具有定向孔结构的磷酸钙骨水泥复合支架的构建和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用定向冰晶-冷冻干燥法制备具有定向层状大孔结构的磷酸钙骨水泥(CPC)支架,通过灌注将聚乳酸羟基乙酸酯(PLGA)复合到CPC支架的孔壁表面后,获得了具有较高强度和柔韧性的PLGA/CPC复合支架。本文对所制备的PLGA/CPC支架进行了体外降解特性、细胞行为和体内成骨性能的研究,并对支架的组成和结构进行了优化,从而进一步改善其力学性能、细胞反应性和体内成骨性。
     显微观察表明,PLGA/CPC支架的孔壁表面覆盖着PLGA膜,在体外降解过程中,PLGA膜首先降解,使骨水泥基体逐渐暴露,从而有利于提高材料与细胞和骨组织的反应。PLGA/CPC支架的定向层状大孔结构有利于细胞的长入和增殖。将PLGA/CPC支架植入兔子的股骨缺损后,新生的骨组织沿着定向的层状大孔长入到支架的内部。由于PLGA/CPC支架表面包覆着PLGA膜,导致细胞反应性较差,植入初期,骨水泥骨传导性好的优点得不到发挥。为了改善PLGA/CPC支架的细胞反应性,本研究在氨气气氛下对PLGA/CPC复合支架进行等离子体表面处理,将胶原固定在PLGA/CPC支架孔壁PLGA膜的表面,改善支架的生物活性,得到Col/PLGA/CPC复合支架。经胶原表面改性后的支架的细胞种植率、粘附、增殖和分化均得到显著的提高。然而,植入兔子体内后发现,胶原改性对提高PLGA/CPC支架的成骨能力帮助并不大。
     为了适应一些对支架强度有更高要求的应用,本研究仿天然骨的皮质骨/松质骨双层结构制备了强度可控的核壳结构磷酸钙骨水泥基复合支架。通过设计模具,采用等静压处理的方法制备了致密的管状骨水泥壳层。在致密壳层的空腔内用定向冰晶-冷冻干燥法制备具有定向层状大孔结构的多孔磷酸钙骨水泥芯,并用PLGA进行增强,然后用胶原进行表面改性。外层致密、内层多孔的骨水泥复合支架的强度可以通过改变致密层和多孔层的厚度比例调节(5~90MPa),以满足不同骨缺损部位修复的要求。定向大孔主要在轴向上具有高度的连通性,横向连通性较低。因此,致密的骨水泥外层对支架多孔芯的孔隙连通性没有明显的影响。细胞实验表明,细胞在双层骨水泥复合支架上粘附和增殖良好。
     通过复合明胶微球改性PLGA/CPC支架的三维多孔结构。PLGA/CPC支架经过明胶微球(0%~30%)改性后,强度和孔隙率都有所变化,但分别保持在3.5~5MPa和62%~72%之间。经明胶微球改性后,支架的定向层状大孔被分割为尺寸较小的层状大孔。此外,明胶微球溶解后原位留下80~200μm左右的等轴状大孔。用20%明胶微球改性的支架的细胞种植率、增殖和分化改善效果最明显。明胶微球的改性并没有明显影响支架的轴向连通性,细胞仍然可以顺利长入到支架的内部。
     将富血小板血浆(PRP)灌注到PLGA/CPC支架内部,制备了PRP-PLGA/CPC复合体。结果表明,PRP的复合大大地改善了PLGA/CPC支架的细胞反应。将PRP-PLGA/CPC复合支架植入到新西兰大白兔的股骨缺损后发现,PRP的复合明显促进了骨组织长入到支架的内部,加快血管的生成和材料的降解。此外,本研究首次将具有定向层状大孔结构的PLGA/CPC支架用于修复新西兰大白兔的桡骨节段性骨缺损。新生的骨组织沿着定向的层状大孔长入支架的内部,而没有受到其三维连通性有限的影响。PRP的复合对PLGA/CPC支架修复桡骨的节段性骨缺损具有显著的促进作用。
A PLGA/CPC scaffold with unidirectional lamellar pore structure was fabricated by theunidirectional freeze casting of CPC slurry and the following infiltration ofpoly(lactic-co-glycolic acid)(PLGA) in this study. In vitro degradation, cell response and invivo osteogenesis of PLGA/CPC scaffold were conducted. Furthermore, the composition,three dimensional (3D) structure of PLGA/CPC scaffold were redesigned to optimize itsmechanical performance, cell response and in vivo osteogenesis.
     The pore wall of PLGA/CPC scaffold was covered by PLGA film. The PLGA film firstlydegraded during immersion in PBS solution, which was accompanied with the exposure ofCPC matrix that was beneficial for cell response and osteogenesis. The unidirectional lamellarpore structure of PLGA/CPC scaffold was beneficial for growth of cells into inner macropores,but unfavorable for cell seeding and differentiation. After being implanted in vivo, new bonetissues grew along the unidirectional lamellar pores into the scaffold. The PLGA film on thepore wall of PLGA/CPC scaffold compromises the osteoconductivity of CPC due to poor cellresponse of PLGA. In order to improve cell response of PLGA/CPC scaffold, collagen wasimmobilized on the PLGA film of PLGA/CPC composite scaffold by plasma treatment underthe ammonia atmosphere. After immobilization of collagen, the cell seeding, adhesion,proliferation and differentiation on PLGA/CPC scaffold were significantly enhanced.However, the results of histological evaluation showed that the osteogenesis of PLGA/CPCscaffold was not obviously improved after immobilization of collagen.
     To meet the requirements of bone defect repair at various sites, a core/shell bi-layeredCPC-based composite scaffold with adjustable compressive strength, which mimicked thenatural structure of cortical/cancellous bone, was fabricated. The dense tube-like CPC shellwas prepared by designing a mould and isostatic pressing process. A porous core withunidirectional lamellar pore structure was fabricated inside the cavity of dense tube-like CPCshell by aforementioned unidirectional freeze casting, followed by infiltration of PLGA andimmobilization of collagen. The compressive strength of bi-layered CPC-based compositescaffold can be controlled by varying thickness ratio of dense layer to porous layer (590MPa). Compared to the scaffold without dense shell, the pore interconnection of bi-layeredscaffold was not obviously compromised because of its high unidirectional interconnectivitybut poor3D interconnectivity. The cells adhered and proliferated well on the bi-layered CPCbased composite scaffold.
     Gelatine microspheres (GM) were used to modify the3D pore structure of PLGA/CPC scaffold. After being modified by various amounts of GM (5%30%), the compressivestrength and porosity of the PLGA/CPC scaffold remained in the range of2.45MPa and62%72%, respectively. The unidirectional lamellar pores were divided into smaller pores.Macropores with the size of80200μm were left being generated by the dissolution of GM.The scaffold modified by20%GM exhibited the most excellent cell seeding, proliferation anddifferentiation. The pore interconnection of scaffold was not starkly compromised aftermodification by GM so that cells still penetrated into the inner pores of scaffolds smoothly.
     PRP-PLGA/CPC construct was fabricated by infiltration of platelet-rich plasma (PRP)into PLGA/CPC scaffold. The incorporation of PRP significantly improved cell response ofPLGA/CPC scaffold. The PRP-PLGA/CPC composite scaffold was implanted in femoralbone defects of rabbits, the results showed that PRP boosted markedly bone ingrowth,angiogenesis and degradation of PLGA/CPC scaffold. The PLGA/CPC scaffold withunidirectional lamellar pore structure was originally used to reconstruct the segmental bonedefect in radius of rabbit. The new bone tissues grew well along the unidirectional lamellarpores of scaffold regardless of its poor3D pore interconnection. The incorporation of PRPshowed outstanding improvement in osteogenesis of PLGA/CPC scaffold as implanted in thesegmental bone defect in the radius of rabbit.
引文
[1] Dodd CAF, Fergusson CM, Freedman L, et al. Allograft versus autograft bone in scoliosissurgery [J]. J Bone Joint Surg Br,1988,70:431-434.
    [2] Seiler JG, Johnson J. Iliac crest autogenous bone grafting: donor site complications [J]. JSouth Orthop Assoc,2000,9:91-97.
    [3] Gerber HP, Ferrara N. Angiogenesis and bone growth [J]. Trends Cardiovasc Med,2000,10:223-228.
    [4] Legros R, Balmain N, Bonel G. Age-related changes in mineral of rat and bovine corticalbone [J]. Calcified Tissue Int,1987,41:137-144.
    [5] Meyer U, Wiesmann HP. Bone and cartilage engineering [M]. Heidelberg: Springer,2005:15-17.
    [6] Susan H. Basic biomechanics [M]. Fifth Edition,2007:88.
    [7] Agata H, Asahina I, Yamazaki Y, et al. Effective bone engineering withperiosteum-derived cells [J]. J Dent Res,2007,86:79-83.
    [8] Salentijn L. Biology of mineralized tissues: cartilage and bone [R]. Manhattan: ColumbiaUniversity College of Dental Medicine post-graduate dental lecture series,2007.
    [9] Rhinelander FW. Circulation of bone In: the biochemistry and physiology of bone [M].New York: Academic Press,2002,2:1-77.
    [10] Tate MLK, Adamson JR, Tami AE, et al. The osteocyte [J]. Int J Biochem Cell Biol,2004,36:1-8.
    [11] Noble SN. The osteocyte lineage [J]. Arch Biochem Biophys,2008,473:106-111.
    [12] Netter FH. Musculoskeletal system: anatomy, physiology, and metabolic disorders [A].In: Summit, editor. The netter collection of medical illustrations [C]. New Jersey: Ciba-GeigyCorporation,1987:169.
    [13] Urist MR. Bone: formation by autoinduction [J]. Science,1965,150:893-899.
    [14] Hall BK. The role of movement and tissue interactions in the development and growth ofbone and secondary cartilage in the clavicle of the embryonic chick [J]. J Embryol ExpMorphol,1986,93:133-152.
    [15] Burchardt H, Busbee G, Enneking W. Repair of experimental autologous grafts ofcortical bone [J]. J Bone Joint Surg Am,1975,57:814-819.
    [16] Heiple K, Chase S, Herndon C. A comparative study of the healing process followingdifferent types of bone transplantation [J]. J Bone Joint Surg,1963,45:1593-1616.
    [17] Bos G. The effect of histocompatibility matching on canine frozen bone allograft [J]. JBone Joint Surg Am,1983,65:89-96.
    [18] Goldberg V. Improved acceptance of frozen bone allografts in genetically mismatcheddogs by immunosuppression [J]. J Bone Joint Surg,1984,66:937-950.
    [19] Lanza RP, Butler DH, Borland KM, et al. Xenotransplantation of canine, bovine, andporcine islets in diabetic rats without immunosuppression [J]. Proc Natl Acad Sci USA,1991,88:11100-11104.
    [20] Butler D. Poll reveals backing for xenotransplants [J]. Nature,1998,391:315.
    [21]孙磊.同种异体骨移植生物学[J].中国矫形外科杂志,1996,3:56-58.
    [22] Yoo D, Giulivi A. Xenotransplantation and the potential risk of xenogeneic transmissionof porcine viruses [J]. Can J Vet Res,2000,64:193-203.
    [23] Laurencin CT, El-Amin SF. Xenotransplantation in orthopedic surgery [J]. J Am AcadOrthop Surg,2008,16:4-8.
    [24]侯向辉,陈强,喻春红,等.碳脑复合材料的生物相容性及生物应用[J].功能材料,2000,31:460-463.
    [25]付涛.两种弹性模量匹配的碳纤维增强复合骨植入材料的制备与生物活性研究[D].西安:西安交通大学博士学位论文,2003.
    [26] Zhang Y, Zhang M. Three dimensional macroporous calcium phosphate bioceramics withnested chitosan sponges for load-bearing bone implants [J]. J Biomed Mater Res,2002,61:1-8.
    [27] Okazaki Y, Rao S, Ito Y, et al. Corrosion resistance, mechanical properties, corrosionfatigue strength and cytocompatibility of new Ti alloys without Al and V [J]. Biomaterials,1998,19:1197-1215.
    [28]郑学斌,刘宣勇,丁传贤.人体硬组织替代材料的研究进展[J].前沿进展,2003,32:159-164.
    [29]顾其胜.实用生物医用材料学[M].上海:上海科技出版社,2005:102-108.
    [30] Jarcho M. Retrospective analysis of hydroxyapatite development for oral implantapplications [J]. Dent Clin North Am,1992,36:19-26.
    [31] Hench LL, Orjan A. Bioactive glass [A]. In: Hench LL, Wilson J ed. An introduction tobioceramics [C]. New Jersey: World Scientific,1993,41.
    [32] Piotrowski G, Hench LL, Allen WC, Miller GJ. Mechanical studies of the bone bioglassinterfacial bond [J]. J Biomed Mater Res,1975,9:47-61.
    [33] Ikeda N, Kawanabe K, Nakamura T. Quantitative comparison of osteoconduction ofporous, dense A-W glass-ceramic and hydroxyapatite granules [J]. Biomaterials,1999,20:1087-1095.
    [34] Petite H, Kacem K, Triffitt JT. Adhesion, growth and differentiation of human bonemarrow stromal cells on non-porous calcium carbonate and plastic substrata: effects ofdexamethasone and1,25dihydroxyvitamin D3[J]. J Mater Sci Mater-Med,1996,7:665-671.
    [35] Peltier LF, Jones RH. Treatment of unicameral bone cysts by curettage and packing withplaster-of-paris pellets [J]. J Bone Joint Surg,1978,60:820-822.
    [36] Lu J, Descamps M, Dejou J, et al. The biodegradation mechanism of calcium phosphatebiomaterials in bone [J]. J Biomed Mater Res,2002,63:408-412.
    [37] Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates [J]. ActaBiomaterialia,2012,8:963-977.
    [38] Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implantcoating and injectable bone substitute [J]. Biomaterials,1998,19:1473-1478.
    [39]俞耀庭.生物医用材料[M].天津:天津大学出版社,2000:48.
    [40] Nolan K, Millet Y, Ricordi C, et al. Tissue engineering and biomaterials in regenerativemedicine [J]. Cell Transplant,2008,17:241-243.
    [41] Friess W. Collagen–biomaterial for drug delivery [J]. Eur J Pharm Biopharm,1998,45:113-136.
    [42] Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedictissue-engineering [J]. Biomaterials,2005,26:5983-5990.
    [43] Toole BP, Hyaluronan: from extracellular glue to pericellular cue [J]. Nat Rev Cancer,2004,4:528-539.
    [44]曹谊林.组织工程学的研究进展[J].中国美容医学,2005,14:134-135.
    [45] Bostman OM. Absorbable implants for the fixation of fractures [J]. J Bone Joint Surg,1991,73:148-153.
    [46] Sims CD, Butler PE, Cao YL, et al. Tissue engineered neocartilage using plasma derivedploymer subst rates and chondrocytes [J]. Plast Reconstr Surg,1998,101:1580-1585.
    [47] Nathan A, Kohn J. Amino acid derived polymers [A]. In: Shlaby S W editor.Biomedical polymers, designed-to-degrade systems [C]. Munich, Vienna, New York: HanserPublishers,1994,117-151.
    [48] Pulapura S, Li C, Kohn J. Structure-property relationships for the design ofpolyiminocarbonates [J]. Biomaterials,1990,11:666-678.
    [49] Lampin M, Warocqier C, Legris C, et al. Correlation between substratum roughness andwettability, cell adhesion, and cell migration [J]. J Biomed Mater Res,1997,36:99-108.
    [50] Shin HJ, Lee CH, Cho IH, et al. Electrospun PLGA nanofiber scaffolds for articularcartilage reconstruction: mechanical stability, degradation and cellular responses undermechanical stimulation in vitro [J]. J Biomater Sci Polym Ed,2006,17:103-119.
    [51] Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-basedbiomaterials for use as hard tissue replacement implants [J]. J Mater Res,1998,13:94-117.
    [52] Li Y, Zhang Y, Yin G, et al. Preparation and mechanical properties of porousbeta-tricalcium phosphate/poly(L-lactic acid) composite scaffold materials [J]. Rare MetalMat Eng,2005,34:1208-1211.
    [53] Lee CT, Lee YD. Preparation of porous biodegradable poly (lactide-co-glycolide)/hyaluronic acid blend scaffolds: Characterization, in vitro cells culture and degradationbehaviors [J]. J Mater Sci-Mater Med,2006,17:1411-1420.
    [54] Kane RJ, Roeder RK. Effects of hydroxyapatite reinforcement on the architecture andmechanical properties of freeze-dried collagen scaffolds [J]. J Mech Behav Biomed Mater,2012,7:41-49.
    [55] Miao X, Tan LP, Tan LS, et al. Porous calcium phosphate ceramics modified withPLGA–bioactive glass [J]. Mat Sci Eng C,2007,27:274-279.
    [56] Coventry MB, Beckenbaugh RD, Nolan DR. et al.2,012total hip arthroplasties. A studyof postoperative course and early complications [J]. J Bone Joint Surg Am,1974,56:273-284.
    [57]王继芳,卢世璧.全髋关节置换技术后松动的修正术[J].中华骨科杂志,1991,11:341-343.
    [58]吕厚山.人工关节外科学[M].北京:科学出版社,1998:546-549.
    [59] Brown WE, Chow LC. A new calcium phosphate water setting cement [A]. In: BrownPW, editor. Cements research progress [C]. Westerville, OH: American Ceramic Society,1986:352-379.
    [60] Costanation PD, Friedman CD, Chow LC, et al. Experimental hydroxyapatite cementcranioplasty [J]. Plast Reconstr Surg,1992,90:174-185.
    [61] Ooms EM, Wolke JGC, van der Waerden JPCM, et al. Trabecular bone response toinjectable calcium phosphate (Ca-P) cement [J]. J Biomed Mater Res,2002,61:9-18.
    [62] Comuzzi L, Ooms E, Jansen JA. Injectable calcium phosphate cement as a filler for bonedefects around oral implants: an experimental study in goats [J]. Clin Oral Impl Res,2002,13:304-311.
    [63] Bohner M, Gbureck U, Barralet JE. Technological issues for the development of moreefficient calcium phosphate bone cements: a critical assessment [J]. Biomaterials,2005,26:6423-6429.
    [64] Khairoun I, Boltong MG, Driessens FCM, et al. Effect of calcium carbonate on thecompliance of an apatitic calcium phosphate bone cement [J]. Biomaterials,1997,18:1535-1539.
    [65] Yang QZ, Troczynski T, Liu DM. Influence of apatite seeds on the synthesis of calciumphosphate cement [J]. Biomaterials,2002,23:2751-2760.
    [66]沈卫,刘昌胜,顾燕芳.磷酸钙骨水泥的水化反应、凝结时间及抗压强度[J].硅酸盐学报,1998,26:129-135.
    [67] Chow LC, Hirayama S, Takagi S, et al. Diametral tensile strength and compressivestrength of a calcium phosphate cement: Effect of applied pressure [J]. J Biomed Mater Res,2000,53:511-517.
    [68] Liu CS, Shao H, Chen F, et al. Effect of the granularity of raw materials on the hydrationand hardening process of calcium phosphate cement [J]. Biomaterials,2003,24:4103-4113.
    [69] Liu CS, Shen W. Effect of crystal seeding on the hydration of calcium phosphate cement[J]. J Mater Sci Mater Med,1997,8:803-807.
    [70] Barralet JE, Gaunt T, Wright AJ, et al. Effect of porosity reduction by compaction oncompressive strength and microstructure of calcium phosphate cement [J]. J Biomed MaterRes,2002,63:1-9.
    [71] Takahashi K, Fujishiro Y, Yin S, et al. Preparation and compressive strength ofα-tricalcium phosphate based cement dispersed with ceramic particles [J]. Ceram Int,2004,30:199-203.
    [72] Xu HHK, Quinn JB, Takagi S, et al. Strong and macroporous calcium phosphate cement:Effects of porosity and fiber reinforcement on mechanical properties [J]. J Biomed Mater Res,2001,57:457-466
    [73]余晓鸣,李万万,孙康.磷酸钙骨水泥的新进展.生物骨科材料与临床研究[J].2007,4:44-48.
    [74] Ishikawa K. Effects of spherical tetracalcium phosphate on injectability and basicproperties of apatitic cement [J]. Key Eng Mater,2003,240-242:369-72.
    [75] Sarda S, Fernandez E, Nilsson M, et al. Kinetic study of citric acid influence on calciumphosphate bone cements as water-reducing agent [J]. J Biomed Mater Res,2002,61:653-659.
    [76] Leroux L, Hatim Z, Freche M, et al. Effects of various adjuvants (lactic acid, glyceroland chitosan) on the injectability of a calcium phosphate cement [J]. Bone,1999,25:31S-34S.
    [77] Van Landuyt P, Peter B, Beluze L. Reinforcement of osteosynthesis screws with brushitecement [J]. Bone,1999,25:95S-98S.
    [78] Bernards CM, Chapman JR, Mirza SK. Lethality of embolizednorian bone cement varieswith the time between mixing and embolization [R]. San Fransisco: Proceedings of the50thAnnual Meeting of the Orthopaedic Research Society (ORS),2004.
    [79] Ishikawa K, Miyamoto Y, Kon M, et al. Non-decay type fast-setting calcium phosphatecement: composite with sodium alginate [J]. Biomaterials,1995,16:527-532.
    [80] Cherng A, Takagi S, Chow LC. Effects of hydroxypropyl methylcellulose and othergelling agents on the handling properties of calcium phosphate cement [J]. J Biomed MaterRes,1997,35:273-277.
    [81] Yu T, Ye J, Wang Y. Synthesis and property of a novel calcium phosphate cement [J]. JBiomed Mater Res B Appl Biomater,2009,90:745-51.
    [82]潘朝晖.促磷酸钙骨水泥吸收的研究进展[J].中国矫形外科杂志,2004,12:1723-1724.
    [83] Del Real RP, Ooms E, Wolke J G, et al. In vivo bone response to porous calciumphosphate cement [J]. J Biomed Mater Res,2003,65:30-36
    [84]戴红莲,闫玉华,曹献英,等.磷酸钙骨水泥的生物相容性[J].中国有色金属学报.2002,12:1252-1256.
    [85] Liu C, Shao H, Chen F, et al. Effects of the granularity of raw materials on the hydrationand hardening process of calcium phosphate cement [J]. Biomaterials,2003,24:4103-4103.
    [86] Niedhart C, Maus U, Redmann E, et al. In vivo testing of a new in situ settingbeta-tricalcium phosphate cement for osseous reconstruction [J]. J Biomed Mater Res,2001,55:530-537.
    [87] Yuan H, Li Y, de Bruijn JD, et al. Tissue responses of calcium phosphate cement:astudy in dogs [J]. Biomaterials,2000,21:1283-1290.
    [88] Gauthier O, Khairoun I, Weiss P, et al. In vivo comparison of two injectable calciumphosphate biomaterials: ionic cement and polymer-associated particulate ceramic [J]. KeyEng Mat,2001,192–195:801-804.
    [89] Keating J F, Hajducka CL, Harper J, et al. Minimal internal fixation andcalcium-phosphate cement in the treatment of fractures of the tibal plateau: A PILOT STUDY[J]. J Bone Jiont Surg (Br),2003,85:68-73.
    [90]张旭辉,裴国献,魏宽海.复合磷酸钙骨水泥强化骨质疏松股骨颈的内固定[J].实用医药杂志,2002,19:837-839.
    [91] Horstmann WG, Verheyen CCPM. An injectable calcium phosphate cement as abone-graft substitute in the treatment of displaced lateral tibial plateau fractures [J]. Injury,2003,34:141-150.
    [92]景元海,杨小玉,赵丛然,等.经皮椎体注入骨水泥治疗老年脊椎骨质疏松压缩性骨折[J].中国组织工程研究与临床康复,2007,11:6484-6486
    [93] Chaung HM, Hong CH, Chiang CP, et al. Comparison of calcium phosphate cementmixture and pure calcium hydroxide as direct plup-capping agent [J]. J Formos Med Assoc,1996,95:545-550.
    [94] Jackson IT, Yav uzer R. Hydroxyapatite cement: an altemative for craniofacial skeletalcontour refinements [J]. Br J Plast Surg,2000,53:24-29
    [95] Ginebra MP, Rilliard A, Fernández E, et al. Mechanical and rheological improvement ofa calcium phosphate cement by the addition of a polymeric drug [J]. J Biomed Mater Res,2001,57:113-118.
    [96] Takechi M, Miyamoto Y, Ishikawa K, et al. Effects of added antibiotics on the basicproperties of anti-washout-type fast-setting calcium phosphate cement [J]. J Biomed MaterRes,1998,39:308-316.
    [97] Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug deliverysystems: A review [J]. J Control Release,2006,113:102-110.
    [98] Stallmann HP, Faber C, BronckersA I, et al. In vitro gentamicin release fromcommercially available calcium phosphate bone substitutes influence of carrier type onduration of the release p rofile [J]. BMC Musculoskel Dis,2006,72:18.
    [99] Stallmann HP, Faber C, Bronckers AL, et al. Osteomyelitis prevention in rabbits usingantimicrobial peptide hLF1-11-or gentamicin-containing calcium phospahte cement [J]. JAntimicrob Chemother,2004,54:472-476.
    [100] Otsuka M, Yoneoka K, Matsuda Y, et al. Oestradiol release from self-setting apatiticbone cement responsive to plasma-calcium level in ovariectomized rats and itsphysicochemical mechanism [J]. J Pharm Pharmacol,1997,49:1182-1188.
    [101] Ohura K, Hamanishi C, Tanaka S, et al. Healing of segmental bone defect in ratsinduced by a beta-TCP-MCPM cement combined with rhBMP-2[J]. J Biomed Mater Res,1999,44:168-175.
    [102] Tahara Y, Ishii Y. Apatite cement containing cis-diamminedichloroplatinum implantedin rabbit femur for sustained release of the anticancer drug and bone formation [J]. Orthop Sci,2001,6:556-565.
    [103] Xu HHK, Carey LE, Simon Jr CG. Premixed macroporus calcium phosphate cementscaffold [J]. J Mater Sci-Mater M,2007,18:1345-1353.
    [104] Chow L, Takagi S. Dual-phase cement precursor systems for bone repair [P]. US:Patent Application No.0092580A1,2007.
    [105] Lemaitre J, Pittet C, Brendlen D. Pasty or liquid multiple constituent compositions forinjectable calcium phosphate cements [P]. US: Patent No.7,407,542B2,2008.
    [106] Sugawara A, Chow LC, Takagi S, et al. In vitro evaluation of the sealing ability of aCPC when used as a root canal sealer-filler [J]. J Endodont,1990,16:162-165.
    [107] Chow LC, Takagi S. Premixed calcium phosphate cement pastes [P]. US: Patent No.793,725B2,2004.
    [108] Carey LE, Xu HHK, Simon Jr. CG, et al. Premixed rapid-setting calcium phosphatecomposites for bone repair [J]. Biomaterials,2005,26:5002-5014.
    [109] Takagi S, Chow LC, Hirayama S, et al. Premixed calcium-phosphate cement pastes [J].J Biomed Mater Res B Appl Biomater,2003,67:689-696.
    [110] Han B, Ma PW, Zhang LL, et al. β-TCP/MCPM-based premixed calcium phosphatecements [J]. Acta Biomater,2009,5:3165-3177.
    [111] Chow LC, Takagi S. Premixed self-hardening bone graft pastes [P]. US: PatentApplication No.0263443A1,2006.
    [112] Ishikawa K, Miyamoto Y, Takechi M, et al. Non-decay type fast-setting calciumphosphate cement: Hydroxyapatite putty containing an increased amount of sodium alginate[J]. J Biomed Mater Res A,1997,36:393-399.
    [113] Chow LC, Takagi S. Premixed calcium phosphate cement pastes [P]. US: Patent No.6,793,725B2,2004.
    [114] Xu HHK, Carey LE, Simon Jr. CG, et al. Premixed calcium phosphate cements:Synthesis, physical properties, and cell cytotoxicity [J]. Dent Mmater,2007,23:433-441.
    [115] Wei J, Li Y. Injectable premixed cement of nanoapatite and polyamide composite [J].High Technol Lett,2002,2:18-22.
    [116] GondaY, Ioku K, Shibata Y, et al. Stimulatory effect of hydrothermally synthesizedbiodegradable hydroxyapatite granules on osteogenesis and direct association with osteoclasts[J]. Biomaterials,2009,30:4390-4400.
    [117] Bohner M, Baumgart F. Theoretical model to determine the effects of geometricalfactors on the resorption of calcium phosphate bone substitutes [J]. Biomaterials,2004,25:3569-3582.
    [118] Malda J, Frondoza CG. Microcarriers in the engineering of cartilage and bone [J].Trends Biotechnol,2006,24:299-304.
    [119] Tas AC. Method of preparing porous calcium phosphate granules [P]. US: PatentApplication No.0260115A1,2005.
    [120] Tas AC. Preparation of self-setting cement-based micro-and macroporous granules ofcarbonated apatitic calcium phosphate [J]. Ceram Eng Sci Proc,2007,27:49-60.
    [121] Tas AC. Method of preparing porous calcium phosphate morsels and granules viagelatine processing [P]. US: Patent Application No.0076685A1,2004.
    [122] Misiek DJ, Kent JN, Carr RF. Soft tissue responses to hydroxylapatite particles ofdifferent shapes [J]. J Oral Maxil Surg,1984,42:150-160.
    [123] Chang BS, Lee CK, Hong KS, et al. Osteoconduction at porous hydroxyapatite withvarious pore configurations [J]. Biomaterials,2000,21:1291-1298.
    [124] Perez RA, Altankov G, Ginebra MP. Calcium phosphate cement microcarriers [R].Amsterdam: World Biomaterials Congress,2008.
    [125] Shelton RM, Liu Y, Cooper PR, et al. Bone marrow cell gene expression and tissueconstruct assembly using octacalcium phosphate microscaffolds [J]. Biomaterials,2006,27:2874-2881.
    [126] Langer R, Vacanti JP. Tissue engineering [J]. Science,1993,260:920-926.
    [127] Marler JJ, Upton J, Langer R, et al. Transplantation of cells in matrices for tissueengineering [J]. Adv Drug Deliv Rev,1998,33:165-182.
    [128] Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering[J]. Biomaterials,2000,21:2347-235
    [129] Giannoudis PV, Dinopoulous H, Tsiridis E. Bone substitutes: an update [J]. Injury,2005,36:20-27.
    [130] Wiltfang J, Schlegel KA, Schultze-Mosgau S, et al. Sinus floor augmentation withbeta-tricalciumphosphate (beta-TCP): does platelet-rich plasma promote its osseousintegration and degradation?[J]. Clin Oral Implants Res,2003,14:213-218.
    [131] Lane JM, Yasko AW, Tomin E, et al. Bone marrow and recombinant human bonemorphogenetic protein-2in osseous repair [J]. Clin Orthop Relat Res,1999,361:216-227.
    [132] Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2[J].Adv Drug Deliv Rev,2003,55:1613-1629.
    [133] Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics [J]. Clin Orthop RelRes,1981,157:259-278.
    [134]董浩,叶建东,王秀鹏等.磷酸钙骨水泥大孔径多孔组织工程支架的制备及其纤维[J].无机材料学报,2007,22:1007-1010.
    [135]董浩,叶建东,王秀鹏.磷酸钙骨水泥明胶复合组织工程支架材料的制备及其结构与性能[J].功能材料,2006,11:1805-1811.
    [136] Markovic M, Takagi S, Chow LC. Formation of macropores in calcium phosphatecements through the use of mannitol crystals [J]. Key Eng Mat,2001,192-195:773-776.
    [137] Takagi S, Chow LC. Formation of macropores in calcium phosphate cement implants[J]. J Mat Sci-Mat M,2002,12:135-139.
    [138] Barralet JE, Grover L, Gaunt T, et al. Preparation of macroporous calcium phosphatecement tissue engineering scaffold [J]. Biomaterials,2002,23:3063-3072.
    [139] Ruhé PQ, Hedberg EL, Padron NT, et al. rhBMP-2release from injectablepoly(DL-lactic-co-glycolic acid)/calcium–phosphate cement composites [J]. J Bone JointSurg Am,2003,85:75-81.
    [140] Habraken WJEM, Wolke JGC, mikos AG, et al. PLGA microsphere/calcium phosphatecement composites for tissue engineering: in vitro release and degradation characteristics [J].J Biomat Sci-Polym E,2008,19:1171-1188.
    [141] Habraken WJEM, de Jonge LT, Wolke JGC, et al. Introduction of gelatinemicrospheres into an injectable calcium phosphate cement [J]. J Biomed Mater Res A,2008,87:643-655.
    [142] Xu HHK, Quinn JB. Calcium phosphate cement containing resorbable fibers forshortterm reinforcement and macroporosity [J]. Biomaterials,2002,23:193-202.
    [143] Zuo Y, Yang F, Wolke JGC, et al. Incorporation of biodegradable electrospun fibersinto calcium phosphate cement for bone regeneration [J]. Acta Biomater,2009,6:1238-1247.
    [144] Xu HHK, Simon CG Jr. Self-hardening calcium phosphate cement–mesh composite:Reinforcement, macropores, and cell response [J]. J Biomed Mater Res A,2004,69:267-278.
    [145] Almirall A, Larrecq G, Delgado JA, et al. Fabrication of low temperature macroporoushydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste [J]. Biomaterials,2004,25:3671-3680.
    [146] Hesaraki S, Sharifi D. Investigation of an effervescent additive as porogenic agent forbone cement macroporosity [J]. Biomed Mater Eng,2007,17:29-38.
    [147] Ginebra MP, Delgado JA, Harr I, et al. Factors affecting the structure and properties ofan injectable self-setting calcium phosphate foam [J]. J Biomed Mater Res A,2007,80:351-361.
    [148] Montufar EB, Traykova T, Gil C, et al. Foamed surfactant solution as a template forself-setting injectable hydroxyapatite scaffolds for bone regeneration [J]. Acta Biomater,2009,6:876-85.
    [149] Bohner M. Implant comprising calcium cement and hydrophobic liquid [P]. US: PatentNo.6,642,285B1,2003.
    [150] Binks BP. Emulsion-recent advances in understanding. In: Modern aspects of emulsionsscience [R]. Cambridge: The royal society of chemistry,1998:5-40.
    [151] Bohner M, van Lenthe GH, Grünenfelder S, et al. Synthesis and characterization ofporous β-tricalcium phosphate blocks [J]. Biomaterials,2005,26:6099-6105.
    [152] Miao X, Hu Y, Liu J, et al. Porous calcium phosphate ceramics prepared by coatingpolyurethane foams with calcium phosphate cements [J]. Mater Lett,2004,58:397-402.
    [153] Li X, Li D, Lu B, et al. Fabrication and evaluation of calcium phosphate cementscaffold with controlled internal channel architecture and complex shape [J]. Proc Inst MechEng H,2007,221:951-958.
    [154] Guo D, Xu K, Han Y. The in situ synthesis of biphasic calcium phosphate scaffoldswith controllable compositions, structures, and adjustable properties [J]. J Biomed Mater ResA,2009,88:43-52.
    [155] Klammert U, Reuther T, Jahn C, et al. Cytocompatibility of brushite and monetite cellculture scaffolds made by three-dimensional powder printing [J]. Acta Biomater,2009,5:727-734.
    [156] Gbureck U, H lzel T, Klammert U, et al. Resorbable dicalcium phosphate bonesubstitutes prepared by3D powder printing [J]. Adv Funct Mater,2007,17:3940-3945.
    [157] Charrière E, Lemaitre J, Zysset P. Hydroxyapatite cement scaffolds with controlledmacroporosity: fabrication protocol and mechanical properties [J]. Biomaterials,2003,24:809-817.
    [158]漆小鹏,叶建东,王秀鹏,等.具有定向孔隙结构的大孔磷酸钙骨水泥支架的制备与表征[J].硅酸盐学报,2007,35:1577-1581.
    [159] Qi X, Ye J, Wang Y. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cementscaffold with oriented pore structure for bone tissue engineering [J]. J Biomed Mater Res A,2009,89:980-987.
    [160] Mistry AS, Mikos AG. Tissue engineering strategies for bone regeneration [J]. AdvBiochem Eng Biotechnol,2005,94:1-22.
    [161] Eggli PS, Muller W, Schenk CRK. Porous hydroxyapatite and tricalcium phosphatecylinders with two different pore size ranges implanted in the cancellous bone of rabbits [J].Clin Orthop Relat Res,1988,232:127-138.
    [162] Doblare M, Garcia JM, Gomez MJ. Modeling bone tissue fracture and healing: a review[J]. J Eng Fract Mech,2004,71:1809-1840.
    [163] Fu Q, Rahaman MN, Dogan F, et al. Freeze casting of porous hydroxyapatite scaffolds.I. processing and general microstructure [J]. J Biomed Mater Res B Appl Biomater,2008,86:125-135.
    [164] Schoof H, Apel J, Heschel I, et al. Control of pore structure and size in freeze-driedcollagen sponges [J]. J Biomed Mater Res,2001,58:352-357.
    [165] Wilda H, Julie EG. Cell viability, proliferation and extracellular matrix production ofhuman annulus fibrosus cells cultured within PDLLA/Bioglass composite foam scaffolds invitro [J]. Acta Biomater,2008,4:230-243.
    [166] Wu X, Liu Y, Li X, et al. Preparation of aligned porous gelatin scaffolds byunidirectional freeze-drying method [J]. Acta Biomater,2010,6:1167-1177.
    [167] Rizzi SC, Heath DJ, Coombes AG, et al. Biodegradable polymer/hydroxyapatitecomposites: surface analysis and initial attachment of human osteoblasts [J]. J Biomed MaterRes,2001,55:475-486.
    [168] Hench LL, Splinter RJ, Allen WC, et al. Bonding mechanism at the interface of ceramicprosthetic materials [J]. J Biomed Mater Res,1971,5:117-141.
    [169] Hench LL. Bioceramics [J]. J Am Ceram Soc,1998,81:1705-1728.
    [170] Vallet-Regí M, Gonz′alez-Calbet J. Calcium phosphates in the substitution of bonetissue [J]. Prog Sol State Chem,2004,32:1-31.
    [171] Fratzl P. Bone fracture. When the cracks begin to show [J]. Nat Mater,2008,7:610-612.
    [172] Henriksen SS, Ding M, Juhl MV, et al. Mechanical strength of ceramic scaffoldsreinforced with biopolymers is comparable to that of human bone [J]. J Mater Sci-Mater Med,2011,22:1111-1118.
    [173] Lee SJ, Park YJ, Park SN, et al. Molded porous poly (l-Lactide) membranes for guidedbone regeneration with enhanced effects by controlled growth factor release [J]. J BiomedMater Res,2001,55:295-303.
    [174] Eliaz RE, Kost J. Characterization of a polymeric PLGA injectable implant deliverysystem for the controlled release of proteins [J]. J Biomedical Mater Res,2000,50:388-396.
    [175] Park TG. Degradation of poly(lactic-co-glycolic acid) microspheres: effect ofcopolymer composition [J]. Biomaterials,1995,16:1123-1130.
    [176] Holy CE, Dang SM, Davies JE, et al. In vitro degradation of a novel poly(lactide-co-glycolide)75/25foam [J]. Biomaterials,1999,20:1177-1185.
    [177] Miao X, Lim WK, Huang X, et al. Preparation and characterization of interpenetratingphased TCP/HA/PLGA composites [J]. Mater Lett,2005,59:4000-4005.
    [178] Miao X, Tan DM, Li J, et al. Mechanical and biological properties ofhydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid)[J].Acta Biomater,2008,4:638-645.
    [179] Felicity RR, Lesley AC, David MG, et al. In vitro assessment of cell penetration intoporous hydroxyapatite scaffolds with a central aligned channel [J]. Biomaterials,2004,25:5507-5514.
    [180] Taiyo Y, Kawazoe N, Tateishi T, et al. In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges [J]. Biomaterials,2008,29:3438-3443.
    [181] Del Real RP, Wolke JGC, Vallet-Regi M, et al. A new method to produce macropores incalcium phosphate cements [J]. Biomaterials,2002,23:3673-3680.
    [182] Martin RB, Chapman MW, Holmes RE, et al. Effects of bone ingrowth on the strengthand noninvasive assessment of a coralline hydroxyapatite material [J]. Biomaterials,1989,10:481-488.
    [183] Xue W, Krishna BV, Bandyopadhyay A, et al. Processing and biocompatibilityevaluation of laser processed porous titanium [J]. Acta Biomater,2007,3:1007-1018.
    [184] Karageorgiou V, Kaplan D. Porosity of3D biomaterial scaffolds and osteogenesis [J].Biomaterials,2005,26:5474-5491.
    [185] Chapekar MS. Tissue engineering: challenges and opportunities [J]. J Biomed MaterRes,2000,53:617-620.
    [186] Yang J, Shi G, Bei J, et al. Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid)(70/30) cell scaffolds for human skinfibroblast cell culture [J]. J Biomed Mater Res,2002,62:438-446.
    [187] Catauro M, Raucci MG, De Marco D, et al. Release kinetics of ampicillin,characterization and bioactivity of TiO2/PCL hybrid materials synthesized by sol–gelprocessing [J]. J Biomed Mater Res,2006,77:340-350.
    [188] Guarino V, Causa F, Netti PA, et al. The role of hydroxyapatite as solid signal onperformance of PCL porous scaffolds for bone tissue regeneration [J]. J Biomed Mater Res BAppl Biomater,2008,86:548-557.
    [189] Barrera DA, Zylstra E, Lansbury PT, et al. Synthesis and RGD peptide modification ofa new biodegradable copolymer: poly(lactic acid-co-lysine)[J]. J Am Chem Soc,1993,115:11010-11011.
    [190] Hrkach JS, Ou J, Lotan N, et al. Synthesis of poly(L-lactic acidco-L-lysine)graft-copolymers [J]. Macromolecules,1995,28:4736-4739.
    [191] Wang SG, Cui WJ, Bei JZ. Bulk and surface modifications of polylactide [J]. AnalBioanal Chem,2005,381:547-556.
    [192] Chen G, Okamura A, Sugiyama K, et al. Surface modification of porous scaffolds withnanothick collagen layer by centrifugation and freeze-drying [J]. J Biomed Mater Res B ApplBiomater,2009,90:864-872.
    [193] Gao J, Niklason L, Langer R. Surface hydrolysis of poly(glycolic acid) meshesincreases the seeding density of vascular smooth muscle cells [J]. J Biomed Mater Res,1998,42:417-424.
    [194] Oliveira AL, Malafaya PB, Reis RL. Sodium silicate gel as a precursor for the in vitronucleation and growth of a bone-like apatite coating in compact and porous polymericstructures [J]. Biomaterials,2003,24:2575-2584.
    [195] Favia P, D’agostino R. Plasma treatments and plasma deposition of polymers forbiomedical applications [J]. Surf Coat Technol,1998,98:1102-1106.
    [196] Nakagawa M, Teraoka F, Fujimoto S, et al. Improvement of cell adhesion onpoly(L-lactide) by atmospheric plasma treatment [J]. J Biomed Mater Res,2006,77:112-118.
    [197] Alves CM, Yang Y, Ong JL, et al. Modulating bone cells response onto starch-basedbiomaterials by surface plasma treatment and protein adsorption [J]. Biomaterials,2007,28:307-315.
    [198] Shen H, Hu X, Yang F, et al. Combining oxygen plasma treatment with anchorage ofcationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide)[J]. Biomaterials,2007,28:4219-4230.
    [199] Marchand-Brynaert J, Detrait E, Noiset O, et al. Biological evaluation of RGDpeptidomimetics, designed for the covalent derivatization of cell culture substrata, as potentialpromoters of cellular adhesion [J]. Biomaterials,1999,20:1773-1782.
    [200] Marchand-Brynaert J, Deldime M, Dupont I, et al. Surface functionalization ofpoly(ethylene terephthalate) film and membrane by controlled wet chemistry: chemicalcharacterization of carboxylated surfaces [J]. J Colloid Interface Sci,1995,173:236-244.
    [201] Yang J, Bei JZ, Wang SG. Enhanced cell affinity of poly(D,L-lactide) by combiningplasma treatment with collagen anchorage [J]. Biomaterials,2002,23:2607-2614.
    [202] Hollinger JO, Schmitt JM, Buck DC, et al. Recombinant human bone morphogeneticprotein-2and collagen for bone regeneration [J]. J Biomed Mater Res,1998,43:356-364.
    [203] Canalis E, Economides AN, Gazzerro E. Bone morphogenetic proteins, theirantagonists, and the skeleton [J]. Endocr Rev,2003,24:218-235.
    [204] Kim CS, Kim JI, Kim J, et al. Ectopic bone formation associated with recombinanthuman bone morphogenetic proteins-2using absorbable collagen sponge and beta tricalciumphosphate as carriers [J]. Biomaterials,2005,26:2501-2507.
    [205] Li B, Yoshii T, Hafeman AE, et al. The effects of rhBMP-2released from biodegradablepolyurethane/microsphere composite scaffolds on new bone formation in rat femora [J].Biomaterials,2009,30:6768-6779.
    [206] Shi XT, Wang YJ, Ren L, et al. Novel mesoporous silica-based antibiotic releasingscaffold for bone repair [J]. Acta Biomater,2009,5:1697-1707.
    [207] Feng ZQ, Chu XH, Huang NP, et al. Rat hepatocyte aggregate formation on discretealigned nanofibers of type-I collagen-coated poly(L-lactic acid)[J]. Biomaterials,2010,31:3604-3612.
    [208] He L, Mu C, Shi J, et al. Modification of collagen with a natural cross-linker,procyanidin [J]. Int J Biol Macromol,2011,48:354-359.
    [209] Seyedjafari E, Soleimani M, Ghaemi N, et al. Enhanced osteogenic differentiation ofcord blood-derived unrestricted somatic stem cells on electrospun nanofibers [J]. J MaterSci-Mater Med,2011,22:165-174.
    [210] Salasznyk RM, Williams WA, Boskey A, et al. Adhesion to vitronectin and collagen Ipromotes osteogenic differentiation of human mesenchymal stem cells [J]. J BiomedBiotechnol,2004,1:24-34.
    [211] Rose FR, Cyster LA, Grant DM, et al. In vitro assessment of cell penetration intoporous hydroxyapatite scaffolds with a central aligned channel [J]. Biomaterials,2004,25:5507-5514.
    [212] Silva MMCG, Cyster LA, Barry JJA, et al. The effect of anisotropic architecture on celland tissue infiltration into tissue engineering scaffolds [J]. Biomaterials,2006,27:5909-5917.
    [213] Chen B, Lin H, Wang JH, et al. Homogeneous osteogenesis and bone regeneration bydemineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2[J].Biomaterials,2007,28:1027-1035.
    [214] Bostrom MP, Asnis P. Transforming growth factor beta in fracture repair [J]. ClinOrthop Relat Res,1998,355: S124-S131.
    [215] Ornitz DM. FGF signaling in the developing endochondral skeleton [J]. CytokineGrowth F R,2005,16:205-213.
    [216] Yoon BS, Lyons KM. Multiple functions of BMPs in chondrogenesis [J]. J CellBiochem,2004,93:93-103.
    [217] Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone.Biology and clinical applications [J]. J Bone Jt Surg,2002,84:1032-1044.
    [218] Yilgor P, Sousa RA, Reis RL, et al. Effect of scaffold architecture and BMP-2/BMP-7delivery on in vitro bone regeneration [J]. J Mater Sci: Mater Med,2010,21:2999-3008.
    [219] Fu YC, Nie H, Ho ML, et al. Optimized bone regeneration based on sustained releasefrom three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2[J].Biotechno Bioeng,2008,99:996-1006.
    [220] Costantino PD, Friedman CD, Jones K, et al. Experimental hydroxyapatite cementcranioplasty [J]. Plast Reconstr Surg,1992,90:174-191.
    [221] Friedman CD, Costantino PD, Takahi S, et al. Bone-Sourcet hydroxyapatite cement: anovel biomaterial for craniofacial skeletal tissue engineering and reconstruction [J]. J BiomedMater Res,1998,43:428-432.
    [222] Sarda S, Nilsson M, Balcells M, et al. Influence of surfactant molecules as airentrainingagent for bone cement macroporosity [J]. J Biomed Mater Res A,2003,65:215-221.
    [223] Karashima S, Takeuchi A, Matsuya S, et al. Fabrication of low-crystallinityhydroxyapatite foam based on the setting reaction of α-tricalcium phosphate foam [J]. JBiomed Mater Res A,2009,88:628-633.
    [224] Zhao L, Burguera EF, Xu HHK, et al. Fatigue and human umbilical cord stem cellseeding characteristics of calcium phosphate–chitosan–biodegradable fiber scaffolds [J].Biomaterials,2010,31:840-847.
    [225] Xu HHK, Weir MD, Simon CG. Injectable and strong nano-apatite scaffolds forcell/growth factor delivery and bone regeneration [J]. Dent Mater,2008,24:1212-1222.
    [226] Habraken WJ, de Jonge LT, Wolke JG, et al. Introduction of gelatin microspheres intoan injectable calcium phosphate cement [J]. J Biomed Mater Res,2008,87:643-655.
    [227] Habraken WJ, Wolke JG, Mikos AG, et al. Injectable PLGA microsphere/calciumphosphate cements: physical properties and degradation characteristics [J]. J Biomater SciPolymer Edn,2006,17:1057-1074.
    [228] Qi X, He F, Ye J. Microstructure and mechanical properties of calcium phosphatecement/gelatine composite scaffold with oriented pore structure for bone tissue engineering[J]. J Wuhan Univ Technol-Mater Sci Ed,2012,1:92-95.
    [229] Li J, Forberg S, Hermansson L. Evaluation of the mechanical properties of hotisostatically pressed titania and titania-calcium phosphate composites [J]. Biomaterials,1991,12:438-440.
    [230] Landi E, Tampieri A, Celotti G, et al. Densification behaviour and mechanisms ofsynthetic hydroxyapatites [J]. J Eur Ceram Soc,2000,20:2377-2387.
    [231] Zhang F, Chang J, Lu J, et al. Bioinspired structure of bioceramics for boneregeneration in load-bearing sites [J]. Acta Biomater,2007,3:896-904.
    [232] Nagaraja S. Microstructural stresses and strains associated with trabecular bonemicrodamage [D]. Georgia: Georgia Institute of Technology,2006.
    [233] Peroglio M, Gremillard L, Gauthier C. Mechanical properties and cytocompatibility ofpoly(ε-caprolactone)-infiltrated biphasic calcium phosphate scaffolds with bimodal poredistribution [J]. Acta Biomater,2010,6:4369-4379.
    [234] Kaito T, Mukai Y, Nishikawa M, et al. Dual hydroxyapatite composite with porous andsolid parts: experimental study using canine lumbar interbody fusion model [J]. J BiomedMater Res Part B: Appl Biomater,2006,78:378-384.
    [235] Oliveira J F, Aguiar P F, Rossi A M, et al. Effect of process parameters on the of porouscalcium phosphate ceramics for bone tissue scaffolds [J]. Artif Organs,2003,27:406-411.
    [236] Chu TM, Orton DG, Hollister SJ, et al. Mechanical andin vivo performance ofhydroxyapatite implants with controlled architectures [J]. Biomaterials,2002,23:1283-1293.
    [237] Jin QM, Takita H, Kohgo T, et al. Effects of geometry of hydroxyapatite as a cellsubstratum in BMP-induced ectopic bone formation [J]. J Biomed Mater Res,2000,52:491-499.
    [238] Takahashi Y, Tabata Y. Effect of the fiber diameter and porosity of non-woven PETfabrics on the osteogenic differentiation of mesenchymal stem cells [J]. J Biomater Sci PolymEd,2004,15:41-57.
    [239] Bobyn J, Pilliar R, Cameron H, et al. The optimal pore size for the fixation of poroussurfaced metal implants by the ingrowth of bone [J]. Clin Orthop Rel Res,1980,150:263-270.
    [240] Sepulveda P, Jones JR, Hench LL. Bioactive sol–gel foams for tissue repair [J]. JBiomed Mater Res,2002,59:340-348.
    [241] Hing KA, Best SM, Tanner KE, et al. Quantification of bone ingrowth withinbone-derived porous hydroxyapatite implants of varying density [J]. J Mater Sci Mater Med,1999,10:663-670.
    [242] Moone DJ, Baldwin DF, Suh NP, et al. Novel approach to fabricate porous sponges ofpoly(D,L-lacto-co-glycolicacid) without the use of organic solvents [J]. Biomaterials,1996,17:1417-1422,
    [243] Toh YC, Ho ST, Zhou Y, et al. Application of a polyelectrolyte complex coacervationmethod to improve seeding efficiency of bone marrow stromal cells in a3D culture system [J].Biomaterials,2005,26:4149-4160.
    [244] Bobyn JD, Miller JE. Features of biologically fixed devices [A]. In:Simon SR, editor.Orthopaedic Basic Science [C]. Chicago: American Academy of Orthopaedic Surgeons,1994.
    [245] Kim YB, Kim GH. Rapid-prototyped collagen scaffolds reinforced with PCL/β-TCPnanofibres to obtain high cell seeding efficiency and enhanced mechanical properties for bonetissue regeneration [J]. J Mater Chem,2012,22:16880-16889.
    [246] DeCoster TA, Gehlert RJ, Mikola EA, et al. Management of posttraumatic segmentalbone defects [J]. J Am Acad Orthop Surg,2004,12:28-38
    [247] Clements JR, Carpenter BB, Pourciau JK. Treating segmental bone defects: a newtechnique [J]. J Foot Ankle Surg,2008,47:350-356.
    [248] Paderni S, Terzi S, Amendola L. Major bone defect treatment with an osteoconductivebone substitute [J]. Musculoskelet Surg,2009,93:89-96.
    [249] Virk MS, Conduah A, Park SH, et al. Influence of short-term adenoviral vector andprolonged lentiviral vector mediated bone morphogenetic protein-2expression on the qualityof bone repair in a rat femoral defect model [J]. Bone,2008,42:921-931.
    [250] Gamradt SC, Lieberman JR. Genetic modification of stem cells to enhance bone repair[J]. Ann Biomed Eng,2004,32:136-147.
    [251] Gazdag AR, Lane JM, Glaser D, et al. Alternatives to autogenous bone graft: efficacyand indications [J]. J Am Acad Orthop Surg,1995,3:1-8.
    [252] Caldroa P, Donati D, Capanna R, et al. A histomorphologic study of explants of massiveallografts: preliminary results [J]. Chir Org Mov,1995,80:191-205.
    [253] Enneking WF, Campanacci DA. Retrieved human allografts: a clinicopathological study[J]. J Bone Jt Surg Am,2001,83:971-986.
    [254] Wozney JM. Bone morphogenetic proteins [J]. Prog Growth Factor Res,1989,1:267-280.
    [255] Reddi AH. Bone morphogenetic proteins: from basic science to clinical applications [J].J Bone Joint Surg,2001,83: S1-S6.
    [256] Villavicencio AT, Burneikiene S, Nelson EL, et al. Safety of transforaminal lumbarinterbody fusion and intervertebral recombinant human bone morphogenetic protein-2[J]. JNeurosurg Spine,2005,3:436-443.
    [257] Street J, Bao M, deGuzman L, et al. Vascular endothelial growth factor stimulates bonerepair by promoting angiogenesis and bone turnover [J]. Proc Natl Acad Sci USA,2002,99:9656-9661.
    [258] Hollinger JO, Onikepe AO, Mackrell J, et al. Accelerated fracture healing in thegeriatric, osteoporotic rat with recombinant human platelet-derived growth factor-BB and aninjectable beta-tricalcium phosphate/collagen matrix [J]. J Ortho Res,2008,26:83-90.
    [259] Komaki H, Tanaka T, Chazono M, et al. Repair of segmental bone defects in rabbittibiae using a complex of b-tricalcium phosphate, type I collagen, and fibroblast growthfactor-2[J]. Biomaterials,2006,27:5118-5126.
    [260] Marx RE, Carlson ER, Eichstaedt RM, et al. Platelet-rich plasma: growth factorenhancement for bone grafts [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod,1998,85,638-646.
    [261] Miyazono K, Takaku F. Platelet-derived growth factors [J]. Blood Rev,1989,3:269-276.
    [262] Schliephake H. Bone growth factors in maxillofacial skeletal reconstruction [J]. Int JOral Maxillofac Surg,2002,31:469-484.
    [263] Sipe JB, Zhang J, Waits C, et al. Localization of bone morphogenetic proteins (BMPs)-2,-4, and-6within megakaryocytes and platelets [J]. Bone,2004,35:1316-1322.
    [264] Simmons CA, Alsberg E, Hsiong S, et al. Dual growth factor delivery and controlledscaffold degradation enhance in vivo bone formation by transplanted bone marrow stromalcells [J]. Bone,2004,35:562-569.
    [265] Huang YC, Kaigler D, Rice KG, et al. Combined angiogenic and osteogenic factordelivery enhances bone marrow stromal cell-driven bone regeneration [J]. J Bone Miner Res,2005,20:848-857.
    [266] Froum SJ, Wallace SS, Tarnow DP, et al. Effect of platelet-rich plasma on bone growthand osseointegration in human maxillary sinus grafts: three bilateral case reports [J]. Int JPeriodontics Restorative Dent,2002,22:45-53.
    [267] Man D, Plosker H, Winland-Brown JE. The use of autologous platelet-rich plasma(platelet gel) and autologous platelet-poor plasma (fibrin glue) in cosmetic surgery [J]. PlastRecons Surg,2001,107:229-239.
    [268] Weibrich G, Hansen T, Kleis W, et al. Effect of platelet concentration in platelet-richplasma on peri-implant bone regeneration [J]. Bone,2004,34:665-671.
    [269] Wang J, Asou Y, Sekiya I, et al. Enhancement of tissue engineered bone formation by alow pressure system improving cell seeding and medium perfusion into a porous scaffold [J].Biomaterials,2006,27:2738-2746.
    [270] Yoshikawa T, Ohgushi H, Tamai S. Immediate bone forming capability of prefabricatedosteogenic hydroxapatite [J]. J Biomed Mater Res,1996,32:481-492.
    [271] Breen A, O’Brien T, Pandit A. Fibrin as a delivery system for therapeutic drugs andbiomolecules [J]. Tissue Eng Part B Rev,2009,15:201-214.
    [272] Nathan C, Sporn M. Cytokines in context [J]. J Cell Biol,1991,113:981-986
    [273] Landesberg R, Roy M, Glickman RS. Quantification of growth factor levels using asimplified method of platelet-rich plasma gel preparation [J]. J Oral Maxillofac Surg,2000,58:297-300.
    [274] Weibrich G, Kleis WK, Hafner G, et al. Growth factor levels in platelet-rich plasma andcorrelations with donor age, sex, and platelet count [J]. J Cranio Maxillo Facial Surg,2002,30:97-102.
    [275] Hsieh SC, Graves DT. Pulse application of platelet-derived growth factor enhancesformation of a mineralizing matrix while continuous application is inhibitory [J]. J CellBiochem,1998,69:169-180.
    [276] Chang SH, Hsu YM, Wang YJ, et al. Fabrication of pre-determined shape of bonesegment with collagen-hydroxyapatite scaffold and autogenous platelet-rich plasma [J]. JMater Sci-Mater Med,2009,20:23-31
    [277] Lee JY, Seol YJ, Kim KH, et al. Transforming growth factor (TGF)-beta1releasingtricalcium phosphate/chitosan microgranules as bone substitutes [J]. Pharm Res,2004,21:1790-1796.
    [278] Kasten P, Vogel J, Geiger F, et al. The effect of platelet-rich plasma on healing incritical-size long-bone defects [J]. Biomaterials,2008,29:3983-3992.
    [279] Rai B, Oest ME, Dupont KM, et al. Combination of platelet-rich plasma withpolycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair [J]. JBiomed Mater Res A,2007,81:888-899,.
    [280] Bi L, Cheng W, Fan H, et al. Reconstruction of goat tibial defects using an injectabletricalcium phosphate/chitosan in combination with autologous platelet-rich plasma [J].Biomaterials,2010,31:3201-3211
    [281] Kroese-Deutman HC, Vehof JW, Spauwen PH, et al. Orthotopic bone formation intitanium fiber mesh loaded with platelet-rich plasma and placed in segmental defects [J]. Int JOral Maxillofac Surg,2008,37:542-549.
    [282] Cenni E, Perut F, Ciapetti G, et al. In vitro evaluation of freeze-dried bone allograftscombined with platelet rich plasma and human bone marrow stromal cells for tissueengineering [J]. J Mater Sci-Mater Med,2009,20:45-50
    [283] Fennis JPM, Stoelinga PJW, Jansen JA. Mandibular reconstruction: a clinical andradiographic animal-study on the use of autogenous scaffolds and PRP [J]. Int J OralMaxillofac Surg,2002,31:281-286.
    [284] Fennis JPM, Stoelinga PJW, Jansen JA. Mandibular reconstruction: a histological andhistomorphometric study on the use of autogenous scaffolds, particulate cortico-cancellousbone grafts and platelet rich plasma in goats [J]. Int J Oral Maxillofac Surg,2004,33:48-55.
    [285] Raghoebar GM, Liem RS, Bos RR, et al. Does platelet-rich plasma promote remodelingof autologous bone grafts used for augmentation of the maxillary sinus floor?[J]. Clin OralImplants Res,2005,16:349-356.
    [286] Choi BH, Im CJ, Huh JY, et al. Effect of platelet-rich plasma on bone regeneration inautogenous bone graft [J]. Int J Oral Maxillofac Surg,2004,33:56-59.
    [287] Tajima N, Sotome S, Marukawa E, et al. A three-dimensional cell-loading system usingautologous plasma loaded into a porous β-tricalcium-phosphate block promotes boneformation at extraskeletal sites in rats [J]. Mat Sci Eng C,2007,27:625-632.
    [288] Marx RE. Platelet-rich plasma: evidence to support its use [J]. J Oral Maxillofac Surg,2004,62:489-496.
    [289] Arpornmaeklong P, Kochel M, Depprich R, et al. Influence of platelet-rich plasma (PRP)on osteogenic differentiation of rat bone marrow stromal cells. An in vitro study [J]. Int J OralMaxillofac Surg,2004,33:60-70
    [290] Xie LN, Wang P, Pan JL, et al. The effect of platelet-rich plasma with mineralizedcollagen-based scaffold on mandible defect repair in rabbits [J]. J Bioact Compat Polym,2010,25:603-621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700