鼠李糖脂对热带假丝酵母和铜绿假单胞菌降解十六烷的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物表面活性剂在土壤修复中强化微生物降解疏水性有机污染物的方式之一是增强微生物菌体表面的疏水性,以促进土壤中的微生物菌体和污染物的直接接触,从而加速污染物的降解。但是我们尚不清楚生物表面活性剂与微生物菌体之间的作用方式以及菌体在生物表面活性剂的作用下其表面性质的变化规律。本文系统地研究探讨了生物表面活性剂鼠李糖脂以及其它类型的表面活性剂对菌体降解不同性质的碳源的影响。
     首先我们通过铜绿假单胞菌的好氧发酵制取了生物表面活性剂鼠李糖脂,并通过酸沉降和柱层析对其进行提纯,最后得到纯化了的鼠李糖脂单糖脂和鼠李糖脂二糖脂。液质联用的结果表明,这两种鼠李糖脂主要含有三种成分。它们被用作后续的实验。
     然后研究了这两种鼠李糖脂对正十六烷的增溶作用,以及单糖脂的吸附作用对铜绿假单胞菌降解葡萄糖、高浓度鼠李糖脂单糖脂胶团化正十六烷以及单独相正十六烷的影响。实验结果表明,在浓度低于CMC和高于CMC时鼠李糖脂单糖脂对正十六烷的摩尔增溶比不同,而在整个浓度范围内二糖脂对正十六烷的摩尔增溶比不变。低浓度单糖脂的吸附抑制了菌体对葡萄糖和单独相正十六烷的降解,而高浓度单糖脂的吸附未影响菌体对葡萄糖的降解,但却促进了其对单独相正十六烷的降解。在实验时间范围内,吸附和未吸附单糖脂的菌体均不能降解高浓度的单糖脂胶团化的正十六烷,这表明该铜绿假单胞菌不能利用此胶团中的正十六烷。
     最后研究Triton X-100、二鼠李糖脂(di-RL)和CTAB等三种表面活性剂对一株热带假丝酵母降解十六烷的影响。结果表明,表面活性剂的类型和浓度均影响菌的生长及其十六烷的降解。低浓度的TX-100对菌的生长及其十六烷的降解影响较小,而高浓度的TX-100则抑制菌的生长及其十六烷的降解。di-RL促进菌的生长及其十六烷的降解,且促进作用随着di-RL浓度的增加而增大;di-RL在发酵过程中被降解,且添加的di-RL的浓度越大其被降解的比例越大。CTAB对热带假丝酵母具有毒性作用。
     本论文揭示了生物表面活性剂鼠李糖脂的微生物吸附规律,并证实了它有改变菌体表面亲水疏水性的作用。因为在很低的表面活性剂浓度下该作用就能发生,所以增加了将生物表面活性剂经济有效地应用于土壤修复中的可能性,特别是添加外源菌种的原位修复的可能性。
In soil remediation, one way of biosurfactants enhance degradation of hydrophobic organic contaminants is to increase the surface hydrophobicity of microbial cell and facilitate the direct contact of microorganisms with the contaminants trapped in soil pores. However, the manner of interaction between biosurfactants and microorganisms as well as the rules of cell surface hydrophobicity change as the function of biosurfactants were not fully understood. In this paper, the effects of different kinds surfactants on degradation of different carbon sources are systematically studied.
     First the rhamnolipid biosurfactant was produced by aerobic fermentation using a Pseudomonas aeruginosa strain. It was separated from the culture by acid precipitation and purified by column chromatography until monorhamnolipid and dirhamnolipid were obtained. HPLC-MS examination showed that both of the rhamnolipids contained three main components and they were used in the following studies.
     Then the ability of the two rhamonolipid to enhance the apparent solubility of n-hexadecane was investigated, and the effect of monorhamnolipid adsorption on degradation of glucose, aggregate-incorporated n-hexadecane and single-phased n-hexadecane was also studied. The monorhamnolipid exhibited different manner of enhancing hexadecane solubility when its aqueous concentration was lower or higher than CMC, while the capability of dirhamnolipid was the same in the whole concentration range tested. Adsorption of monorhamnolipid of low concentration to some extent restricted the cell growth on glucose and single-pahsed hexadecane, however, adsorption of monorhamnolipid of high concentration had insignificant or stimulative effect on the cell growth on glucose and on hexadecane, respectively. For the hexadecane incorporated in aggregates formed by high-concentration monorhamnolipid, they could not be degraded by the cells treated with or without the surfactant. This result indicated that the incorporated hexadecane was unavailable to the Pseudomonas aeruginosa strain.
     Finally the effects of three kinds of surfactans (Triton X-100,di-RL,CTAB) on hexadecane degradation by Candida tropicalis CICC 1463 were studied. Results showed that both type and concentration of the surfactants affected cell growth and hexadecane degradation. The cell growth and hexadecane degradation were little effected by TX-100 of low concentrations, but inhibited at high concentrations. Di-RL increasingly enhanced cell growth and hexadecane degradation with concentration increasing. Di-RL was also degraded in the fermentation process, and the degradation rate increased with concentration increasing. CTAB was toxic to Candida tropicalis CICC 1463.
     The paper disclosed the effect of adsorption of rhamnolipid biosurfactants to microorganisms changing cell surface hydrophobicity. Because this effect occurs at low biosurfactant concentrations, it implies the possibility of economical and effective application of biosurfactant in soil remediation, especially in situ remediation with exogenous bacterial amendments.
引文
[1]马文漪,杨柳燕.环境微生物工程.南京:南京大学出版社,1998,17
    [2]张天胜,郭丽梅,黄彗玲,等.生物表面活性剂及其应用.北京:化学工业出版社,2005,10-11
    [3]Miller R M. Bioremediation Science and Applications. Madison:Soil Science Special Publication,1995:33-54
    [4]Desai J D, Banat I M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev.,1997,61(1):47-64
    [5]Banat I M. Characterization of biosurfactants and their use in pollution removal-State of the Art. ACTA Biotechnologica,1995,15(3):251-267
    [6]李祖义.生物工程与表面活性剂.表面活性剂工业,1987,4:16
    [7]张秋卓,蔡伟民.生物表面活性剂产生菌的筛选及产剂性能研究.环境科学与技术,2008,31(11):38-44
    [8]马歌丽,彭新榜,马翠卿,等.生物表面活性剂及其应用.中国生物工程杂志,2003,23(5):42-45
    [9]Lee S C, Lee S J, Kim S H, et al. Characterization of new biosurfactant produced by Klebsiella sp. Y6-1 isolated from waste soybean oil. Bioresour. Technol., 2008,99:2288-2292
    [10]Sarubbo L A, Farias C B B, Campos-Takaki G M. Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr. microbiol.,2007,54:68-73
    [11]Raza Z A, Rehman A, Khan M S, et al. Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes. Biodegradation,2007,18:115-121
    [12]Mukherjee S, Das P, Sen R. Towards commercial production of microbial surfactants. Trends Biotechnol.,2006,24:509-515
    [13]Vance-Harrop M H, Gusmao N B, Campos-Takaki G M. New bioemulsifiers produced by Candida lipolytica using D-glucose and babassu oil as carbon sources. Braz. J. Microbiol.,2003,34:120-123
    [14]Raza Z A, Khan M S, Khalid Z M, et al. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Biotechnol. Lett.,2006,28:1623-1631
    [15]Costa S GVAO, Nitschke M, Haddad R, et al. Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. Process Biochem.,2006,41:483-488
    [16]Deshpande M, Daniels L. Evaluation of sophorolipid biosurfactant production by Candida Bombicola using animal fat. Bioresource technol.,1995,54: 143-150
    [17]Das K, Mukherjee A K. Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source:Some industrial applications of biosurfactants. Process Biochem.,2007,42:1191-1199
    [18]Rivera O M P, Moldes A B, Torrado A M, et al. Lactic acid and biosurfactants production from hydrolyzed distilled grape marc. Process Biochem.,2007,42: 1010-1020
    [19]Rocha M V P, Oliveira A H S, Souza M C M, et al. Natural cashew apple juice as fermentation medium for biosurfactant production by Acinetobacter calcoaceticus. World. J. Microbiol. Biotechnol.,2006,22:1295-1299
    [20]Dubey K, Juwarkar A. Distillery and curd whey wastes as viable alternative sources for biosurfactant production. World. J..Microb. Biot.,2001,17:61-69
    [21]Benincasa M, Contiero J, Manresa M A, et al. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J. Food Eng.,2002,54:283-288
    [22]Moldes A B, Torrado A M, Barral M T, et al. Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus. J. Agric. Food Chem.,2007,55:4481-4486
    [23]Makkar R S, Cameotra S S. An update of the use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol.,2002,58:428-434
    [24]Rodrigues L R, Teixeira J A, Oliveira R. Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochem. Eng. J.,2006,32: 135-142
    [25]Benincasa M. Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated Soil. Curr. Microbiol.,2007,54: 445-449
    [26]Rashedi H, Jamshidi E, Assadi M M, et al. Isolation and production of biosurfactant from Pseudomonas aeruginosa isolated from Iranian southern wells oil. Int. J. Environ. Sci. Tech.,2006,3:297-303
    [27]Mulligan C N, Yong R N, Gibbs B F. Surfactant-enhanced remediation of contaminated soil:a review. Eng. Geol.,2001,60:371-380
    [28]Rosenberg E, Ron E Z. High- and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol.,1999,52:154-162
    [29]Desai J D, Banat I M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev.,1997,61:47-64
    [30]Lang S. Biological amphiphiles (microbial biosurfactants). Curr. Opin. Colloid. in.,2002,7:12-20
    [31]Rocha C, Infante C. Enhanced oily sludge biodegradation by a tension-active agent isolated from Pseudomonas aeruginosa USB-CS1. Appl. Microbiol. Biotechnol.,1997,47:615-619
    [32]方云,夏咏梅.生物表面活性剂.北京:中国轻工业出版社,1992,1-160
    [33]范立梅.生物表面活性剂及其应用.生物学通报,2000,35(8):21-22
    [34]Morgan P, Watkinson R J. Hydrocarbon degradation in soils and methods for soil biotreatment. Crit. Rev. Biotechnol.,1989,8:305-333
    [35]Tsomides H J, Hughes J B, Thomas M J, et al. Effect of surfactant addition on phenanthrene biodegradation in sediments. Environ. Toxico. Chem.,1995,14: 953-959
    [36]Olivera N L, Commendatore M G, Esteves J L, et al. Biosurfactant-enhanced degradation of residual hydrocarbons from ship bilge wastes. J. Ind. Microbiol. Biot.2000,25:70-73
    [37]Providenti M A, Flemming C A, Lee H, et al. Effect of addition of rhamnolipid biosurfactants or rhamnolipid-producing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries. FEMS. Microbiol. Ecol.,1995,17: 15-26
    [38]Kanga S H, Bonner J S, Page C A, et al. Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants. Environ. Sci. technol.,1997,31:556-561
    [39]Poremba K, Gunkel W, Lang S, et al. Marine biosurfactants. Ⅲ. Toxicity testing with marine microorganisms and comparison with synthetic surfactants. Zeit. Naturforsch.,1991,46c:210-216
    [40]Fleck L C, Bicca F C, Zachia Ayub M A. Physiological aspects of hydrocarbon emulsification, metal resistance and DNA profile of biodegrading bacteria isolated from oil polluted sites. Biotechnol. Lett.,2000,22:285-289
    [41]Zhang L, Somasundaran P, Singh S K, et al. Synthesis and interfacial properties of sophorolipid derivatives. Colloid. surfac. A,2004:75-82
    [42]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制.北京:科学出版社,2006,138-188
    [43]Kuyukina MS, Ivshina IB, et al. Recovery of rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 2001,46:149-156
    [44]Lin SC, Jiang HJ. Recovery and purification of the lipopetide biosurfactant of Bacillus subtilis by ultrafiltration. Biotechnology Techniques,1997,11(6): 413-416
    [45]时进钢,袁兴中,曾光明,等.生物表面活性剂的合成与提取研究进展.微生物学通报,2003,30(1):68-72
    [46]孙彦主编.生物分离工程.北京:化学工业出版社,2001:8-9
    [47]Mata-Sandovala J C, Karnsb J, Torrents A. High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J. Chromatogr. A,1999, 864:211-220
    [48]Yakimov M M, Timmis K N, Wray V, et al. Characterization of a New Lipopeptide Surfactant Produced by Thermotolerant and Halotolerant Subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol,1995, 61(5):1706-1703
    [49]Rosenberg E, Zuckerberg A, Rubinowitz C. Isolation and Emulsifying Properties. Appl. Environ. Microbiol,1979,37(3):402-403
    [50]Lin S C, Chen Y C, Lin Y M. General Approach for the Development of High-performance Liquid Chromatography Methods for Biosurfactant Analysis and Purification. Journal of Chromatgraphy A,1998,825(2):149-159
    [51]Davis D A, Lynch H C, Varley J. The Application of Foaming for the Recovery of Surfactin from B. subtilis ATCC 21332 culture. Enzyme. Microb. Technol., 2001,28:346-354
    [52]王敬尊,瞿慧生.复杂样品的综合分析剖析技术概论.第1版.北京:化学工业出版社,2001:71-73
    [53]Garcia A A, Bonen M R. Bioseparation Process Science.第1版.北京:清华大学出版社,2002:206-210
    [54]Baneyx F, Ayling A, Palumbo T, et al. Optimization of Growth Conditions for the Production of Proteolytically-sensitive Proteins in the Periplasmic Space of Escherichia Coli. Appl. Microbiol. Biotechnol.,1991,36(1):14-20
    [55]Ullrich C, Kluge B, Palacz Z, et al. Cell-free Biosynthesis of Surfactin, a Cyclic Lipopeptide Produced by Bacillus subtilis. Biochemistry,1991,30(26):6503-6508
    [56]Ashani Y, Rothschild N, Segal Y, et al. Prophylaxis Against Organophosphate Poisoning by an Enzyme Hydrolyzing Organo-phosphorus Compounds in Mice. Life Science,1991,49:367-374
    [57]Lin S C, Sharma M M, Geordiou G. Production and Deactivation of the Lipopeptide Surfactant from Bacillus licheniformis JF-2. Biotechnol Progress, 1993,9:138-145
    [58]Lin S C, Minton M A, Sharma M M, et al. Purification, Structure and Immunological Characterization of a Biosurfactant Produced by Bacillus licheniformis JF-2. Appl. Environ. Microbiol.,1994,60:31-38
    [59]Mulligan C N, Wang S L. Remediation of Heavy Metal-contaminated Soil by a Rhamnolipid Foam. Engineering Gelolgy,2006,85:75-81
    [60]Mulligan A N, Yong R N, Gibbs B F. Heavy Metal Removal from Sediments by Biosurfactants. Journal of Hazardous Materials,2001,85:121-125
    [61]Chowdiah P, Misra B R, Kibane J J, et al. Foam Propagation through Soils for Enhanced in-situ Remediation. J.Hazard.Mater,1998,62:265-280
    [62]Champion J T, Gilkey J C, Lamparski H, et al. Eletron Microscopy of Rhamnolipid (Biosurfactant) Morphology:Effedts of pH, Cadmium, and Octadecane. Journal of Colloed and Interface Science,1995,170:569-574
    [63]Doong R A, Wu Y W, Lei W G. Surfactant Enhanced Remediation of Cadmium Contaminated Soils. Water Sci.Technol.,1998,37(8):65-71
    [64]Zouboilis A I, Mstis K A, Lazaridis N K, et al. The use of biosurfactants in flotation application for the removal of metal ions. Minerals Engineering,2003, 16(11):1231-1236
    [65]左晶,王学川.化学工艺与工程技术.2005,26(2):23-26
    [66]Hong K J, Tokunaga S, Kajiuchi T. Evaluation of reme-diation process with plant-derived biosurfactant for recovcry of heavy metals fromcontaminated soils. Chemosphere,2002,49:379-387
    [67]孟佑婷,袁兴中,曾光明,等.生物表面活性剂茶皂素离子浮选去除废水中镉离子.环境科学学报,2005,25(8):1029-1033
    [68]Zhang B Y, Huang G H, Chen B, et al. Production of biosurfactants in batch reactor for food waste composting. In:Waste Management and the Environment. Spain,2003:131-140
    [69]Bai G Y, Brusseau M L, Miller R M. Influence of rhamnolipid biosurfactant on the transport of bacteria through a sandy soil. Appl. Environ. Microbiol.,1997a, 639(5):1866-1873
    [70]Al-Tahhan R A, Sandrin T R, Bodour A A, et al. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa:effect on cell surface properties and interaction with hydrophobic substrates. Appl. Environ. Microbiol.,2000,66:3262-3268
    [71]Roch F, Alexander M. Biodegradation of hydrophobic compounds in the presence of surfactants. Environ. Toxicol. Chem.,1995,14:1151-1158
    [72]Harvey S, Elashvili L, Valdes J, et al. Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Bioresource Technology,1990,8(3):228-230
    [73]Kosaric N. Biosurfactants and their application for soil bioremediation. Food Technol. Biotechol.,2001,39(4):295-304
    [74]Le F S, Merlin F X, Guillerrne M, et al. A field experimentation on bioremediation:BIOREN. Environmental Technology,1999,20:897-907
    [75]梁生康,王修林,单宝田.生物表面活性剂强化疏水性有机污染物生物降解研究进展.化工环保,2005,25(4):276-280
    [76]华兆哲,陈坚,朱文昌,等.假丝酵母生产生物表面活性剂及降解正构烷烃的研究.南京大学学报,1998,34(2):149-153
    [77]Van Dyke M I, Couture P, Brauer M, et al. Pseudomonas aerugionsa UG2 rhamnolipid biosurfactants:stuctural characterization and their use in removing hydrophobic compounds from soil. Can. J. Microbiol.,1993,39:1071-1078
    [78]Hong K J, Choi Y K, Tokynaga S, et al. Removal of cadmiun and lead from soil using aeciu as a biosurfactant. J Surfactant Deterg,1998,1(2):247-250
    [79]丁历孝,何国庆,孔青,等.微生物产生的生物表面活性剂及其应用研究.生物技术,2003,13(5):52-54
    [80]李敬龙,刘晔,潘爱珍.生物表面活性剂的应用.山东轻工业学院学报,2004,18(2):43-44
    [81]梅建凤,闵航.生物表面活性剂及其应用.工业微生物,2001,31(1):54-57
    [82]A. Perfumo, I. M. Banat, F Canganella, et al. Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol,2006,72:132-138
    [83]徐美娟,易贤辉.纸浆造纸废水的微生物絮凝剂.纸和造纸,2003,(5):53-56
    [84]方长云,薛嘉韵,源亮君.生物表面活性剂及其在环境工程中的应用.广东化工,2005,(12):49-50
    [85]Lang S, Philp J C. Surface-active lipids in rhodococci. Anton. Leeuw. Int. J. G., 1998,74:59-70
    [86]Southam G, Whitney M, Knickerbocker C. Structural characterization of the hydrocarbon degrading bacteria-oil interface:implications for bioremediation. Int. Biodeter. Biodegr.,2001,47:197-201
    [87]Carrillo C, Teruel J A, Aranda F J, et al. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim. Biophys. Acta., 2003,1611:91-97
    [88]Volkering F, Breure A M, Rulkens W H. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation,1998,8:401-417
    [89]Hommel R K. Formation and physiological role of biosurfactants produced by hydrocarbon-utilising microorganisms. Biodegradation,1990,1:107-119
    [90]Watkinson R, Morgan P. Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation,1990,1:79-92
    [91]Britton L N. Microbial degradation of aliphatic hydrocarbons. In Gibson D T (ed.), Microbial degradation of organic compounds. New York, N.Y.:Marcel Dekker Inc.,1984,89-129
    [92]Rosenberg M, Rosenberg E. Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. J. Bacteriol.,1981,148:51-57
    [93]Watkinson R J. Interaction of microorganisms with hydrocarbons. In Harrison D E F, Higgins I J, Watkinson R J (ed.), Hydrocarbons in biotechnology. London, United Kingdom:Heyden,1980,11-24
    [94]Whyte L G, Slagman S J, Pietrantonio F, et al. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl. Environ. Microbiol.,1999,65:2961-2968
    [95]Zhang Y, Miller R M. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl. Environ. Microbiol.,1994,60:2101-2106
    [96]Whyte L G, Slagman S J, Pietrantonio F, et al. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl. Environ. Microbiol.,1999,65:2961-2968
    [97]Hua Z Z, Chen J, Lun S Y, et al. Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Res.,2003,37:4143-4150
    [98]Arino S, Marchal R, Vandecasteele J P. Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl. Microbiol. Biotechnol.,1996,45:162-168
    [99]Zeng G M, Fu H Y, Zhong H, et al. Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and rhamnolipid, in liquid culture media and compost matrix. Biodegradation,2007,18:303-310
    [100]钟华.鼠李糖脂的菌体吸附及其对菌体表面的改性作用研究:[湖南大学博士学位论文].中国长沙:湖南大学环境科学与工程学院,2008,37-110
    [101]Noordman W H, Brusseau M L, Janssen D B. Adsorption of a multicomponent rhamnolipid surfactant to soil. Environ. Sci. Technol.,2000,34:832-838
    [102]Schenk T, Schuphan I, Schmidt B. High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J. Chromatogr. A,1995,693:7-13
    [103]Zhang Y, Miller R M. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol., 1992,58:3276-3282
    [104]梁生康.鼠李糖脂生物表面活性剂对石油烃污染物生物降解影响的研究:[博士学位论文].中国青岛:中国海洋大学环境科学与工程学院,2005,70-85
    [105]Soberon-Chavez G., Lepine F, Deziel E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol.,2005,68:718-725
    [106]Ishigami Y, Gama Y, Nagahora H, et al. The pH-sensitive conversion of molecular aggregates of rhamnolipid biosurfactant. Chem. Lett.,1987:763-766
    [107]Imura T, Hikosaka Y, Worakitkanchanakul W, et al. Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A:sponge, cubic, and lamellar phases. Langmuir,2007,23:1659-1663
    [108]Zhang Y M, Maier W J, Miller R M. Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene. Environ. Sci. Technol., 1997,31:2211-2217
    [109]Robinson K G, Ghosh M M, Shi Z. Mineralization enhancement of non-aqueous phase and soil-bound PCB using biosurfactant. Wat. Sci. Tech.,1996,34: 303-309
    [110]傅海燕,曾光明,黄国和,等.生物表面活性剂对堆肥中含烃有机质降解过程的影响.高技术通讯,2005,15(9):96-100
    [111]F. Volkering, A.M. Breure & W.H. Rulkens. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation,1998,8:401-417
    [112]Wouter H. Noordman, Johann H.J. Wachter, Geert J. de Boer, et al. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. Journal of Biotechnology,2002, 94:195-212
    [113]Guiyun Bai, Mark L. Brusseau, Raina M. Miller. Biosurfactant-enhanced removal of residual hydrocarbon from soil. Journal of Contaminant Hydrology, 1997,25:157-170
    [114]Peng Chen, Michael A. Pickard & Murray R. Gray. Surfactant inhibition of bacterial growth on solid anthracene. Biodegradation,2000,11:341-347
    [115]戴树桂,董亮,王臻.表面活性剂在土壤颗粒物上的吸附行为.中国环境科学,1999,19(5):392-396
    [116]钟华,曾光明,黄国和,等.鼠李糖脂对铜绿假单胞菌降解颗粒有机质的影响.中国环境科学,2006,26(2):201-205
    [117]Noordman W H, Wachter J H J, Boer G J de, et al. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J. Biotechnol.,2002,94(2):195-212
    [118]Rahman K S M, Banat I M, Thahira J, et al. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, cori pith and rham-nolipid biosurfactant. Bioresource Technol,2002,81(1):25-32
    [119]Rahman K S M, Rahman T J, Kourkoutas Y, et al. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technol,2003,90(2):159-168.
    [120]E. Kaczorek, L. Chrzanowski, A. Pijanowska, et al. Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants:Rhamnolipides and saponins. Bioresource Technology,2008,99: 4285-4291
    [121]Hua Zhong, Guangming Zeng, Xingzhong Yuan, et al. Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol,2007,77:447-455
    [122]Xingzhong Yuan, Fangyi Ren, Guangming Zeng, et al. Adsorption of surfactants on a Pseudomonas aeruginosa strain and the effect on cell surface lypohydrophilic property. Appl Microbiol Biotechnol,2007,76:1189-1198
    [123]Guangming Zeng, Haiyan Fu, Hua Zhong, et al. Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and Rhamnolipid, in liquid culture media and compost matrix. Biodegradation,2007,18:303-310
    [124]Sotirova A, et al. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. http://dx.doi.org/10.1016/j.micres.2007.01.005, 2007-1-25
    [125]Yimin Zhang, Rain M. Miller. Effect of Rhamnolipid (Biosurfactant) Structure on Solubilization and Biodegradation of n-Alkanes. Applied and Environmental Microbiology,1995,61(6):2247-2251
    [126]陈延君,王红旗,熊樱.正十六烷微生物降解酶的定域和酶促降解性.环境科学研究,2007,20(6):120-125
    [127]Wouter H. Noordman, Dick B.Janssen. Rhamnolipid Stimulates Uptake of Hydrophobic Compounds by Pseudomonas aeruginosa. Applied and Environmental Microbiology,2002,68(9):4502-4508
    [128]肖进新,赵振国.表面活性剂应用原理.北京:化学工业出版社,2003:31-38
    [129]Valerica Raicu, Cristian Gusbeth, Dan F. Anghel, et al. Effects of cetyltrimethylammonium bromide (CTAB) surfactant upon the dielectric properties of yeast cells. Biochimica et Biophysica Acta,1998,1379:1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700