GaAs微探尖的选择液相外延制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扫描近场光学显微术(SNOM)是一种新型纳米尺度结构和信息研究的强有力的光电子学工具,它打破了传统光学衍射极限的限制,分辨率可达到纳米量级。其重要的应用之一是适应现代信息社会发展的需求,实现超高密度光存储。一般来说,用于超高密度光存储的扫描近场光学显微传感头由三个主要部分组成:半导体激光器、光电探测器和微探尖。这里的微探尖质量和性能将直接影响整个扫描近场光学显微系统。因此,如何制备高质量的微探尖已经成为近年来的研究热点。
     目前国内外制备微探尖的方法有很多种。对于光纤探尖,主要有热拉伸法和化学腐蚀法;对于介质和半导体材料探尖,主要有湿法刻蚀、干法刻蚀、混合法刻蚀、金属有机物化学气相沉积(MOCVD)和自组织液相外延法等等。根据我们实验室现有的条件,针对上面几种方法出现的问题,本论文提出了一种新型的GaAs材料微探尖制备方法——选择液相外延方法。这种方法的基本思想是在已经外延生长好的垂直腔面发射激光器(VCSEL)结构表面沉积一层掩膜,然后利用常规的光刻和湿法刻蚀手段在掩膜上面形成尺寸和周期与激光器出光窗口一致的窗口阵列,最后利用掩膜对液相外延生长的阻断作用在窗口中液相外延生长出金字塔状微探尖。这种方法不仅可以将微探尖直接生长在激光器的出光表面上,省略了探尖转移的步骤,还自动解决了微探尖与激光器出光窗口的对准问题,并为实现多探尖并行扫描提供了工艺基础。
     在研究过程中,我们使用GaAs(001)衬底模拟VCSEL外延片表面,采用选择液相外延方法制各GaAs微探尖阵列,并用扫描电子显微镜(SEM)对微探尖阵列进行表征。结果表明,在合适的条件下,微探尖呈金字塔状,并具有较好的分布周期性和一致性。
     本文详细介绍了该种方法的工艺流程,包括掩膜的制备、光刻、湿法刻蚀、液相外延等等。研究了不同掩膜对微探尖生长的影响以及不同形状和不同取向的窗口设计对微探尖生长的影响,得到了不同窗口中微探尖的生长过程,优化了微探尖制备的液相外延生长条件。
     除此之外,考虑到工艺兼容等问题和拓展选择液相外延方法制备的微探尖的应用范围,我们还开发了两套微探尖的剥离技术(浓盐酸选择腐蚀缓冲层法和氨水选择腐蚀衬底法)与一套转移技术,成功地将微探尖从衬底上面剥离并转移到VCSEL的出光窗口表面,实现了微探尖和激光器的集成。这样使得选择液相外延方法制备的微探尖也可以应用于其它种类的扫描探针显微镜。
     最后,本论文介绍了晶体生长形态学中的布拉维法则、BFDH理论和SHAPE晶体生长形态模拟软件,采用这两种理论和SHAPE软件对GaAs晶体生长形态进行了预测和模拟,得到的预测结果和模拟结果与实验结果吻合得比较好。
     本项研究工作连续得到了两项国家自然科学基金(《用于超高密度光存储的集成式SNOM微探尖的选择生长研究》No.60377005和《影响GaAs微探尖阵列选择外延生长质量的关键技术研究》No.60777009)、科技部重大基础研究前期研究专项(《超高密度光存储》No.2004CCA03700)和高等学校博士学科点专项科研基金(《用于SNOM传感器的GaAs微探尖阵列选择生长质量改进技术》NO.20060141026)的支持,并已成功获得国家发明专利一项,批准号为ZL 03 1 33404.0。
Scanning near-field optical microscopy (SNOM) is a novel photoelectrical tool for the research down to the nanometer scale. It uses the evanescent field confined at the tiny aperture to provide images of rough surfaces with a resolution beyond the classical optical diffraction limit. One of the most important potential application of SNOM may be found in ultra-high density optical recording. Generally speaking, SNOM sensor is composed of three main parts, semiconductor laser, photoelectronic detector and the microtip. Since microtip is one essential part of SNOM, the fabrication of high quality microtips has become a key issue.
     Up to now, many microtip fabricating techniques have been explored. As for fiber microtips, the main fabrication techniques are thermal stretching and chemical etching. As for semiconductor microtips, the main fabrication techniques are wet etching, MOCVD, mixed etching, self-assembled liquid phase epitaxy and so on. According to the conditions of our lab, we present a new simple selective liquid phase epitaxial growth of GaAs pyramidal microtips. The main steps of the technology can be divided into three parts. First, a 20-30nm thick thin film is deposited on the treated GaAs substrate. Second, the periodic windows with regular sizes are created in the mask using standard photolithography and wet etching. Third, the GaAs substrate with the mask openings is loaded into a conventional LPE system to carry out the selective liquid phase epitaxial growth of microtips in an atmosphere of Pd-purified hydrogen. This method not only can grow GaAs microtips directly on the VCSEL wafer and avoid transferring microtips but also settle the problems of aligning the microtips with light-emiting windows of lasers. It also provides a technology basis for batch production and parallel scanning with several microtips.
     The (001) GaAs substrates are used instead of VCSEL wafers in our preliminary experiments, Scanning electron microscopy (SEM) is used to characterize the morphology of GaAs microtips. The results indicate that in appropriate conditions the microtips are pyramid-like and distribute uniformly on the wafers.
     This technology of fabricating microtips is introduced in great detail in this thesis, including mask preparation, photolithography, wet etching and liquid phase epitaxial growth. The effects of different masks and different mask openings on the liquid phase epitaxial growth of GaAs microtips are investigated. The morphological evolution of GaAs microtips in different mask openings are also illustrated and the LPE experimental conditions are optimized to improve the quality of tips.
     Besides, we also provide two methods to transferring GaAs microtips, selective wet etching Al_(0.7)Ga_(0.3)As buffer layer using concentrated HCl solution and selective wet etching GaAs substrate by diluent ammonia solution. Both of the two methods are compatible with selective liquid phase epitaxy. Furthermore, we realize the integration of microtips and VCSEL, which expands the application of the selective liquid phase epitaxial GaAs microtips for other scanning probe microscopy.
     In the end, Bravais law, BFDH theory and SHAPE software are employed to preview and simulate the morphology of GaAs microtips grown in free growth system. And the results agree with the experimental results well.
     This work is financially supported by two National Nature Science Foundations of China under project No.60377005 and No.60777009, Special Fund for Preliminary Research of Key Basic Research Project from Ministry of Science and Technology of China under project No.2004CCA03700 and Special Research Fund for Doctoral Program of Higher Education under project No.20060141026. One national patent has been authorized and the Patent Number is ZL 03 1 33404.0.
引文
[1]顾书龙,张宏彬.扫描近场光学显微镜的技术与应用.阜阳师范学院学报(自然科学版),2003,20(1):20-24.
    [2]朱星.近场光学与近场光学显微镜.北京大学学报(自然科学版),1997,33:394-407.
    [3]张树霖.近场光学显微镜及其应用.北京:科学出版社,2000.
    [4]赵凯华,钟锡华.光学(上册).北京:北京大学出版社,1984.
    [5]M.玻恩,E.沃尔夫.光学原理(上册).北京:科学出版社,1978.
    [6]T.D.Harris,R.Grober,J.Trautman et al.Super-resolution imaging spectroscopy.Appl.Spectroscopy,1994,48(1):14A-21A.
    [7]余金中.半导体光电子技术.北京:化学工业出版社,2003.
    [8]王现英,张约品,沈德芳等.超高密度磁光存储及其介质研究进展.物理,2002(12期),31:779-783
    [9]曾谨言.量子力学.北京:科学出版社,2000.
    [10]C.Gorecki,S.Khalfallah,H.Kawakatsu et al.New SNOM sensor using optical feedback in a VCSEL-based compound-cavity.Sensors and Actuators A:Physical,2001,87(3):113-123.
    [11]S.Hosaka,T.Shintani,M.Miyamoto etal.Scanning near-field optical microscope with alaser diode and nanometer-sized bitrecording.Thin Solid Films,1995,273:122-127.
    [12]金国藩,张培琨.超高密度光存储技术的现状和今后的发展.中国计量学院学报,2001(2):6-13.
    [13]马文波,吴谊群,顾冬红等.超高密度数位光存储新技术的研究进展.镭射与光电子学进展.2003,40:1-7.
    [14]张松兰,张波.高密度光存储技术展望.洛阳工业高等专科学校学报.2005,15:12-14.
    [15]董怡,金伟其.超高密度光存储技术.镭射与红外.2005,35:543-547.
    [16]魏劲松,张约品,阮昊等.近场光存储及其研究进展.物理学进展.2002,22:188-197.
    [17]徐承亮,董天临.近场光记录读写驱动控制的设计和实现.电脑与数位工程.2001,30:36-39.
    [18]S.Jiang,H.Ohsawa,K.Yamada et al.Nanometric scale biosample observation using a photon scanning tunneling microscope.Jpn.J.Appl.Phys.,1992,31:2282-2287.
    [19]T.Pangaribaan,K.Yamada,S.Jiang et al.Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope.Jpn.J.Appl.Phys.,1992,31:L1302-L1304.
    [20]P.Lambelet,A.Sayah,M.Pfeffer et al.Chemically etched fiber tips for near-field optical microscopy:a process for smoother tips.Appl.Opt.,1998,37(31):7289-7292.
    [21]P.Hoffman,B.Dutoit et al.Comparison of mechanically drawn and protection layer chemically etched optical-fiber tips.Ultramicroscopy,1995,61:165-170.
    [22]V.Dryakhlushin,A.Klimov,V.V.Rogov.Probes for a scanning near-field optical microscope on the base tapered single-mode optical fiber.Advanced Optoelectronics and lasers.2003,2:36-38.
    [23]A.Harootunian,E.Betzig,M.Isaacson et al.Super-resolution fluorescence near-field scanning optical microscopy.Appl.Phys.Lett..1986,49:674-676.
    [24]E.Betzig,P.Finm,J.Weiner.Combined shear force and near-field scanning optical microscopy.Appl.Phys.Lett..1992,60:2484-2486.
    [25]S.T.Jung,D.J.Shin,Y.H.Lee.Near-field fiber tip to handle high input power more than 150mW.Appl.Phys.Lett..2000,77:2638-2640.
    [26]N.Essaidi,Y.Chen,V.Kottler et al.Fabrication and characterization of optical-fiber nanoprobes for scanning near-field optical microscopy.Appl.Opt..1998,37:609-615.
    [27]G.A.Valaskoiv,M.Holton,G.H.Morrison.Parameter control,characterization,and optimization in the fabrication of optical fiber near-field probes.App1.0pt..1995,34:1215-1234.
    [28]S.Mononobe,M.Nays,T.Saiki etal.Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics.Appl.Opt..1997,36:1496-1500.
    [29]杨修文,祝生祥,胡毅.大锥角光纤探针的制备.光学与光电技术.2007,5:57-60.
    [30]D.W.Kim,J.T.Ok,S.S.Choi et al.Analysis of the aperture formation mechanism in the fabrication process of nano-aperture arrays.Microelectronic engineering.2004,73-74:656-661.
    [31]S.S.Choi,M.Y.Jung,M.S.Joo et al.Field emission study of titanium silicide array.Surface and interface analysis.2004,36:435-438.
    [32]S.Heisig,O.Rudow,E.Oesterschulze.Optical active gallium arsenide cantilever probes for combined scanning near-field optical microscopy and scanning force microscopy.J.Vac.Sci.Technol.2000,B18(3):1134-1137.
    [33]F.Ducroquet,P.Kropfeld,O.Yaradou et al.Fabrication and emission characteristics of GaAs tip and wedge-shaped field emitter arrays by wet etching.Technical digest of IVMC' 97Kyongju.1997,83-86.
    [34]S.Heisig,E.Oesterschulze.Gallium arsenide probes for scanning near-field probe microscopy.Appl.Phys.A.1998,66:385-390.
    [35]S.Zhalfallah,C.Gorecki,J.Podlecki et al.Wet-etching fabrication of multilayer GaAlAs/GaAs microtips for scanning near-field optical microscopy.Appl.Phys.A.2000,71:223-225.
    [36]S.Heisig,W.Steffens,E.Oesterschulze.Optical active gallium arsenide probes for scanning probe microscopy.Proceedings of SPIE.1998,3467:305-312.
    [37]E.Oesterschulze.Integrated Probes for high resolution imaging of surface.Proceedings of SPIE.1998,3467:78-88.
    [38]G.J.Bauhuis,P.Mulder,H.van Kempen.Tip formation of micrometer scale GaAs pyramid structures grown by MOCVD.J.Crystal Growth.2002,240:104-111.
    [39]H.Heinecke,A.Brauers,F.Grafahrend et al.Selective growth of GaAs in the MOMBE and MOCVD systems.J.Crystal Growth.1986,77:303-309.
    [40]K.Mizuguchi,N.Hayafuji,S.Ochi et al.MOCVD GaAs growth on Ge(100)and Si(100)substrates.J.Crystal Growth.1986,77:509-514.
    [41]C.Y.Hwang,M.J.Schurman,W.E.Mayo et al.Effect of structure defects and chemical impurities on hall mobilities in low pressure MOCVD grown GaN.J.Electron.Mater..1997,26:243-251.
    [42]T.Yang,J.tatebayashi,S.tsukamoto et al.Narrow photoluminescence linewidth(<17 mev)from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure metalorganic chemical vapor deposition.Appl.Phys.Lett.2004,84:2817-2819.
    [43]Duchemin.J P,Hirtz.J P,Razeghi.M et al.GaInAs and GaInAsP material grown by low pressure MOCVD for microwave and optpelectronic applications.J.Crystal Growth.1981,55:64-73.
    [44]闵乃本.晶体物理的生长基础.上海:科学技术出版社,1982.
    [45]H.Lizhong,S.Jie,M.Qingduan et al.Al_(0.3)Ga_(0.7)As microtips grown by self-assembled LPE for integrated SNOM sensors.J.Cryst.Growth.2002,240:98-103.
    [46]S.Jie,H.Lizhong,S.Yingchun et al.Liquid phase epitaxy of Al_(0.3)Ga_(0.7)As islands.J.Cryst.Growth.2004,270:38-41.
    [47]J.Sun,P.Jin,Z.G.Wang et al.Changing planar thin film growth into self-asembled island formation by adjusting experimental conditions.Thin solid films.2005,476:68-72.
    [48]Y.M.Su,L.Z.Hu,J.Sun et al.Self-organized LPE growth of Al_(0.3)Ga_(0.7)As microtips for integrated SNOM sensors.Proceedings of SPIE.2002,4923:41-46.
    [49]H.C.凯西,M.B.帕尼什.异质结构激光器.北京:国防工业出版社,1985.
    [50]杨树人,丁墨元.外延生长技术.北京:国防工业出版社,1992.
    [51]杨数人,王宗昌,王兢.半导体材料.北京:科学出版社,2004.
    [52]W.T.TSANG主编.江剑平等译.半导体材料生长技术.广东:广东科技出版社,北京:清华大学出版社,1993.
    [53]谢孟贤,刘诺.化合物半导体材料.成都:电子科技大学出版社,2000.
    [54]王季陶,刘明登.半导体材料.北京:高等教育出版社,1990.
    [55]韩爱珍.半导体工艺化学.南京:东南大学出版社,1991.
    [56]乔冠儒.半导体工艺化学原理.南京:江苏科学技术出版社,1979.
    [57]吴自勤,王兵.薄膜生长.北京:科学出版社,2001.
    [58]杜经宁,J.W.迈耶,L.C.费尔德曼著.黄信凡,杜家方,陈坤基译.北京:科学出版社,1997.
    [59]顾培夫.薄膜技术.杭州:浙江大学出版社,1990.
    [60]Robert F.Pierret著.黄如,王漪,王金延等译.半导体器件基础.北京:电子工业出版社,2004.
    [61]刘国维,谢孟贤.半导体工艺原理.北京:国防工业出版社,1980.
    [62]施敏著.赵鹤鸣,钱敏,黄秋萍译.半导体器件(物理与工艺)第二版.苏州:苏州大学出版社,2002.
    [63]洪啸吟.光刻与光刻胶的研究与发展.高分子通报.1993,3:129-134.
    [64]管慧,田红.光刻胶处理系统的国内外现状.电子工业专用设备.1992,21:8-12.
    [65]王万琪.光刻胶处理系统.电子工业专用设备.1988,1:57-61.
    [66]刘多勤.光刻技术及其战略选择.电子工业专用设备.1993,22:1-9.
    [67]H.Nagayama,H.Honda,H.Kawahara.A new process for silica coating.J.Electrochem.Soc.1988,135:2013-2016.
    [68]C.J.Huang,M.P.Houng,Y.H.Wang et al.Improved formation of silicon dioxide films in liquid phase deposition.J.Vac.Sci.Technol.1998,16:2646-2652.
    [69]JS.Chou,SC.lee.Improved process for liquid phase deposition of silicon dioxide.Appl.Phys.Lett.1994,64:1971-1973.
    [70]C.J.Huang,M.P.Houng,Y.H.Wang et al.Effect of a chemical modification on growth silicon dioxide films on gallium arsenide prepared by the liquid phase deposition method.J.Appl.Phys.1999,86:7151-7155.
    [71]C.J.Huang,W.C.Shih.Optimization of pretreatment for liquid-phase deposition of SiO_2on ARTON plastic substrate.J.Electron Mater.2003,32:478-482.
    [72]孟庆端.LPD方法制作二氧化硅薄膜的研究及其表征:(硕士学位论文).大连:大连理工大学,2003.
    [73]孙捷.化学液相沉积法制备氧化铝薄膜:(硕士学位论文).大连:大连理工大学,2003.
    [74]张龙,董玮,张歆东等.利用(110)硅片制作体硅微光开关的工艺研究.半导体学报.2004,25:99-103.
    [75]马化营.硅片处理系统与光刻.电子工业专用设备.1993,22:9-12.
    [76]S.Jialin,X.Jianhua,T.Guangyan et al.Fabrication and application of near-field optical fibre probe.Chinese Physics.2001,10:631-635.
    [77]Hseih.JJ.Thickness and surface morphology of GaAs LPE layers grown by supercooling,step-cooling,equilibrium-cooling and two-phase solution techniques.J.Cryst.Growth.1974,26:49-61.
    [78]A.YU.Gorbatchev,V.A.Mishurnyi,F.DE.Anda.Control of the critical supercooling in LPE.J.Electron.Mater.2000,29:1402-1405.
    [79]J.E.Davies,E.A.D.White,J.D.C.Wood.A study of parameters to optimize the design of LPE dopping apparatus.J.Cryst.Growth.1974,27:227-240.
    [80]杜国同,邓希敏,王启林等.GaAs非平面沉底液相外延的实验研究.吉林大学自然科学学报.1987,1:65-69.
    [81]刘宏勋,王舒民,江晓松等.在710℃下Al_xGa_(1-x)As液相外延短时间生长特性的研究.半导体学报.1987,8:540-544.
    [82]罗恩银,罗海荣,殷顺平.非平面GaAs衬底上的液相外延.半导体光电.1986,2:40-42.
    [83]李炽,吴长树,黄醒良.液相外延生长理论对(Hg,Cd)Te的应用.红外技术.1988,10:35-39.
    [84]李炽,吴长树,黄醒良.液相外延生长中的过冷成核.红外技术.1987,9:26-29.
    [85]陶长远,刘达清.单温区碲镉汞液相外延生长.红外与激光技术.1993,1:23-28.
    [86]杨德林.在GaAs衬底上液相外延生长层质量的研究.半导体光电.1982,1:27-35.
    [87]M.P.Houng,C.J.Huang,Y.H.Wang et al.Extremely low temperature formation of silicon dioxide on gallium arsenide.J.Appl.Phys.1997,82:5788-5792.
    [88]C.J.Huang,M.P.Houng,Y.H.Wang et al.Effect of fluorine concentration on the metal-insulator-semiconductor(MIS)solar cell output performance by liquid phase deposition.Jpn.J.Appl.Phys.1998,37:L158-L160.
    [89]A.J.Niskanen,S.Franssila.Submicron image reversal by liquid phase deposition of oxide.Microelectron.Eng.2001,57-58:629-632.
    [90]M.P.Houng,Y.H.Wang,C.J.Huang et al.Quality optimization of liquid phase deposition SiO_2 films on gallium arsenide.Solid-State Electron.2000,44:1917-1923.
    [91]N.Danson,G.W.Hall,R.P.Howson.Reactive magnetron sputtering of silicon to produce silicon oxide.Nucl.Instrum.Meth.B.1997,121:90-95.
    [92]N.Danson,G.W.Hall,R.P.Howson.Improved control techniques for the reactive magnetron sputtering of silicon to produce silicon oxide and the implications for selected film properties.Thin solid films.1996,289:99-106.
    [93]宗婉华,马振昌.磁控溅射二氧化硅薄膜的制备工艺.半导体情报.1994,31:29-33.
    [94]刘艳红,郭宝海.射频磁控溅射沉积SiO_2膜的研究.大连理工大学学报.1997,37:204-207.
    [95]程开富,刘心莲.电子束蒸发技术.电子工业专用设备.1991,20:36-39.
    [96]钟芙瑛.电子束蒸发和沉积工艺.国外稀有金属动态.1992,4:7-8.
    [97]邹德恕,陈建新.电子束蒸发二氧化硅薄膜在Si/Sil-XGexHBT中的应用研究.半导体技术.1996,2:42-43.
    [98]伍晓明.电子束蒸镀厚SiO2膜的工艺研究.光电子.激光.2001,12:569-571.
    [99]程开富.高真空电阻加热蒸发铝膜的质量分析.电子工业专用设备.1996,25:43-46.
    [100]孙建忠.CPP真空镀铝薄膜的加工和应用.塑料加工应用.1994,2:17-19.
    [101]王艳波,王福全.真空沉积铝膜.铝加工.1997,20.45-50.
    [102]张继东,李才巨,朱心昆等.不同基体真空蒸镀铝膜的附着力研究.昆明理工大学学报:理工版.2006,31:25-27.
    [103]B.Ferrand,B.Chambaz,M.Couchaud.Liquid phase epitaxy:A versatile technique for the development of miniature optical components in single crystal dielectric media.Opt.Mater.1999,11:101-114.
    [104]N.S.Takahashi,A.Fukushima,T.Sasaki et al.Fabrication methods for InGaAsP/GaAs visible laser structure with AlGaAs burying layers grown by liquid-phase epitaxy.J.hppl.Phys.1986,59:761-768.
    [105]C.J.Huang,J.R.Chen,S.P.Huang.Silicon dioxide passivation of gallium arsenide by liquid phase deposition.Mater.Chem.Phys.2001,70:78-83.
    [106]S.Heisig,E.Oesterschulze.Gallium arsenide probes for scanning near-field probe microscopy.Appl.Phys.A.1998,66:S385-S390.
    [107]H.U.Danzebrink,U.C.Fischer.In Near Field Optics,ed.by.D.W.Pohl,D.Courjon (Kluwer,Dordrecht 1993)p.303.
    [108]X.Y.Zhang,Q.L.Tang,J.M.Tang.Application of ion beam etching technique to the direct fabrication of silicon microtip arrays.J.Vac.Sci.Technol.B.2004,22:2853-2859.
    [109]D.W.Kim,S.H.Lym,M.Y.Jung et al.Fabrication of field emission Si-tip array using reduced submicron masks generated by isotropic etching of mask patterns.Microelectron.Eng.1999,46:423-426.
    [110]A.V.Karabutov,V.D.Frolov,A.V.Simakin et al.Low-field electron emission of Si microtip arrays produced by laser beam evaporation.J.Vac.Sci.Technol.2003,21:449-452.
    [111]M.A.Salem,H.Mizuta,S.Oda.Vertical composition gradient in InGaAs/GaAs alloy quantum dots as revealed by high-resolution x-ray diffraction.Appl.Phys.Lett.2004,85:3262.
    [112]J.Itoh,T.Hirano,S.Kanemaru.Ultrastable emission from a metal-oxide-semiconductor field-effect transistor-structured Si emitter tip.Appl.Phys.Lett.1996,69:1577-1578.
    [113]Y.X.Zhang,Y.W.Zhang,T.S.Sriram et al.Formation of single tips of oxidation-sharpened Si.Appl.Phys.Lett.1996,69:4260-4261.
    [114]孙晓娟.GaAs微探尖的制备和转移:(硕士学位论文).大连:大连理工大学,2007.
    [115]孙晓娟,胡礼中,田怡春等.GaAs微探尖的衬底选择刻蚀法剥离和转移.人工晶体学报.2007,36:89-92.
    [116]X.J.Sun,L.Z.Hu,H.Z.Zhang et al.Transferring of GaAs microtips using selective wet etching Al_(0.7)Ga_(0.3)As sacrificial layer.Microelectron.Eng.Article in press.
    [117]Y.Uenishi,H.Tanaka,H.Ukita.Characterization of AlGaAs microstructure fabricated by AlGaAs/GaAs micromachining.IEEE Transactions on electron devices.1994,41:1778-1781.
    [118]J.J.LePore.An improved technique for selective etching of GaAs and Ga_(1-x)Al_xAs.J.Appl.Phys.1980,51:6441-6442.
    [119]田怡春,胡礼中,梁秀萍等.LPE-GaAs微探尖与VCSEL的粘合集成.光电子.激光.已录用待发表.
    [120]D.J.Stirland,B.W.Straughan.A review of etching and defect characterization of gallium arsenide substrate material.Thin Solid Films.1976,31:139-170.
    [121]李汶军,施尔畏,殷之文.晶体的生长习性与配位多面体的形态.人工晶体学报.1999,28:368-372.
    [122]徐宝琨,阎卫平,刘明登.结晶学.长春:吉林大学出版社,1998.
    [123]R.F.P.Grimbergen,H.Meekes,P.Bennema et al.On the prediction of crystal morphology.Ⅰ The Hartman-Perdok theory revisited.Acta Cryst.1998,A54:491-500.
    [124]H.Meekes,P.Bennema,R.F.P.Grimbergen.On the prediction of crystal morphology.Ⅱ.Symmetry roughening of pairs of connected nets.Acta Cryst.1998,A54:501-510.
    [125]R.F.P.Grimbergen,P.Bennema,H.Meekes.On the prediction of crystal morphology.Ⅲ.Equilibrium and growth behaviour of crystal faces containing multiple connected nets.Acta Cryst.1999,A55:84-94.
    [126]张缨,王静康,冯天扬.晶体形貌预测方法与应用.化学工业与工程.2002,19:119-123.
    [127]翁臻培.结晶学.北京:中国建筑工业出版社,1986.
    [128]C.Schneer.The morphological complements of crystal structures.Can.Mineral.1978,16:465-470.
    [129]施尔畏.水热结晶学.北京:科学出版社,2004.
    [130]王静康,黄向荣,刘秉文等.有机分子晶体晶习预测的研究进展.人工晶体学报.2002,31:218-223.
    [131]Donnay J.D.H.,Harker D..A new of crystal morphology extending the law of bravais.Amer.Mineral.1937,22:446-467.
    [132]J.Prywer.Explanation of some peculiarities of crystal morphology deduced from the BFDH law.J.Cryst.Growth.2004,270:699-710.
    [133]J.Prywer.Kinetic and geometric determination of the growth morphology of bulk crystals:Recent developments.Prog.Cryst.Growth Charact.Mater.2005,50:1-38.
    [134]E.Gil-Lafon,J.Napierala,D.Castelluci et al.Selective growth of GaAs by HVPE:keys for accurate control of the growth morphologies.J.Cryst.Growth.2001,222:482-496.
    [135]R.M.Ramdani,E.Gil,Y.Andre et al.Selective epitaxial growth of GaAs tips for local spin injector applications.J.Cryst.Growth.2007,306:111-116.
    [136]E.Dowty.Computing and drawing crystal shapes.Am.Mineral.1980,65:465-471.
    [137]黄向荣.6-氨基青霉烷酸晶习的研究:(硕士学位论文).天津:天津大学,2002.
    [138]R.Docherty,G.Clydesdale,K.J.Roberts et al.Application of Bravais-Friedel-Donnay-Harker,attachment energy and Ising models to predicting and understanding the morphology of molecular crystals.J.Phys.D:Appl.Phys.1991,24:89-99.
    [139]Vered Bisker-Leib,Michael F.Doherty.Modeling the crystal shape of polar organic materials:Prediction of urea crystals grown from polar and nonpolar solvents.Cryst.Growth Des.2001,1:455-461.
    [140]Hartman P,Perdok W G.On the relations between structure and morphology of crystals Ⅰ.Acta Cryst.1955,8:49-52.
    [141]Hartman P,Perdok W G.On the relations between structure and morphology of crystals Ⅱ.Acta Cryst.1955,8:521-524.
    [142] Hartman P, Perdok W G. On the relations between structure and morphology of crystals III. Acta Cryst. 1955,8:525-529.
    
    [143] Hartman P, Bennema P. The Attachment Energy as a Habit Controlling Factor. I-Theoretical Considerations. J. Cryst. Growth. 1980, 49:145-156.
    
    [144] W. K. Burton, N. Cabrera, F. C. Frank. The growth of crystals and the equilibrium structure and their surfaces. Philos. Trans. R. Soc. London, Ser. A, Mathematical and Physical Sciences. 1951,243:299-358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700