视频半导体光放大器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,随着高清电视,视频会议,数字影院和高质量音频传输服务的出现,接入网需要向高容量、高质量的方向发展。然而现存的下层接入网却存在带宽较小,网管损耗较大等问题。作为接入网的一个重要组成部分,有线电视(CATV)传输网络也不例外。目前,中国广电总局正在大力改造原有的混合光纤同轴形式的接入网,向光接入网发展,拓展光纤传输链路。而如何补偿信号在分级传输中的损耗是其中的一个重要问题。目前广泛商用的掺饵光纤放大器工作在1550nm窗口,这与现存的工作在1310nm窗口的CATV光发射机不兼容。因此就需要另一种放大器来实现接入网中的光放大。
     半导体光放大器(SOA)可以工作在1310nm窗口。半导体材料和器件的发展促使增益钳制(GC) SOA技术逐渐成熟。而线性放大器(LOA)概念的提出又标志着SOA在线路放大的应用中取得了新的进展。目前对于LOA的研究主要集中在波分复用信号的放大上,对CATV这种射频副载波信号的放大还没有相关的研究。
     本文介绍了带有SOA放大的CATV传输系统,并分析了SOA引入的非线性失真特性和噪声特性。本文首次建立了计算SOA中载流子浓度调制效应引起非线性失真的基本模型,计算了SOA引入的综合二阶失真(CSO)的大小,并通过实验验证,得出非线性失真大小和SOA工作条件的基本关系。本文还实验分析了SOA引入的噪声和SOA的工作条件以及系统CNR的关系。
     GC-SOA或LOA将在今后的接入网和微波光网络的发展中发挥重要左右。本文最后分析了GC-SOA减小非线性失真的基本原理,为进一步研究GC-SOA或LOA的非线性失真打下了理论基础。
Emerging applications in recent years, such as high-definition TV, tele-presence, digital cinema and high-quality audio transmission demand high-throughput optical access networks (OAN) with Quality of Service requirements. Nevertheless, the infrastructure of current access networks suffers from limited bandwidth and high network management cost. Cable television (CATV), one of the major services in OAN, is no exception. An evolution in access network is now proposed by the Chinese administration of radio film and television, changing the hybrid fiber coaxial networks to optical access networks. However, the requirement of optical amplifier to expand fiber links is confronted with a dilemma– commercial fiber amplifiers only operate in the wavelength region near 1550nm while the existent lasers operate near 1310nm.
     Semiconductor optical amplifier (SOA) can operate in the wavelength region near 1310nm. Progresses in semiconductor materials and devices accelerated the maturity of gain-clamped (GC) SOA. And with the concept of linear optical amplifier (LOA) being brought out, SOAs are now prepared for inline amplification. Recent works on LOA are mainly focused on the amplification of WDM signals; so far, no work is carried out on the amplification of RF subcarrier multiplexed signal, as CATV signals.
     In this dissertation, CATV lightwave systems with SOA for amplification is presented, and the SOA induced nonlinear distortion and noise are studied. A calculative model of nonlinearity based on carrier-density modulation in SOA is for the first time presented and used to calculation the composite second-order (CSO) index. The numerical results, as well as experiments, show a strong dependence of SOA induced CSO on input power and injected current– higher input power and lower injected current are required for better CSO. The SOA induced noise is also investigated; experiments confirm the theory analysis– output carrier to noise ratio is proportional with the noise figure of SOA, which can be optimized by the increases of the input power and injected current.
     Gain-clamped semiconductor optical amplifiers or linear optical amplifiers are promising components in future OAN and microwave photonics links. Further study shows and explains the reduction of nonlinear distortion utilizing gain-clamped SOAs instead of conventional SOAs. Theoretical analysis in this dissertation paves the road for further research on the nonlinear distortion of GCSOA or LOA.
引文
[1] C.-H. Lee, W. V. Sorin, B. Y. Kim. Fiber to the home using a PON infrastructure. J. Lightwave Tech., 2006, 24(12): 4568~4583
    [2] A. A. M. Saleh. Nonlinear models of travelling-wave optical amplifiers. IEEE Electron. Lett., 1988, 24(14): 835~837
    [3] A. A. M. Saleh, T. E. Darcie, R. M. Jopson. Nonlinear distortion due to optical amplifiers in subcarrier-multiplexed lightwave communications systems. Electron. Lett., 1989, 25(1): 79~80
    [4] J. A. Constable, I. H. White, A. N. Coles, et al. Harmonic and phase distortion of analogue amplitude-modulated signals in bulk near travelling-wave semiconductor optical amplifiers. IEE Proceed. J., 1992, 139(6): 389~398
    [5] W. I. Way, C.-E. Zah, T.-P. Lee. Applications of traveling-wave laser amplifiers in subcarrier multiplexed lightwave systems. IEEE Trans. On Microwave Theory and Tech., 1990, 38(5): 534~545
    [6] K. Morito, K. Ekawam. High-output-power polarization insensitive semiconductor optical amplifier. J. Lightwave Technol, 2003, 21(7): 176~181
    [7] K. Morito, S. Tanaka. Record high saturation power (+22dBm) and low noise figure (5.7dB) polarization-insensitive SOA module. IEEE Photon Technol. Lett., 2005, 6(8): 1298~1300
    [8] Newkirkm A, Miller B I, Koren U., et al. 1.5μm multi-quantum-well semiconductor optical amplifier with tensile and compressively strained wells for polarization independent gain. IEEE Photon Technol. Lett, 1993, 5(2): 406~408
    [9] Doussier P, Garabed IAN P, Graver C. et al. 1.55μm polarization-independent semiconductor optical amplifier with 25dB fiber to fiber gain. J. IEEE Photon Technol, Lett., 1994, 6(1): 170~172
    [10] P. W. Juodawlkis, J. J. Plant, R. K. Huang, et al. High-power 1.5um InGaAsP-InP slab-coupled optical waveguide amplifier. IEEE Photon. Technol. Lett., 2005, 17(2): 279~281
    [11] C.-H. Chen, S. C. Shunk, U. Koren, et al. Semiconductor optical amplifier array coupled to uncoated flat-end fibers with integrated beam expanders and TiO2antireflection coatings. IEEE J. Slected Topics in Quantum Lett., 1997, 3(6): 1421~ 1428
    [12] S. Verspurten, G. Morthier, R. Baets. Experimental and numerical small-signal analysis of two types of gain-clamped semiconductor optical amplifiers. IEEE J. Quantum Lett., 2006, 42(3): 302~312
    [13] H. Kim, J. Lee, I. Yun, et al. A gain-clamped SOA with distributed Bragg reflectors fabricated under both ends of active waveguide with different lengths. IEEE Photon. Technol. Lett., 2004, 16(4): 999~1001
    [14] D. A. Francis, S. P. Dijaili, and J. D.Walker. A single chip linear optical amplifier. in OFC Conf., 2001. PD13-1~PD13-3
    [15] G. v. Hoven. Linear optical amplifiers. in: LEOS, 2002. 597~598
    [16] E. Tangdiongga, J. J. J. Crijns, L. H. Spiekman. Performance analysis of linear optical amplifiers in dynamic WDM systems. IEEE Photonics Tech. Lett., 2002, 14(8): 1196~ 1198
    [17] C.-Y. Jin, Y.-Z, Huang, L.-J. Yu, et al. Numerical and theoretical analysis of the crosstalk in linear optical amplifiers. IEEE J. Quamtum Electron., 2005, 41(5): 636~641
    [18] C. Michie, A. E. Kelly, I. Armstrong, et al. An Adjustable Gain-Clamped Semiconductor Optical Amplifier (AGC-SOA). J. Lightwave Tech., 2007, 25(6): 1~8
    [19]张新亮.半导体光放大器用作全光波长转换器的研究: [博士学位论文].武汉:华中科技大学图书馆, 2001
    [20] G. Giuliani and D. D’Alessandro. Noise analysis of conventional and gain-clamped semiconductor optical amplifiers. J. Lightwave Technol., 2000, 9(7): 1256~1263
    [21] G. P. Agrawal. Fiber-optic communication systems. (3rd edition). New York: John Wiley & Sons, INC., 2001. 232~234
    [22] T. Saitoh, T. Mukai. 1.5 pm GaInAsP traveling-wave semiconductor laser amplifier. IEEE J. Quantum Electron., 1987, 23(8): 1010
    [23] A. E. Willner. Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability. J. Lightwave Technol., 1995, 13(4): 771~779
    [24]郑泽洲,张新亮,黄德修.半导体光放大器德超快动态增益特性. J.激光技术,2003, 27(1): 168~171
    [25] K. Morito, S. Tanaka, S. Tomabechi, et al. A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure. J. IEEE Photon Technol, Lett., 2005, 17(5): 974~976
    [26] S. Donati and G. Giuliani. Noise in an optical amplifier: formulation of a new semiclassical model. IEEE J. Quantum Electron, 1997, 33(5): 1481~1488
    [27] K. Inoue. Observation of Crosstalk due to four-wave mixing in a laser amplifier for FDM transmission. Electron. Lett., 1987, 23(5): 1293~1295
    [28] G. P. Agrawal. Amplifier-induced crosstalk in multichannel coherent lightwave systems. Electron. Lett., 1987, 23(6): 1175~1177
    [29] G. Grobkopf, R. Ludwig, R. P. Waarts, et al. Four-wave mixing in a semiconductor laser amplifier. Electron. Lett., 1988, 24(1): 31~32
    [30] R. Boula-Picard, M. Alouini, J. Lopez, et al. Impact of the gain saturation dynamics in semiconductor optical amplifiers on the characteristics of an analog optical link. J. Lightwave Technol., 2005, 23(8): 2420~2426
    [31] L. F. Tiemeijer, P. J. A. Thijs, T. v. Dongen, et al. Reduced Intermodulation Distortion in 1300 nm gain-clamped MQW laser amplifier. J. IEEE Photon Technol, Lett., 1995, 7(3): 284~286
    [32] T. G. Hodgkinson, R. P. Webb. Carrier-density modulation effects in a travaling-wave semiconductor optical amplifier: communication theory analysis and experiment. J. Lightwave Technol., 1991, 9(5): 605~621
    [33] R. Boula-Pi.card, M.-B. Bibey, N. Vodjdani. Semiconductor optical amplifiers for microwave photonics links. in: Microwave Photonics, 2001. MWP’01. 2001 International Topic Meeting on 7-9, 2002. 137~140
    [34]杨祥林.光放大器及其应用. (第一版).北京:电子工业出版社, 2000. 110~131
    [35] L. F. Tiemeijer, V. G. Mutalik, G. van de Hoven, et al. Noise figure of saturated 1310-nm polarization insensitive multiple- quantum-well optical amplifiers. IEEE Photon Technol, Lett., 1996, 8(7): 873~875
    [36] N. A. Olsson. Lightwave systems with optical amplifiers. J. Lightwave Technol., 1989, 7(9): 1071~1082
    [37] I. Jacobs. Dependence of optical amplifier noise figure on relative-intensity noise. J.Lightwave Technol., 1990, 13(7): 1461~1465
    [38] C.Y. Kuo. Fundamental nonlinear distortions in analog links with fiber amplifiers. J. Lightwave Technol., 1993, 11(1): 7~15
    [39] C.Y. Kuo. Fundamental second-order nonlinear distortions in analog AM CATV transport systems based on single frequency semiconductor lasers. J. Lightwave Technol., 1992, 10(2): 235~243
    [40] T. L. Koch and J. E. Bowers. Nature of wavelength chirping in directly modulated semiconductor lasers. Electron. Lett., 1984, 20(8): 1038
    [41] Blauvelt H A, N. S. Kwong, P. C. Chen, et al. Optimum range for DFB laser chirp for fiber-optic AM video transmission. J. Lightwave Technol, 1993, 11 (1): 55~59
    [42] T. G. Hodgkinson, R. P. Webb. Communications theory analysis of multichannel carrier density intermodulation distortion effects in a semiconductor optical amplifier. IEEE Photon Technol, Lett., 1990, 2(1): 69~71
    [43] K. Emura, M. Shibutani, I. Cha, et al. Coherent optical tapping using semiconductor optical amplifier. EEE Photon Technol, Lett., 1990, 2(8): 565~567
    [44]宋开,范崇澄.掺饵光纤放大器的频率响应和瞬态增益.光学学报, 1999, 19(5): 77~79
    [45] A. N. Coles. Distortion of analogue intensity modulated signals in semiconductor optical amplifiers. IEEE Electron. Lett., 1992, 28(7): 1012~1013
    [46] T. Durhuus. Influence of residual facet reflectivity on nonlinearities in semiconductor optical amplifiers. IEEE Electron. Lett., 1991, 27(3): 310~312
    [47] B. Clesca, P. Bousselet, L. Hamon. Second-order distortion improvements or degradations brought by erbium-doped fiber amplifiers in analog links using directly modulated lasers. IEEE Photon. Technol. Lett., 1993, 5(5): 1029~1031
    [48] Z. Bakonyi, G. Onishchukov, C. Knoll, et al. 10GB RZ transmission over 5000 km with gain-clamped semiconductor optical amplifiers and saturable absorbers. IEEE Electronic. Lett., 2000, 36(21): 1790~1791
    [49] V. G. Mutalik, G. van de Hoven, L. Tiemeijer. Analog performance of 1310-nm gain-clamped semiconductor optical amplifiers. Optical Fiber Communication, OFC 97., Conference on 16-21, 1997. 266~267
    [50] Z. Zhu, M. Funabashi, Z. Pan, et al. High-Performance Optical 3R Regeneration forScalable Fiber Transmission System Applications. J. Lightwave Technol., 2007, 25(2): 504~511
    [51] G. Gavioli, P. Bayvel. Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration. IEEE Photon.Technol. Lett., 2003, 15(9): 1261~ 1263
    [52] A. Ge, M. Mayes, L. S. Tamil. Impact of asynchronous traffic on fast optical packet switching. IEEE Lasers and Electro-Optics Society 1999 12 Annual Meeting, 1999. 19~20
    [53] D. Wolfson, K. E. Stubkjaer. Comparison of the cascadability of conventional and gain-clamped semiconductor optical amplifier gates in multi wavelength optical networks. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication, 1999. 45~47
    [54] G.-X. Chen, W. Li, C.-L. Xu, et al. Time and spectral domain properties of distributed feedback type gain-clamped semiconductor optical amplifiers. IEEE Photon. Technol. Lett., 2006, 18(8): 932~934
    [55] J. Park, X. Li, W.-P. Huang. Gain clamping in semiconductor optical amplifiers with second-order index-coupled DFB grating. IEEE J. Quantum Lett., 2005, 41(2): 366~ 375
    [56] J. Oksanen, J. Tulkki. On crosstalk and noise in an optical amplifier with gain clamping by vertical laser field. J. Lightwave Technol., 2003, 21(9): 1914~1919
    [57] D. Wolfson, S. L. Danielsen, C. Joergensen, et al. Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s. IEEE Photon.Technol. Lett., 1998, 10(9): 1241~1243
    [58] J. T. Ahn, J. M. Lee, K. H. Kim. Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission. IEEE Electronic. Lett., 2003, 39(15): 1140~1141
    [59] A. J. Lowery, D. Novak. Performance comparison of gain-coupled and index-coupled DFB semiconductor lasers. IEEE J. Quantum Electron, 1994, 13(9): 2051~2063
    [60] H. Dai, J. Y. Pan, C. Lin. Comparison of optimum EDFA designs for in-line amplification in multichannel AM-VSB video lightwave trunking system. IEEE Photonmics Technol. Lett., 1997, 9(7): 1008~1010
    [61]段子刚,姚芳,刘德明,黄德修.混合应变量子阱半导体光放大器噪声特性研究. J.华中理工大学学报, 1999, 27(3): 90~92
    [62] A. Crottini, F. Salleras, P. Moreno, et al. Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme. J. IEEE Photon Technol, Lett., 2005, 17(5): 977~979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700