球形芽胞杆菌糖酵解途径及其相关酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球形芽胞杆菌(Bacillus sphaericus)是一种自然界中广泛分布的好氧芽胞杆菌。由于其对蚊幼虫具有的特异性毒杀作用,在世界范围内被成功地应用于疾病媒介蚊虫的生物防治。所有的球形芽胞杆菌不能代谢除N-乙酰基葡萄糖胺外的其它糖类物质,只能利用蛋白质类物质生长和发育。目前对球形芽胞杆菌这种独特的产能代谢途径还缺少了解。早期的研究表明球形芽胞杆菌缺少葡萄糖激酶、己糖激酶活性,还缺少糖酵解途径和磷酸戊糖途径的早期酶:磷酸葡萄糖异构酶、磷酸果糖激酶和葡萄糖-6-磷酸脱氢酶,这些关键酶的缺乏是其不能代谢糖类物质的根本原因。
     本研究是在完成球形芽胞杆菌C3-41全基因组测序的基础上,通过生物信息学分析绘制了代谢网络图,重点研究细胞内的糖酵解途径及其相关酶—葡萄糖激酶、磷酸果糖激酶和磷酸葡萄糖异构酶的功能。
     在球形芽胞杆菌菌株中首次发现有活性的营养期高表达的葡萄糖激酶,其编码基因glcK广泛分布于球形芽胞杆菌不同血清型的菌株中。从C3-41中克隆出glcX基因,并完成其在大肠杆菌中表达及表达产物特性分析。glcK由876 bp核苷酸组成,编码33 kDa蛋白,纯化的酶动力学分析表明它对ATP和葡萄糖的K_m值分别为0.52 mM和0.31 mM。该酶具有广泛的底物选择性,可以磷酸化葡萄糖、果糖、甘露糖等,是一种己糖激酶。GlcK氨基酸序列的N末端为典型的ATP结合单元,C末端为α-螺旋-转角-α-螺旋的DNA结合单元,这些保守序列和其他细菌的GlcK序列有很高的同源性,并显示其属于ROK家族蛋白。
     磷酸果糖激酶PFK催化的反应是EMP途径中的一个限速步骤。实验证实磷酸果糖激酶基因(pfk)以单拷贝形式广泛分布于球形芽胞杆菌不同血清型的菌株中。pfk基因由960 bp核苷酸组成,编码42 kDa的PFK蛋白,其重组表达质粒可以使大肠杆菌(Escherichia coli)PFK缺陷型菌株DF1020回复糖代谢能力,序列分析表明其氨基酸序列上存在保守的底物结合氨基酸位点和ATP结合域。
     球形芽胞杆菌C3-41全基因组序列分析和特异性PCR检测分析表明,所有球形芽胞杆菌缺少磷酸葡萄糖异构酶编码基因pgi,也无磷酸葡萄糖异构酶活性。在完成蜡状芽胞杆菌(B.cereus)ATCC 33018 pgi基因克隆、表达和纯化的基础上,并将构建的外源pgi穿梭表达质粒,分别转化球形芽胞杆菌高毒力菌株2297和2362。结果表明重组菌株能在二元毒素启动子和cry3A启动子的调控下分别表达PGI蛋白。体外的糖代谢分析试验证实,尽管重组菌株在以糖为碳源的无机盐培养基中生长很慢,但其细胞抽提液能将葡萄糖转化为有机酸物质。
     通过对球形芽胞杆菌C3-41全基因组测序初步注释结果的分析,发现在碳源的磷酸烯醇式磷酸转移酶转移(PEP-PTS)系统中,缺失细胞膜上特异的碳源结合蛋白EⅡ;而且ATP-Binding Cassette(ABC)转运系统绝大部分注释结果是寡肽的结合蛋白和通透酶,只有少数是碳源的结合蛋白和通透酶。结合实验结果分析,证明球形芽胞杆菌中pgi基因的缺失是其糖酵解途径中断的分子基础,同时球形芽胞杆菌膜转运系统的缺失、突变或者代谢调控系统的作用导致代谢工程菌株不能很好的利用糖类物质生长发育。
     本研究为进一步研究球形芽胞杆菌特殊产能代谢和保守的进化提供了重要信息,为定向选育,以便获得杀虫毒力高、发酵特性好的工程菌株奠定了基础。
Bacillus sphaericus is a Gram-positive, spore-forming, aerobic mosquito pathogenicbacterium. Due to its specific activity against mosquito larvae, B. sphaericus has beensuccessfully used for mosquito control worldwide. Except N-acetylglucosamine, all B.sphaericus could not metabolize any sugars as carbon resource, thus hindering the furtherapplication of B. sphaericus as larvicidal agent because of high production cost offormulations. Previous research indicated that the inability of B. sphaericus to metabolizecarbohydrates could be attributed to the absence of key enzyme activities in the EMP(glucokinase, glucose phosphate isomerase, phosphofructokinase), HMP(phosphogluconate dehydratase) and ED (6-phospho-2-keto-3-deoxyglyconate aldolase)pathways. Unfortunately, little was known on this special sugar metabolism in B.sphaericus untill now. In this research, the glycolysis related enzymes-glucokinase,phosphofructokinase and phosphate glucose isomerase in B. sphaericus had been studied.
     Our results confirmed the presence of a glucokinase encoding gene glcK on thebacterial chromosome and the expression of glucokinase during the vegetative growth ofB. sphaericus strains. Furthermore, the glcK was cloned from strain C3-41 and expressedin Escherichia coli. Biochemical analysis revealed that this gene encoded a protein withmolecular weight of 33 kDa and the purified recombinant glucokinase had a K_m value of0.52 mM and 0.31 mM for ATP and glucose, respectively. It has been proved this ATPdependent glucokinase could also phosphorylate fructose and mannose. Sequencealignment of glcK indicated that it had a ATP-binding motif in the N-terminal and aα-helix-turn-α-helix DNA-binding motif in the C-terminal, and these conservatived motifs had a high similiary with Glck of other bacterial, and it belongs to the ROKprotein family.
     A phosphofructokinase encoding gene pfk was found to be widely distributed in B.sphaericus, it had a sigle copy on chromosome and was composed of 960 bp nucleitidesencoding a protein about 42 kDa. Futhermore, a pfk ORF was cloned from B. sphaericusstrain C3-41 and expressed in E. coli. The expression of pfk in recombinant E. coli straincould complement the PFK activity of a pfk mutated E. coli strain DF1020. And the PFKsequece analysis showed it had the conservative amino acids-binding sites and anATP-bingding domain.
     Genomic sequence of B. sphaericus C3-41 and the specific PCR analysis revealedthat all B. sphaericus strains lacked phosphoglucose isomerase gene pgi, and could notproduce phosphoglucose isomerase activity. It is postulated that the absence of pgi in B.sphaericus might be one of the reasons for bacterial inability to metabolize carbohydrates.For restoring the EMP pathway of B. sphaericus, a pgi ORF was cloned from B. cereusATCC 33018, and then have it expressed in B. sphaericus 2297 and 2362 under thecontrol of binary toxin promoter and cry3A promoter seperately. All recombinant B.sphaericus strains could expressed PGI during bacterial vegetative and spore stage. Evenif the recombinant could not grow and develop well on a inorganic medium with sugar asa carbon resource as expected, the cell extracts could convert glucose into acid in vitro.
     Primary anonatation result of the C3-41 genome sequence revealed that B.sphaericus lacked EⅡin the PEP-PTS system as well as the dominance ofoligopiptide-specific binding protein and permease protein in ATP-Binding Cassette(ABC) transporter. Supported by our experimental results, it is obvious that the interruptof EMP in B. sphaericus was ascribed to the absence of pgi gene and PGI production.And the partly absence of transporter system, or some effect of the metabolism regulatedsystem likely result in the inability of sugar metabolism in B. sphaericus recombinants.
     Our findings provide additional data to further elucidate the specific metabolicpathway and for genetic-improvement of B. sphaericus for further mosquito control.
引文
1. 陆宝麟.蚊虫生物防治.第二版,北京:科学出版社;1999.
    2. Kellen K, Clark TB, Lindergren JE, et al. Bacillus sphaericus Neide as a pathogen of mosquitoes. J Invertebr Pathol. 1965, 7: 442-448.
    3. Alexander B, Priest FG. Numerical classification and identification of Bacillus sphaericus including some strains pathogenic for mosquito larvae. J Gen Microbiol. 1990, 136: 367-376.
    4. Guerineau M, Alexander B, Priest FG. Isolation ans identification of Bacillus sphaericus strains pathogenic for mosquito larvae. J Invertebr Pathol. 1991, 57: 325-333.
    5. Broadwell AH, Clark MA, Baumann L, et al. Construction by site-directed mutagenesis of a 39-kilodalton mosquitocidal protein similar to the larva-processed toxin of Bacillus sphaericus 2362. J Baeteriol. 1990, 172: 4032-4036.
    6. Singh GJP, Gill S. An electron microscope study of the toxin action of Bacillus sphaericus in Cluex quinquefasciatus larvae. J Invertebr Pathol. 1988, 52: 237-247.
    7. Wei SZ, Cai QX, Yuan ZM. Mosquitocidal toxin from Bacillus sphaericus induces stronger delayed effects than Binary toxin on Culex quinquedasciatus (Diptera: Culicidae). J Med Entomol. 2006, 43: 726-730.
    8. Pei GF, Oliveira CMF, Yuan ZM, et al. A strain of Bacillus sphaericus causes slower development of resistance in Culex quinquefasciatus. Appl Environ Microbiol. 2002, 68: 3003-3009.
    9. 张用梅.球形芽胞杆菌及其杀蚊原理和应用,第一版,科学出版社,1995,北京.
    10. Shi YX, Zheng DS, Yuan ZM. Toxicity of Bacillus sphaericus LP1-G against susceptible and resistant Culex quinquefasciatus and the cloning of the mosquitoeidal toxin gene. Curt Microbiol. 2003, 47: 226-230.
    11. Yang YK, Wang LW, Gaviria A, et al.. Proteolytic stability of insecticidal expressed in recombinant Bacilli. Appl Environ Microbiol. 2007, 73:218-225.
    12. Singer S. Insecticidal activity of recent bacterial isolates and their toxins against mosquito larvae. Nature. 1973, 244:110-111.
    13. Singer S. Isolation and development of bacterial pathogens of vectors. Biological regulation of vectors. 1977, 3-18. DHEW Publication no. (NIH) 77-1180.
    14. Wickremesinghe RSB, Mendis CL. Bacillus sphaericus spore from Sri Lanka demonstrating rapid larvicidal activity on Culex quinquefasciatus. Mosq News. 1980, 40: 387-389.
    15. Weiser J. A mosquito-virolent Bacillus sphaericus in adult Simulium damnosum from northern Nigeria. Zentralbl Mikrobiol. 1984, 139: 57-60.
    16. de Barjac H, Thiery I, Cosmao-Dumanoir V, et al. Another Bacillus sphaericus serotype harbouring strains very toxic to mosquito larvae: serotype H6. Ann Inst Pasteur Microbiol. 1988, 139: 363-377.
    17. Liu JW, Hindley J, Porter AG, et al. New high-toxicity mosquitocidal strains of Bacillus sphaericus lacking a 100-kilodalton-toxin gene. Appl Environ Microbiol. 1993, 59:3470-3473.
    18. Zhang YM, Liu EY, Dai SY, et al. Isolation of two strainsof Bacillus sphaericus possessing high toxicity to Culex quingquefasciatus. Disinsectional Microorganism. 1987, 1: 98-101.
    19. Thanabalu T, Hindley J, Jackson-Yap J, et al.Cloning, sequencing, and expression of a gene encoding a 100-kilodalton mosquitocidal toxin from Bacillus sphaericus SSII-1. J Bacteriol. 1991, 173: 2776-2785.
    20. Thanabalu T, Porter ACt A Bacillus sphaericus germ encoding a novel type of mosquitocidal toxin of 31.8 KDa. Germ. 1996, 170: 85-89.
    21. Liu JW, Porter AG, WEE BY, et al. New gere from nine Bacillus sphaericus strains encoding highly conserved 35.8-kilodalton mosquitocidal toxins. Appl Environ Microbiol. 1996, 62: 2174-2176.
    22. Priest FG, Ebdrup P, Zahner V, et al. Distribution and characterization of mosquitocidal toxin genes in some strains of Bacillus sphaericus. Appl Environ Microbiol. 1997, 63: 1195-1198.
    23. Yuan ZM, Neilsen-LeRoux C, Pasteur N, et al. Cloning and expression of the binary toxin genes of Bacillus sphaericus C3-41 in a crystal minus B. thuringiensis subsp. Israelensis. Wei Sheng Wu Xue Bao. 1999, 39: 29-35.
    24. Yuan ZM, Rang C, Maroun RC, et al. Identification and molecular structural prediction analysis of a toxicity determinant in the Bacillus sphaericus crystal larvicidal toxin. Eur J Biochem. 2001, 268:2751-2760.
    25. Russell BL, Jelley SA, Yousten AA. Carbohydrate metabolism in the mosquito pathogen Bacillus sphaericus 2362. Appl Environ Mivrobiol. 1989, 55: 294-297.
    26. Baumann L, Baumann P. Effects of Components of the Bacillus sphaericus toxin on mosquito larvae and mosquito-derived tissue culture grown cells. Curr Microbiol. 1991, 23: 51-57.
    27. Lanzaro CC. Mosquito control research. In. Callifornia: Univerisity of Callifornia, Division of Agriculture and Natural Resources; 2004:15.
    28. Yousten AA, Wallis DA. Batch and continuous culture production of the mosquito larval toxin of Bacillus sphaericus 2362. J Ind Microbiol. 1987, 2: 277-283.
    29. Myers P, Youstem AA. Toxic activity of Bacillus sphaericus SSH-1 for mosquito larvae. Infect Immun. 1978a, 19: 1074-1053.
    30. UNDP/WORLD BANK/WHO. Special programme for research and training in tropical diseases. 1985, Geneja.
    31. White P J, Lotay HK. Minimal nutritional requirements of Bacillus sphaericus NCTC 9602 and 26 other strains of this species: the majority grow and sporulate with acetate as sole source of carbon. J Gen Microbiol. 1980, 118: 13-19.
    32.刘娥英,张用梅,蔡昌建等.球形芽胞杆菌C3-41菌株的生物学特性.中华流行病学杂志.1989,10:1-6.
    33. de Barjac H, Larget-Thiery I, Dumanoir VC, et al. Serological classification of Bacillus sphaericus strains in relation with toxicity to mosquito larvae. Appl Environ Microbiol. 1985, 21: 85-90.
    34. Krych VK, Johnson JL, Yousten AA. Deoxyribonucleic acid homologies among strains of Bacillus sphaericus, Int J Syst Bacteriol 1980, 30.
    35. Guerineau M, Alexander, Priest FG. Isolation and identification of Bacillus sphaericus strains pathogenic for mosquito larvae. J Invertebr Pathol. 1991, 57: 325-333.
    36. Abadjieva AN, Grigorova RT, Miteva VI. DNA fingerprinting of the mosquito pathogen Bacillus sphaericus with M13 DNA as a probe. Lett Appl Microbiol. 1990, 10: 141-143.
    37. Woodburn MA, Yourstem AA, Hilu H. Random amiplified polymorphie DNA fingerprinting of mosquito-pathogenic and nonpathogenic strains of Bacillus sphaericus. Intl J Syst Bacteriol. 1995, 45: 212-217.
    38. Aquino de Muro, Mitchell WJ, Priest FG. Differentiation of mosquito-pathengenic strains of Bacillus sphaericus from non-toxin varieties by ribosomal RNA gere restriction patterns. J Gen Microbiol. 1992, 138:1159-1166.
    39. Yousten AA. Bacteriphage typing of mosquito pathogenic strains of Bacillus sphaerius. J Invertebr Pathol. 1984, 43: 124-125.
    40. Cokmus C, Yousten AA. Two new mosquito pathgenic strains of Bacillus sphaericus from Turkey. J Invertebr Pathol. 1991, 57: 439-440.
    41. Frachon E, Hamon S, Nicolas L, et al. Cellular fatty acid analysis as a potential tool for predicting mosquitocidal activity of Bacillus sphaericus strains. Appl Environ Microbiol. 1991, 57: 3394-3398.
    42. Neide E. Botanishe Beschreibung Einiger Sporenbildenden Bakterien, Zentbl Baktedol Parasitenkd Infektionskr Hyg AbtⅡ. 1904, 12: 337-352.
    43. Kellen WR, Clark TB, Lindegren JE, et al. Bacillus sphaericus Neide as a pathengen of mosquitoes, J Invertebr Pathol. 1964, 7: 442-448.
    44. Priest FG, Goodfellow M, Todd C. A numerical classification of the genus Bacillus. J Gen Microbiol. 1988, 234: 1847-1882.
    45. Krych VK, Johnson JL, Youstern AA. Deoxyribonucleic acied homologies among strians of Bacillus sphaericus. Intl J Syst Bacteriol. 1980, 30: 476-484.
    46. Nakamura LK. Phylogeny of Bacillus sphaericus-like organisms. Intl J Syst Evol Microbiol. 2000, 50: 1715-1722.
    47. Silva KRA, Rabinovitch L, Seldin L. Phenotypic and genetic diversity among Bacillus sphaericus strains isolated in Brazil, potentially useful as biological control agents against mosquito larvae. Res Microbiol. 1999, 150: 153-160.
    48. Wu EY, Jun L, Yuan YM, et al. Characterization of a cryptic plasmid from Bacillus sphaericus strain LP1-G. 2007, 57:296-305
    49. Cano RJ, Monica K, Borucki. Revival and identification of bacterial spores in 20-to 40-million-year-old Dominican amber. Science. 1995, 268:1060-1064.
    50. Yoon JH, Lee KC, Weiss N, et al.. Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transferof Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina. Intl J Syst Evol Microbiol. 2001, 51: 1079-1086.
    51.东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001.
    52.布坎南RE,吉本斯NE.编.中国科学院微生物研究所伯杰细菌鉴定手册编译组译.伯杰氏系统细菌学手册.北京:科学出版社,1984.
    53.Zhang YM, Liu EY, Cai QX, et al.Isolation of two high toxin Bacillus sphaericus strains.Inseticidal Microorg.1987,1:98-99.
    54.袁志明,张用梅,刘娥英.球形芽胞杆菌C3-41对致倦库蚊的毒效及在蚊幼体内的再循.昆虫学报.1992,37:404-410.
    55. Stephanopoulos G.Metabolic Fluxes and Metabolic Engineering. Metab Eng. 1999, 1: 1-11.
    56. Stulke J, Hillen W. Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol. 2000, 54: 849-80.
    57. Jagtar S, Navneet B, Ranbir CS. Purification and characterisation of alkaline cellulase produced by a novel isolate, Bacillus sphaericus JS1. J Ind Microbiol Biotechnol. 2004, 31: 51-56.
    58. Fouet A, Arnaud M, Klier A, et al. Bacillus subtilis sucrose-specific enzymeⅡ of the phosphotransferase system: expression in Escherichia coli and homology to enzymeⅡ fromenteric bacteria. Proc Natl Acad Sci. 1987, 84: 8773-77.
    59. Steinmetz M. Carbohydrate catabolism: pathways, enzymes, genetic regulayion, ang evolution. In Bacillus subtilis and other Gram-positive Bacteria. Biochemistry, physiology, and molecular genetics, ed. AL Sonenshein, JA Hoch, R Losick, 1993, 157-70. Washington, DC: Am. Soc. Microbiol.
    60. Mesak LR, Mesak FM, Dahl MK. Expression of a novel gene, glup, is essential fro normal Bacillus subtilis cell division and contributes to glucose export. BMC microbiol. 2004, 4: 13-29.
    61. Helfert C, Gotsche S, Dahl MK. Cleavage of trehalose-phosphate in Bacillus subtilis is catalyzed by phospho-α-(1, 1)-glucosidase encoded by the tre gene. Mol Microbiol. 1995, 16: 111-120.
    62. Nickerson KW, Julian GS, Bulla LA. Physiology of sporeforming bacteria associated with insects: radiorespirometric survey of carbohydrate metabolism in the 12 serotypes of Bacillus thuringiensis. Appl Mivrobiol. 1974, 28: 129-132.
    63.沈同,王镜岩.生物化学.第一版,高等教育出版社,199l,北京。
    64. Alejandro AF, Gaspar PM, Carmen SR. Existence of a true phosphofructokinase in Bacillus sphaericus: cloning and squeneing of the pfk gene. Appl Environ Mivrobiol. 2002, 68: 6410-6415.
    65. Alejandro AF, Gaspar PM, Carmen SR. Phosphoenolpyruvate phosphotransferase system and N-acetyhlueosamine metabolism in Bacillus sphaericus. Microbiology. 2003, 149: 1687-1698.
    66. Matin A. Organic nutrition of ehemolithotrophie bacteria. Ann Rev Microbiol. 1978, 32: 433-68.
    67. Bailey JE. Towards a science of metabolic engineering. Science. 1991, 252: 1668-1674.
    68. Chambliss GH. Carbon source mediated catabolite repression. In Bacillus subtilis and other Gram-positive bacterial: Biochemistry, Physiology, and Molecular Genetics, ed. AL Sonenshein, JA Hoch, R Losick, 1993, 213-219. Washington, DC: Am. Soc. Microbiol.
    69. Deutscher J, Kessler U, Alpert CA, et al. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-ser-HPr and its possible regulatory function. Biochemistry. 1984, 23: 4455-60.
    70. Reizer J, Hoischen C, Titgemeyer F, et al. A novel protein kinase that controls carbon catabolite repression in bacteria. Mol Microbiol. 1998, 27:1157-1169.
    71. Mahr K, van Wezel GP, Svensson C, et al. Glucose kinase of Streptomyces coelicolor A3(2): large-scale purfication and biochemical analysis. Antonie Van Leeuwenhoek. 2000, 78: 253-261.
    72. Imrishova I. Arreguin-Espinosa R, Guzman S, et al. Biochemical characterization of the glucose kinases from Streptomyces coelicolor compared to Streptomyces peuceticus var. caesius. Res Microbiol. 2005, 156: 361-366.
    73. Albino M, Smits WK, Ho LTY, et al. The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. J Bacteriol. 2005, 187: 2010-2019.
    74. Kawai S, Mukal T, Mori S, et al. Structure, evolution and ancestor of glucose kinase in the hexokinase family. J Biosci Bioeng. 2005, 99: 320-330.
    75. Henkin TM, Grundy F J, Nieholson WL, et al. Catabolite repression of α-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacI and galR repressors. Mol Microbiol. 1991, 5: 575-84.
    76. Hueck C J, Kraus A, Schmiedel D, et al. Cloning, wxpression and functional analysis of the catabolite control protein CcpA from Bacillus megaterium. Mol. Mircrobiol. 1995, 16: 855-64.
    77.张用梅.球形芽胞杆菌及其杀蚊原理和应用,第一版,科学出版社,1995,北京.
    78. Termonia Y, Ross J. Oscillations and control features in glycolysis: analysis of resonance effects. 1981, 78: 3563-3566.
    79. Meyer D, Schneider-Fresenius C, Hodacher R, et al. Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol. 1997, 179: 1298-1306.
    80. Brigham C J, Malamy MH. Characterization of the RokA and HexA broad-substrate-specificity hexokinase from Bacteroidesfragilis and their role in hexose and N-acetylglucosamine utilization. J Bacteriol. 2005, 187: 890-901.
    81. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A Laboratory Manual. 3ed: Coldspring Harbour Labortory Press; 2001.
    82. Kalfon A TIaCJ. Growth, Sporulation and larvicidal activity of Bacillus sphaericus. Eur J Microbiol Biotechnol 1983, 18: 168-173.
    83. Myers PS, Younsten AA. Localization of a mosquito-larval toxin of Bacillus sphaericus 1593. Appl Environ Microbiol. 1980, 39:1205-1211.
    84. Bourgouin C, Delecluse A, F De la Torre, et al. Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp, israelensis and their expression. Appl Environ Microbiol. 1990, 56: 340-344.
    85. Park SY, Kim HK, Yoo SK, et al. Characterization of glk, a gene coding for glucose kinase of Corynebacterium glutamicum. FEMS Microbiol Lettt. 2000, 188:209-215.
    86. Skarlatos P, Dahl MK. The gluockinase of Bacillus subtilis. J Bacteriol. 1998, 180: 3222-3226.
    87. Yousten AA, Davidson EW. Ultrastryctural analysis of spores and parasporal crystals formed in Bacillus sphaericus 2297. Appl Environ Microbiol. 1982, 44: 1449-1455.
    88. Labes A, Schonheit P. ADP-dependent glucokinase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324. Arch Mierobiol. 2003, 180: 69-75.
    89. Han B, Liu HZ, Hu XM, et al. Molecular characterization ofa glucokinase of broad hexose specificity from Bacillus sphaericus C3-41. Appl Environ Microbiol. 2007, 73: 3581-3586.
    90. Bae J, Kim D, Choi Y, et al. A hexokinase with broad sugar specificity from a thermophilic bacterium. Bioehem Biophys Res Commun. 2005, 334:754-7631.
    91. Dorr C, Zaparty M, Tjaden B, et al. The hexokinase of the hyperthermophile Thermoproteus tenax: ATP-dependent hexokinases and ADP-dependent glucokinase, two alternatives glucose phosphorvlation in archaea. J Bio Chem. 2003, 278: 18744-18753.
    92. Miller BG, Raines RT. Reconstitution of defunct glycolytic pathway via recruitment of ambiguous sugar kinase. Biochemistry. 2005, 44:10776-10783.
    93. Sakai H, Ohta T. Molecular cloning and nucleotide sequence of the gene for pyruvate kinase of Bacillus stearothermophilus and the production of the enzyme in Escherichia coli: evidence that the genes for phosphofructokinase and pyruvate kinase form and operon. Eur J Biochem. 1993, 211: 851-59.
    94. Han B, Liu HZ, Hu XM, et al. Preliminary characterization of a thermostable DNA polymerase I from a mesophilic Bacillus sphaericus strain C3-41. Arch. Microbiol. 2006, 186: 203-209.
    95. Alves AM, EuverinGJ k, Bibb MJ, et al. Identification of ATP-Dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the Actinomycete streptomyces coelicolor A3 (2). Appl Envio Microbiol. 1997, 63: 956—961.
    96. Rouwendal GJA, Zwiers LH, Wolbert EJH, et al. Cloning, sequencing and expression in Escherichia coli of the gene encoding phosphofructokinase from Bacillus macquariensis. Gene. 1996, 171: 59-63.
    97. Sakai H, Ohta T. Molecular cloning and nueleotide sequence of the gene for pyruvate kianse of Bacillus stearothermophilus and the production of the enzyme in Escherichia coli: evidence that the genes for phosphofructokinase and pyruvate kinase form and operon. Eur J Biochem. 1993, 211: 851-859.
    98. Marcel E, James EB, Uwe S. Glucose catabolism of Escherichia coli strains with increases activity and altered regulation of key glycolytic enzymes. Metab Eng. 1999, 1: 117-127.
    99. Hansen T, Schlichting B, Felgendreher M, et al. Cupin-type phosphoglucose isomerase (cupin-PGIs) constitute a novel metal-dependent PGI family representing a convergent line of PGI evolution. J Bacteriol. 1995, 187: 1621-1631.
    100. Mathur S, Ahsan Z, Tiwari M, et al. Biochemical characterization of recombinant phosphoglucose isomerase of Mycobacterium tuberculosis. Biochem Biophy Res Commu. 2005, 337: 626-632.
    101.王赞信,叶云凌.细菌生化微量鉴定管指示剂的选择与应用.中国卫生检疫杂志.2002,5:606.
    102. Hsiao CD, Chou CCC, Hsiao YY, et al. Expression, purification, and crystallization of two isozymes of 6-phosphoglucose isomerase of Bacillus Stearothermophilus. J Struct Biol. 1997, 120: 196-200.
    103. EI-Kazzaz W, Morita T, Tagami H, et al. Metabolic block at early stages of the glycolytic pathway activates the Rcs phosphorelay system via increased synthesis of dTDP-glucose in Escherichia coli. Mol Microbiol. 2004, 51: 1117-1128.
    104. Repiso A, Oliva B, Corrons JLV, et al. Glucose phosphate isomerase deficiency: enzymatic and familial characterization of Arg346His mutation. Biochim Biophys Acta. 2005, 1740: 467-471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700