用格子Boltzmann方法研究微管内二元流体的混合问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微管内二元流体的混合问题是微流动领域中最基础的问题之一。由于微尺度条件下,二元流体的流动趋向于层流,扩散式主要的,而通过扩散发生的混合将花费相当长的时间。总的说来,微流动混合问题的应用跨越了当今各个专业领域,例如化学分析和传统普遍存在的混合工作(如反应,气体吸收,乳化,起泡和调配等)的样品制备。因此,研究微流动混合问题具有非常重要的意义。
     微混合器的内部结构非常复杂而描述流体运动的控制方程具有高度的非线性,所以很难通过理论方法精确研究。而且,由于微混合器内部的流体混合效果差别很小,难于用观测,且微流动的数据读取很难,使得用实验方法研究微流动混合问题面临很多困难。随着计算机技术的发展,计算流体力学方法的产生使直接解决复杂流体问题成为可能。
     近年来,格子Boltzmann方法(LBM)已经发展成为模拟流体流动和流体物理建模领域中一个有前景的数值方法。该方法在模拟多组分多相流体和复杂边界的流体等方面尤其成功。与其他传统的计算方法比起来,格子Boltzmann方法具有编码简单、边界条件容易实现、完全并行性等优点。本文将采用格子Boltzmann方法来研究微管内二元流体的混合问题:
     1.LBM的基本理论:
     a.介绍了LBM的发展历史和研究现状。(第1章)
     b.严格推导和验证了LBM方法。(第2章)
     c.讨论了格子Boltzmann方法应用中的几种典型的边界条件:反弹边界、反射边界、外推格式和周期边界,二维的压力和速度边界。(第3章)
     d.重点介绍了Luo和Girimaji提出的二元流混合模型。(第2章)
     2.微流体混合问题:
     a.介绍了微流动混合问题的研究背景。(第1、4章)
     b,介绍了关于微流动混合的基本问题,包括混合原则,混合方法,混合效果的鉴定。(第4章)
     c.提出了一种通过混合边界来促进混合的被动式混合器,并利用它研究了流体粘性对于混合效果的影响.。并发现混合边界的设计和流体的粘性对混合效果有一定的影响。(第4章)
     d.提出一种障碍式被动混合器。(第4章)
     e.设计了一种简单易行的通过加时间脉冲压力的主动式微混合器,并讨论了必要的条件。并得出结论:通过控制T型微混合器内入口流体的速度可以达到混沌的混合效果。(第4章)
Mixing of binary fluids in a micro mixer is one of the most basic and revealing cases in the general subject of micro fluidics. Due to the micro scale, the binary fluids flow is typically laminar, the diffusion is dominant, and it would take quite long time to get well mixed.Generally, application fields of Mixing in a micro mixer encompass both modern, specialised issues such as sample preparation for chemical analysis and traditional, widespread usable mixing tasks such as reaction, gas absorption, emulsification, foaming, and blending. Therefore Mixing of binary fluids in a micro mixer is of great significance.
     As the internal structure of the micro mixer is very complex and the governing equations are highly nonlinear, some of the flow properties are extremely difficulty to determine accurately with theoretical method. Moreover, it is difficult to read the tiny difference in micro mixing effect in the laborary with the observation method. With the development of computer technology, computational fluid dynamics (CFD) methods have gradually made it possible to directly solve many complex fluid dynamic problems.
     In recent years, the lattice Boltzmann method (LBM) has developed into promising numerical scheme for simulating fluid flows and modeling physics in fluids. The scheme is particularly successful in fluid flow applications involving simulations of multiphase and multicomponent flows and complex boundaries and so on. Compared with the traditional CFD methods, LBM has many unique advantages, such as simple codes, easy implementation of boundary conditions, and fully parallelism. In this dissertation, lattice Boltzmann method is used to study mixing of binary fluids in a micro mixer.
     The main jobs can be summarized on two dimensions:
     1. The basic theoretics of LBM:
     a. Introducing the history and present research situation of the lattice Boltzmann method. (in Chapter 1)
     b. rigorous derivation and proving process for LBM is given at length. (in Chapter 2)
     c. several kind of typical boundary condition in the lattice Boltzmann method are discussed such as bounce back boundary, specular reflection boundary, extrapolation method, periodic boundary, pressure and velocity boundary. (in Chapter 3)
     d. the lattice Boltzmann model for binary mixtures proposed by Luo and Girimaji is produced particularly.
     2. The problem of mixing in micro mixer:
     a. Introducing the present research situation of the problem of mixing in micro mixer.(in Chapter 1,4)
     b. Introducing mixing principles, means to induce mixing, determination of mixing efficiency.(in Chapter 4)
     c. Proposed a new passive micro mixer to affect mixing by changing the hydrophobic and hydrophilic properties of the substrate surface, and numerically studied the effect of viscosity and viscosity difference and boundary patterned slip on mixing in the micro mixer using lattice Boltzmann method (LBM). It has been found that it is feasible to optimize the micro mixer design by combining the viscosity effect and boundary patterned ratio altogether. (in Chapter 4)
     d. Proposed another passive micro mixer with obstacle disturbance. (in Chapter 4)
     e. Proposed a novel, simple and convenient active micro mixer using time pulsing, and the essential factors for the mixing are discussed. It has been found that the chaos in T type micro mixer can be induced easily through controling the fluids velocity in inlets. (in Chapter 4)
引文
[1]Bayer T, Himmler K, Hessel V, Don't be baffled by static mixers, Chemical Engineering [J],2003,5:2-9.
    [2]Ehlers S, Mixing in the offstream of a microchannel system, Chemical Engineering and Processing [J],2000,39:291-298.
    [3]De Mello A, Wootton R. But what is it good for Applications of microreactor technology for the fine chemical industry [N], Lab on a Chip,2002-7-13(2).
    [4]Fletcher P D I, Micro reactors:principle and applications in organic synthesis, Tetrahedron [J],2002,58 (24):4735-4757.
    [5]Gavriilidis A, Technology and application of microengineered reactors, Transactions I Chem E [J],2002,80/A (1):3-30.
    [6]Haswell S T, Watts P, Green chemistry:synthesis in micro reactors, Green Chemistry [J],2003,5:240-249.
    [7]McNamara G G, Zanetttti G, Use of the Boltzmann Equation to simulate lattice-gas automata, Physics Review Letter [J],1988,61:2332.
    [8]Higuera F, Jimenez J, and Succi S, Boltzmann approach to lattice gas simulations, Europhysics Letters [J],1995,9:663.
    [9]Chen H, Chen S, Chen D O et al., Lattice Boltzmann model for simulation of magnetohydrodynamic, Physics Review Letter [J],1991,67(27):3776-3779.
    [10]Qian Y H, d'Humieres D, Lallemand P, Lattice BGK models for Navier-Stokes equation, Europhysics Letters [J],1992,17(6):479-484.
    [11]Bhatnagar P, Gross E P, Krook M K, A model for collision processes in systems, Physics Reviews [J],1954,94:511.
    [12]Zou Q, Hou S, Chen S et al, An improved incompressible lattice Boltzmann model for time-independent flows, Journal Of Statistical Physics [J],1995,81:35-48.
    [13]He X, Zhou Q, Luo L S et al, Analytical solutions of simple flows and analysis of non-slip boundary conditions for the Lattice Boltzmann BGK model, Journal Of Statistical Physics [J],1997,87-115-136.
    [14]He X, Luo L S, Lattice Boltzmann model for the incompressible Navier-Stokes equation, Journal Of Statistical Physics [J],1997,88(3/4):927-944.
    [15]Junk M, Klar A, Discretizations for the incompressible Navier-Stokes equations based on the lattice Boltzmann method, Journal Of Scientific Computing [J],2000,22: 1-19.
    [16]Guo Z L, Zhao T S, Lattice Boltzmann model for incompressible flows through porous media, Physics Review E [J],2002,66:036304,1-9.
    [17]Fang H P, Wan R Z, Lin Z F, Lattice Boltzmann model with nearly constant density, Physics Review E [J],2002,66:036314,1-5.
    [18]Luo L S, Girimaji S S, Lattice Boltzmann model for binary mixtures, Physics Review E [J],2002,66:035301,1-4.
    [19]Rothman D H, Cellular-automaton fluids:a model for flow in porous media, Geophysics [J],1988,53(4):509-518.
    [20]Succi S, Foti E, Higuera F, Three-dimensional flows in complex geometries with the lattice Boltzmann method, Europhysics Letters [J],1989,10(5):433-438.
    [21]Jeenu K, Jysoo L, Koo L, Nonlinear correction to Darcy's law for a flow through periodic arrays of elliptic cylinders, Physica A[J],2001,293(1-2):13-20.
    [22]Adrover A, Giona M, Predictive model for permeability of correlated porous media, Chemical Engineering Journal [J],1996,64(1):7-19.
    [23]Spaid M A A, Phelan F R, Lattice Boltzmann methods for modeling microscale flow in fibrous porous media, Physics of Fluids [J],1997,9(9):2468-2474.
    [24]Spaid M A A, Phelan F R, Modeling void formation dynamics in fibrous porous media with the lattice Boltzmann method, Composites Part A:Applied Science and Manufacturing [J],1998,29A(7):749-755.
    [25]Benzi R, Succi S, Two-dimensional turbulence with the lattice Boltzmann equation, Journal of Physics A [J],1990,23(1):1-5.
    [26]Chen S, Wang Z, Shan X, et al, Lattice Boltzmann computational fluid dynamics in three dimensions, Journal of Statistical Physics[J],1992,68(3-4):379-400.
    [27]Martinez D O, Matthaeus W H, Chen S, et al, Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics. Physics of Fluids,1994,6(3):1285-1298.
    [28]Benzi R, Struglia M V, Tripiccione R, Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence, Physical Review E [J],1996, 53(6):R5565-R5568.
    [29]Amati G, Succi S, Piva R, Massively parallel lattice-Boltzmann simulation of turbulent channel flow, International Journal of Modern Physics C [J],1997,8(4): 869-877.
    [30]Amati G, Succi S, Benzi R, Turbulent channel flow simulations using a coarse-grained extension of the lattice Boltzmann method, Fluid Dynamics Research [J],1997,19(5):289-302.
    [31]Eggels Jack G M, Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme, International Journal of Heat and Fluid Flow [J],1996, 17(3):307-323.
    [32]Ladd A J C, Numerical simulations of particulate suspensions via a discretized Boltzmann equation.1. Theoretical foundation, Journal of Fluid Mechanics [J],1994, 271:285-309.
    [33]Ladd A J C, Numerical simulations of particulate suspensions via a discretized Boltzmann equation.2. Numerical results, Journal of Fluid Mechanics [J],1994,271: 311-339.
    [34]Aidun C K, Yannan L, Lattice Boltzmann simulation of solid particles suspended in fluid, Journal of Statistical Physics[J],1995,81(1.-2):49-61.
    [35]Gunstensen A K, Rothman D H, Zaleski S, et al, Lattice Boltzmann model of immiscible fluids, Physical Review A[J],1991,43(8):4320-4327.
    [36]Gunstensen A K, Rothman D H, Lattice-Boltzmann studies of immiscible two-phase flow through porous media, Journal of Geophysical Research [J],1993, 98(B4):6431-6441.
    [37]Gunstensen A K, Rothman D H, Microscopic modeling of immiscible fluids in three dimensions by a lattice Boltzmann method, Europhysics Letters [J],1992,18(2): 157-161.
    [38]Grunau D, Chen S, Eggert K, A lattice Boltzmann model for multiphase fluid flows, Physics of Fluids A:Fluid Dynamics [J],1993,5(10):2557-2562.
    [39]Swift M R, Osborn W R, Yeomans J M, Lattice Boltzmann simulation of nonideal fluids, Physical Review Letters [J],1995,75(5):830-833.
    [40]Swift M R, Orlandini S E, Osborn W R, et al, Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Physical Review E [J],1996,54(5):5041-5052.
    [41]Luo L S, Unified theory of lattice Boltzmann models for nonideal gases, Physical Review Letters [J],1998,81(8):1618-1621.
    [42]Luo L S, Theory of the lattice Boltzmann method:Lattice Boltzmann models for nonideal gases, Physical Review E [J],2000,62(4):4982-4996.
    [43]He X, Shan X, Doolen G D, Discrete Boltzmann equation model for nonideal gases, Physical Review E [J],1998,57:13-16.
    [44]Martys N S, Improved approximation of the Brinkman equation using a lattice Boltzmann method, Physics of Fluids [J],2001,13(6):1807-1810.
    [45]Guo Z L, Zhao T S, Discrete velocity and lattice Boltzmann models for binary mixtures of nonideal fluids, Physical Review E [J],2003,68:35302/1-35302/4.
    [46]Chapman S, Cowling T G, The Mathematical Theory of Non-Uniform Gases [M], 3rd ed., Cambridge:Cambridge University Press,1970.
    [47]吴大猷,理论物理(第五册)—热力学[M],气体运动论及统计力学,北京:科学出版社,1983.
    [48]Bhatnagar P L, Gross E P, Krook M, A model for collision processes in gases. I.Small amplitude processes in charged and neutral one-component systems, Physical Review [J],1954,94:511-525.
    [49]Chen S, Doolen G, Lattice Boltzmann method for fluid flows, Annual Review Of Fluid Mechanics [J],1998,30:329-364.
    [50]Lou L S, Sharth S G, Theory of the Lattice Boltzmann method:Two-fluid model for binary mixtures, Physics Review E [J],2003,67(3):036302.
    [51]Shan X, Chen H, Lattice Boltzmann model for simulating flows with multiple phases and components, Physics Review E [J],1993,47:1815.
    [52]Shan X, Chen H, Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Physics Review E [J],1994,49:2941.
    [53]Shan X and Doolen G, J. Stat. Phys.1995,81:379
    [54]Shan X and Doolen G, Diffusion in a multicomponent lattice Boltzmann equation model,Physics Review E [J],1996,54:3614-3620.
    [55]Swift M R, et al, Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Physical Review E [J],1996,54:5041-5052.
    [56]Chen S, Doolen G, Lattice Boltzmann Method for fluid flows, Annual Review of Fluid Mechanics [J],1998,30:329.
    [57]Qi D, Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows, Journal of Fluid Mechanics [J],1999,385:41-62.
    [58]Ziegler D P, Boundary conditions for lattice Boltzmann simulations, Jouranl Of Statistical Physics [J],1993,71:1171-1180.
    [59]Victor S, Robert F S, Boundary conditions for the upwind finite difference Lattice Boltzamnn model:Evidence of slip velocity in micro-channel flow, Journal Of Computational Physics [J],2005,207:639-659.
    [60]Zou Q, He X, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Physics Of Fluids [J],1997,9(6):1591-1598.
    [61]Chen S, Martinez D, Mei D O R, On boundary conditions in lattice Boltzmann methods, Physics Of Fluids [J],1996,8:2527-2531.
    [62]Sauro S, The Lattice Boltzmann Equation For Fluid Dynamics And Beyond [M], Oxford:Clarendon Press,2001:79-82.
    [63]VDE World Microtechnologies Congress, Scale up vs numbering up—can miniaturization change the rules in chemical processing[C], Berlin,2000:385-392.
    [64]Kestenbaum, H, et al., Silver-catalyzed oxidation of ethylene to ethylene oxide in a microreaction system, Industrial & Engineering Chemistry Research [J],2000,41 (4):710-719.
    [65]Kestenbaum H, et al., Synthesis of ethylene oxide in a catalytic microreactor system, Studies in Surface Science and Catalysis [J],2000,130:2741-2746.
    [66]Veser G, Experimental and theoretical investigation of H2 oxidation in a high-temperature catalytic microreactor, Chemical Engineering Science [J],2001, 56:1265-1273.
    [67]Auroux P A, et al., Micro total analysis systems 2:analytical standard operations and applications, Analytical Chemistry [J],2002,74 (12):2637-2652.
    [68]Ehrfeld W, et al., Characterization of mixing in micromixers by a test reaction: single mixing units and mixer arrays, Industrial & Engineering Chemistry Research [J],1999,38(3):1075-1082.
    [69]Knapp M R, Commercialized and emerging Lab-on-a-Chip applications [M], Dordrecht:Kluwer Academic Publishers,2001:7-9.
    [70]Manz A, Becker H, Microsystem Technology in Chemistry and Life Science [M], Springer:Heidelberg,1998:vol.194.
    [71]Ramsey J M. Miniature chemical measurement systems[C]. Basel:Special Issue_TAS'96,1996:24-27.
    [72]Reyes D R, Micro total analysis systems 1:introduction, theory, and technology. Analytical Chemistry [J],2002,74 (12):2623-2636.
    [73]Berg V D, Bergveld A. TAS:miniaturized total chemical analysis systems [C]. Dordrecht, Amsterdam:Kluwer Academic Press,1995:1-4.
    [74]van den Berg, Lammerink A. Micro Total Analysis Systems:Microfluidic Aspects, Integration Concept and Applications[C], Heidelberg,1998:21-49.
    [75]Hardt S. Simulation of droplet formation in micromixers [C]. Hilton Head Island, 2001:223-226.
    [76]Hardt S. Mixing and emulsification processes in micromixers[C]. Orlando, USA, 2001:217-228.
    [77]Pennemann H, et al., Investigations on pulse broadening for transient catalyst screening in gas/liquid systems, A.I.Ch.E. Journal [J],2004,50 (8):1814-1823.
    [78]Graveson P, Branjeberg J, Jensen O S, Microfluidics—a review. Journal of Micromechanics and Microengineering [J],1993,3 (4):168-182.
    [79]Volker Hessel, Volker Hessel. Micromixers— a review on passive and active mixing principles, Chemical Engineering Science [J],2005,2479-2501.
    [80]Yang Z, et al., Ultrasonic micromixer for microfluidic systems, Sensors and Actuators A [J],2001,93:266-272.
    [81]Liu R H, et al., Hybridization enhancement using cavitation microstreaming, Analytical Chemistry[J],2003,75(8):1911-1917.
    [82]Oddy M H, Santiago J G, Mikkelsen J C, Electrokinetic instability micromixing, Analytical Chemistry [J],2001,73(24):5822-5832.
    [83]Glasgow I, Aubry N, Enhancement of microfluidic mixing using time pulsing, Lab on a Chip 3 [J],2003,114-120.
    [84]Niu X, Lee Y-K, Efficient spatial-temporal chaotic mixing in micro-channels, Journal of Micromechanics and Microengineering [J],2003,13:454-462.
    [85]Qian S, Bau H H, A chaotic electroosmotic stirrer, Analytical Chemistry [J], 2002,74 (15):3616-3625.
    [86]Palk P, Pamula, Fair V K, et al., Rapid droplet mixers for digital microfluidic systems, Lab on a Chip 3 [J],2003,253-259.
    [87]West J, et al., Application of magnetohydrodynamic actuation to continuous flow chemistry, Lab on a Chip 2 [J],2002,224-230.
    [88]Lu L H, Ryu K S, Liu C. A novel microstirrer and arrays for microfluidic mixing [M]. Dordrecht:Kluwer Academic Publishers,2001:28-30.
    [89]Voldman J, Gray M L, Schmidt M A. Liquid mixing studies with an integrated mixer/valve [M]. Dordrecht:Kluwer Academic Publishers,1998:181-184.
    [90]Branebjerg J, Larsen U D, Blankenstein G, Fast mixing by parallel multilayer lamination[C]. Basel,1996:228-230.
    [91]Bessoth F G, de Mello, A J Manz A, Microstructure for efficient continuous flow mixing, Analytical Communications [J],1999,36:213-215.
    [92]Drese K, Optimization of interdigital micromixers yia analytical modeling—exemplified with the SuperFocus mixer, Chemical Engineering Journal [J] 2003,101 (1-3):403-407.
    [93]Ehlers S, et al., Mixing in the offstream of a microchannel system, Chemical Engineering and Processing [J],2000,39:291-298.
    [94]Ehrfeld W, et al., Characterization of mixing in micromixers by a test reaction: single mixing units and mixer arrays, Industrial & Engineering Chemistry Research [J],1999,38 (3):1075-1082.
    [95]Floyd T M. Novel liquid phase microreactors for safe production of hazardous speciality chemicals [C]. Berlin,2000:171-180.
    [96]Haswell S T, Watts P, Green chemistry:synthesis in micro reactors, Green Chemistry [J],2003,5:240-249.
    [97]Zech T. Topical Conference Proceedings in Fourth International Conference on Microreaction Technology [C]. Atlanta,2000:390-399.
    [98]Branebjerg J, Larsen U D, Blankenstein G, Proceedings of the Second International Symposium on Miniaturized Total Analysis Systems [C]. Basel,1996: 228-230.
    [99]Schwesinger N, Frank T, Wurmus H, A modular microfluidic system with an integrated micromixer, Journal of Micromechanics and Microengineering [J],1996,6: 99-102.
    [100]Jen C-P, et al., Design and simulation of the micromixer with chaotic advection in twisted microchannels, Lab on a Chip 3[J],2003,77-81.
    [101]Jiang F, et al., Helical flows and chaotic mixing in curved micro channels, A.I.Ch.E. Journal [J],2004,50 (9):2297-2305.
    [102]Lee Y K. Proceedings of the Fifth International Conference on Microreaction Technology[C]. Berlin,2001:185-191.
    [103]Van J M. Plastic on-line chaotic micromixer for biological applications [M]. Dordrecht:Kluwer Academic Publishers,2001:163-164.
    [104]Niu X, Lee Y K, Efficient spatial-temporal chaotic mixing in micro-channels, Journal of Micromechanics and Microengineering [J],2003,13:454-462.
    [105]Qian S, Bau H H, A chaotic electroosmotic stirrer, Analytical Chemistry [J], 2002,74(15):3616-3625.
    [106]Stroock A D, et al., Chaotic mixing in microchannels, Science [J],2002, 295(1):647-651.
    [107]Stroock A D, et al., Patterning flows using grooved surfaces, Analytical Chemistry [J],2002,74(20):5306-5312.
    [108]Penth B. Method and device for carrying out chemical and physical processes: Germany,WO 00/61275 [P].1999.
    [109]Sixth International Conference on Microreaction Technology, Specially suited micromixers for process involving strong fouling[C], New Orleans [Werner B, et al.], 2002:168-183.
    [110]Hong C C, Choi J W, Ahn C H. A novel in-plane passive micromixer using coanda effect [M]. Dordrecht:Kluwer Academic Publishers,2001:31-33.
    [111]Ottino J M. The kinematics of mixing stretching, chaos, and transport [M]. Cambridge:Cambridge University Press,1989:518-520.
    [112]Elaine Biddiss, David Erickson, Dongqing Li*, Heterogeneous surface charge enhanced micromixing for electrokinetic flowsanalytics chemistry, analytic chemistry[J],2004,76:3208-3213
    [113]O. Kuksenok, A.C. Balazs, Simulating the dynamic behavior of immiscible binary fluids in three-dimensional chemically patterned microchannels, Physic Reveal E[J],2003,68:011502.
    [114]Kuksenok O, Balazs A C, Structures formation in binary fluids driven through patterned microchannels:effect of hydrodynamics and arrangement of surface patterns, Physica D:Nonlinear Phenomena[J],2004,198:319-332.
    [115]Wang J F, Liu Y, Xu Y S, The golden-mean surface pattern to enhance flow oscillation in micro-channel, Biomedical Microdevices[J],2009,11:351-357.
    [116]Wolfgang E, Klaus G, Volker H,* et al., Characterization of Mixing in Micromixers by a Test Reaction:Single Mixing Units and Mixer Arrays Industrial & Engieering Chemistry Research [J],1999,38:1075-1082.
    [117]Mouza A A, Patsa C M, Schonfeld F, Mixing performance of a chaotic micro-mixer, Chemical Engineering Research and Design[J],2008,86:1128-1134.
    [118]Y.K. Lee, Lyapunov exponents of a micro chaotic mixer, International journal of nonlinear sciences and numerical simulation [J],2002,3:561-564.
    [119]H.J. Kim, A. Beskok, Quantification of chaotic strength and mixing in a micro fluidic system, J. Micromech. Microeng [J],2007,17:2197-2210.
    [120]Jiang M X, Wang X N, Ouyang Q, et al., Spatiotemporal chaos control with a target wave in the complex Ginzburg-Landau equation system, Physical Review E[J], 2004,69:056202.
    [121]Simonnet C, Groisman A, Chaotic mixing in a steady flow in a microchannel Physical Review Letters [J].2005,94:134501.
    [122]G.G. Pereira, Effect of variable slip boundary conditions on flows of pressure driven non-Newtonian fluids J, Non-Newtonian Fluid Mech [J],2009,157:197-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700