol Chem. 2000; 275(50): 39223-39230
    66. Jena N, Deng M, Sicinska E, et al. Critical role for cyclin D2 in BCR/ABL-induced proliferation of hematopoietic cells. Cancer Res. 2002; 62(2):535-541.
    67. Jonnleit T, Van-der-Kuip H, Miething C, et al. Bcr-Abl kinase down-regulates cyclin-dependent kinase inhibitor P27 in human and murine cell lines. Blood. 2000;96(5):1933-1939.
    68. Deininger MW, Vieira SA, Parada Y, et al. Direct relation between BCR-ABL tyrosine kinase activity and cyclin D2 expression in lymphoblasts. Cancer Res. 2001;61(21):8005-8013.
    69. 干定云,陈燕。慢性粒细胞白血病分子靶向治疗的新进展。临床血液学杂志2006;19(3):190-192.
    70.de Groot RP, Raaijmakers TA, Lammers JW, et al. STAT5 actiration by BCR-ABL contributes to transformation of K562 Leukemia cells. Blood 1999; 94(3):1108-1112.
    71.Lin Q, Lai R, Chirieac LR, et al. Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol. 2005; 167(4): 969-980.
    72. Oshiro MM, Landowski TH, Catlett Falcone R, et al. Inhibition of JAK kinase activity enhances Fas-mediated apoptosis but reduces cytotoxic activity of topoisomerase II inhibitors in U266 myeloma cells. Clin Cancer Res. 2001; 7(12): 4262-4271.
    73.刘辉, 姚咏明. Janus 激酶细胞信号转导及转录活化因子通路抑制剂的研究进展. 中国危重病急救医学.2003; 15(2):123.
    74. Graffenried LA, Friedrichs WE, Russell DH, et al. Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity. Clin Cancer Res. 2004; 10(23):8059-8067.
    75. Lowenstein EJ, Daly RJ, Batzer AG, et al. The SH2 and SH3 domain-containing protein Grb2 links receptor tyrosine kinases to ras signaling. Cell. 1992; 70: 431-442.
    76. Vidal M, Goudreau N, Cornille F, et al. Molecular and cellular analysis of Grb2 SH3 domain mutants: interaction with Sos and dynamin. J Mol Biol. 1999 Jul 16;290(3):717-730.
    77 Chardin P, Camonis JH,Gale NW et al Human SOS1: a guanine nucleotideexchange factor for Ras that binds to GRB2. Science 1993,260:1338-1343.
    78. Simon JA and Schreiber SL. Grb2 SH3 bingding to peptides from Sos: Evaluation of a general model for SH3-ligand interactions. 1995; Chem Biol 2: 53-60.
    79.Chardin P, Cussac D, Maignan S, et al. The Grb2 adaptor. FEBS letters 1995,369:47-51.
    80.Feller SM, Tuchscherer G, Voss J. high affinity molecules disrupting GRB2 protein complexes as a therapeutic strategy for chronic myelogenous leukaemia. Leuk. Lymphoma. 2003, 44(3):411-427.
    81. Goga A, McLaughlin J, Afer DEH,et al. Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell 1995,82:981-988.
    82.Daly RJ, Binder MD, Sutherland RL. Overexpression of the Grb2 gene in human breast cancer cell lines. Oncogene. 1994, 9:2723-2727
    83.Cheng AM, Saxton TM, Sakai R, et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell. 1998, 95:793-803.
    84.Zhang XP, Siwak DR, Nguyen TX, et al. KGF-induced motility of breast cancer cells in dependent on Grb2 and ERK1/2. Clin. Exp. Metastasis 2004, 21(5):437-443.
    85.Thelemann A, Petti F, Griffin G, et al. Phosphotyrosine Signaling Networks in Epidermal Growth Factor Receptor Overexpressing Squamous Carcinoma Cells. Mol Cell Proteomics. 2005;4(4):356-376.
    86.Anteby EY, Ayesh S, Shochina M,et al Growth factor receptor-protein bound 2 (GRB2) upregulation in the placenta in preeclampsia implies a possible role for ras signaling. Eur J Obstet Gynecol Reprod Biol. 2005 ;118(2):174-181.
    87.Ana MT, Gabriel LB GRB2: a pivotal protein in signal transduction.Seminar in Oncology, 2001,28(5):142-147.
    88.Vidal M, Gigoux V, Garbay C, et al, SH2 and SH3 domains as targets for anti-proliferative agents. Critical Reviews in Oncology/Hematology 2001, 40:175-186.
    89.Vidal M, Liu WQ, Lenoir C,et al Design of peptoid analogue dimmer and measure of their affinity for Grb2 SH3 donains Biochemistry 2004,43:7336-7344.
    90.Soriano JV, Liu N, Gao Y, et al. Inhibition of angiogenesis by growth factor receptor bound protein 2-Src homology 2 domain bound antagonists. Mol Cancer Ther. 2004 Oct;3(10):1289-1299.
    91.Cussac D, Vidal M, Leprince C, et al. A Sos-derived peptidimer blocks the Ras signaling pathway by binding both Grb2 SH3 domains and displays antiproliferative activity. FASEB J. 1999,13(1):31-38.
    92.Vidal M, Liu WQ, Gril B, et al Design of new anti-tumor agents interrupting deregulated signaling pathways induced by tyrosine kinase proteins. Inhibition of protein-protein interaction involving Grb2. J Soc Biol. 2004;198(2):133-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700