空心式永磁直线伺服电机及其驱动控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以空心式永磁直线伺服电机及其驱动控制系统为研究对象,在进行了大量的相关文献检索和阅读的基础上,主要完成了以下工作:
     1.空心式扁平型永磁直线伺服电机的分析与设计。介绍了双边空心式扁平型永磁直线伺服电机的结构、特点和绕组形式。采用“等效磁势法”和“等效磁化强度法”对电机内磁场进行解析分析,通过与有限元分析结果的比较,证明“等效磁化强度法”的求解结果是准确的。推导出电机气隙磁密、推力和反电势的解析公式,详细分析了电机主要尺寸对电机性能的影响。提出了电机主要尺寸和性能参数的经验公式,设计了样机,并采用有限元法对样机进行了分析。
     2.空心式圆筒型永磁直线伺服电机的分析与设计。介绍了轴向充磁的空心式圆筒型永磁直线伺服电机的结构与特点,采用有限元法分析了永磁体尺寸对电机气隙磁场的影响。给出设计该结构电机的经验公式和经验参数,设计了样机,并采用有限元法对样机的磁场、动静态推力、反电势和电感进行了分析。
     3.永磁直线伺服电机驱动控制系统研究。建立了dq轴坐标下永磁直线电机的数学模型,研究矢量控制在永磁直线电机驱动系统中的应用。设计了基于转子磁场定向(i_d=0)控制的位置、速度、电流三闭环矢量控制系统。最后提出了一种低成本的线性霍尔位置检测方法,对该检测方法的准确性进行了理论分析,并通过实验进行了检验。
     4.永磁直线伺服系统的实验与应用。设计制造了空心式扁平型永磁直线伺服电机的工作平台,对电机性能进行了测试。将空心式圆筒型永磁直线电机及驱动控制系统应用于食品切片机和电梯门机中,针对不同运行工况条件,分别进行了实验研究,均取得了较好的应用效果。目前食品切片机已经由美国ITW公司生产销售,而电梯门机也已经申请了专利,在“中国国际电梯展览会”上展出,现进入产品鉴定阶段。
     本文中创新性的工作主要有:
     1.采用“等效磁势法”和“等效磁化强度法”对双边空心式扁平型永磁直线电机进行解析分析,通过将解析分析结果与有限元分析结果进行对比,证明“等效磁化强度法”的求解结果是准确的,而“等效磁势法”误差较大,具有一定局限性。推导出该结构电机气隙磁密、推力和反电势的解析公式,并详细分析了电机主要尺寸对电机性能的影响。
     2.针对空心式圆筒型永磁直线伺服电机,采用有限元法分析了永磁体尺寸对气隙磁场正弦度的影响。给出电机主要尺寸和性能参数的经验公式,设计了样机,并将空心式圓筒型永磁直线伺服电机及其驱动控制系统应用于食品切片机和电梯门机系统中,均取得良好的应用效果。
     3.提出将一种低成本的线性霍尔位置检测方法应用于空心式圆筒型永磁直线伺服系统中。在对电机磁场进行有限元分析的基础上,对该检测方法精度进行了理论分析,设计制造了线性霍尔位置检测器,对其检测精度进行了实验研究。
The air-cored permanent magnet linear servo motor (PMLSM) and control system is studied in the thesis. On the basis of reading lots of references, several main works has been done as below:
     1. Analysis and design of the flat type air-cored PMLSM. The topology, winding construction and characteristic of the motor are introduced. The magnetic field is analyzed by "equivalent magnetomotive force method" and "equivalent magnetization intensity method". Comparing the analytical solutions with the FEA solution, the "equivalent magnetomotive force method" is proved more accurate. The analytical equations of magnetic flux density, thrust force and back EMF are deduced, and equations are proved accurate by FEA. The influence of the motor key dimensions to the magnetic flux density, thrust force and back EMF are analyzed. The empirical design equations of the key dimensions and characteristic parameters of the motor are proposed. A prototype is designed and manufactured, and the performance of the prototype is analyzed by FEA.
     2. Analysis and design of the tubular type air-cored PMLSM. The topology and characteristic of the axial array tubular type air-cored PMLSM are introduced. The influence of the PM dimensions to the magetic field is analyzed by FEA. The empirical design equations and parameters of the motor are proposed. The prototypes are designed and manufactured, and the magnetic filed, static and dynamic thrust, back EMF and inductance of the prototype are analyzed by FEA.
     3. Study of the driver and control system of the PMLSM. The mathematic model of the PMLSM under dq coordinate is built, and the principle of the field oriented control method is introduced. A three closed loop about position, velocity and current control system based on field oriented control is designed, and the software and hardware of the control system are introduced. At last, a low-cost position detecting method using linear hall-effect sensors is proposed. The detecting accuracy is analyzed theoretically and this method is also test by the experiment.
     4. Experiments and applications of the permanent magnet linear servo system. An operating platform of the flat type air-cored PMLSM is manufactured, and the performance of the motor is test. The tubular type air-cored PMLSM are applied in the food-cutting machines and elevator door systems. The experiments are carried out under different operational conditions and the performances of the motors are presented. Both of these two applications achieve good results. At present time, the food-cutting machines have been produced by ITW of USA. The patent of the elevator door system has been applied, the novel elevator door was shown on the "World elevator & escalator expo' 08", and the production has step into the survey stage.
     The original works of this thesis includes:
     1. Solving the magnetic field of the the flat type air-cored PMLSM by the analytical method-"equivalent magnetomotive force method" and "equivalent magnetization intensity method". The "equivalent magnetomotive force method" is proved more accurate by the way of comparing the analytical solutions with the FEA solution. The error of solutions solving by "equivalent magnetomotive force method" is bigger, so this analytical method has limitation. The analytical equations of magnetic flux density, thrust force and back EMF are deduced, and the influences of the motor key dimensions to the performance of the motor are analyzed.
     2. In the study of the tubular type air-cored PMLSM, the influences of the permanent magnet dimensions to the magnetic field of the motor are analyzed by FEA. The empirical design equations of the motor are proposed, and prototypes are designed. The tubular type air-cored PMLSM are applied in the food-cutting machines and elevator door systems and achieve good results.
     3. Using a low cost position detecting method by linear hall-effect sensors in the tubular type permanent magnet linear servo systems. Based on the analysis of the magnetic field of the motor, the accauracy of this position detecting method is analyzed theoretically and experimentally.
引文
[1]王恒敏.值得关注的“直线电动机驱动”技术,通用机械,2005(05):14-15
    [2]黄祖尧.精密高速滚珠丝杠副的最新发展及其应用,航空制造技术,2003(4)
    [3]郭庆鼎,王成元,周美文等.直线交流伺服系统的精密控制技术,北京:机械工业出版社,2000.1
    [4]叶云岳.直线电机原理与应用,北京:机械工业出版社,2000.6
    [5]叶云岳.国内外直线电机技术的发展与应用综述,电器工业,2003(1):12-16
    [6]叶云岳.新型直线驱动装置与系统,北京:冶金工业出版社,2000.9
    [7]叶云岳,卢琴芬,范承志,方攸同.直线电机技术手册,北京:机械工业出版社,2003.8
    [8]郭庆鼎,王成元.交流伺服系统,北京:机械工业出版社,1994.7
    [9]Jacek E Gieras,Zbigniew J.Piech.Linear synchronous motors:Transportation and automation systems,New York,CRC Press,1999
    [10]石忠东,王先逵,陈定积等.永磁交流直线电机直接驱动伺服控制技术,微特电机,2002,3:8-10
    [11]数学手册,北京:高等教育出版社,1979.5
    [12]N.Bianchi,S.Bolognani,F.Tonel.Design criteria of a tubular linear IPM motor,Electric machines and drives conference,2001:l-7
    [13]Nicola Bianchi,Silverio Bolognani,Dario Dalla Corte,Francesco Tonel.Tubular linear permanent magnet motors:an overall comparison,IEEE transactions on industry applications,VOL.39,NO.2,Mar/Apr,2003:466-474
    [14]Nicola Bianchi.Analytical field computation of a tubular permanent-magnet linear motor,IEEE transactions on magnetics,VOL.36,NO.5,Sep,2000:3798-3801
    [15] Nicola Bianchi. Analytical computation of magnetic fields and thrusts in a tubular PM linear servo motor, IEEE industry applications conference, Oct.2000,vol.1 :21-28
    [16] Haiwei Lu, Jianguo Zhu, Youguang Guo. A permanent magnet linear motor for micro robots, International conference on power electronics and drives systems 2005, Jan. 2006,vol. 1:590-595
    [17] Haiwei Lu, Jianguo Zhu, Youguang Guo. Development of a slotless tubular linear interior permanent magnet micromotor for robotic applications, IEEE transactions on magnetics, VOL.41,NO.10, Oct,2005:3988-3990
    [18] F. Marignetti, M. Scarano. Analysis of PM tubular actuators, International conference on electric machines and drives 1999, May.l999:440-442
    [19] F. Marignetti, M. Scarano. Comparative analysis and design criteria of permanent magnet tubular actuators, Electrical Engineering 2002(84):255-264
    [20] Z.Q. Zhu, P.J. Hor, D. Howe, J. Rees-Jones. Novel linear tubular brushless permanent magnet motor, Eighth international conference on electrical machines and drives, Sep.l997:91-95
    [21] Z.Q. Zhu, P.J. Hor, D. Howe, J. Rees-Jones. Calculation of cogging force in a novel slotted linear tubular brushless permanent magnet motor, IEEE transactions on magnetics, VOL.33,NO.5, Sep,1997:4098-4100
    [22] P.J. Hor, Z.Q. Zhu, D. Howe, J. Rees-Jones. Minimization of cogging force in a linear permanent magnet motor, IEEE transactions on magnetics, VOL.34,NO.5, Sep,1998:3544-3547
    [23] P.J. Hor, Z.Q. Zhu, D. Howe. Eddy current loss in a moving-coil tubular permanent magnet motor, IEEE transactions on magnetics, VOL.35,NO.5, Sep,1999:3601-3603
    [24] Jiabin Wang, Geraint W Jewell, David Howe. A general framework for the analysis and design of tubular linear permanent magnet machines, IEEE transactions on magnetics, VOL.35,NO.3, May,1999:1986-2000
    [25] Jiabin Wang, David Howe, Geraint W Jewell. Fringing in tubular permanent-magnet machines: Part I. Magnetic field distribution, flux linkage, and thrust force, IEEE transactions on magnetics, VOL.39,NO.6, Nov,2003:3507-3516
    [26] Jiabin Wang, David Howe, Geraint W Jewell. Fringing in tubular permanent-magnet machines: Part II. Cogging force and tis minimization, IEEE transactions on magnetics, VOL.39,NO.6, Nov,2003:3517-3522
    [27] Jiabin Wang, David Howe, Geraint W Jewell. Analysis and design optimization of an improved axially magnetized tubular permanent-magnet machine, IEEE transactions on energy conversion, VOL.19,NO.2, Jun,2004:289-295
    [ 28 ] Jiabin Wang, David Howe. Design optimization of radially magnetized, iron-cored, tubular permanent-magnet machines and drive systems , IEEE transactions on magnetics, VOL.40,NO.5, Sep,2004:3262-3277
    [29] W.J. Kim, M.T. Berhan, D.L. Trumper, et. Analysis and implementation of a tubular motor with Halbach magnet array, 31th IAS annual meeting, IAS'96, Industry applications conference 1996, Oct.1996, vol.1:471-478
    [30] Won-jong Kim, Bryan C. Murphy. Development of a novel direct-drive tubular linear brushless permanent-magnet motor, 38th IAS annual meeting, Industry applications conference 2003, Oct.2003, vol.3 :1664-1671
    [31] Seok Myeong Jang, Jang Young Choi, Sung Ho Lee, et. Analysis of the tubular motor with Halbach and radial magnet array, 6th International conference on electrical machines and systems 2003,ICEMS 2003, Nov. 2003, vol.1:250-252
    [32] R.J. Cruise, C.F. Landy. Reduction of cogging forces in linear synchronous motors, IEEE AFRICON 1999, Sep.1999, vol.2:623-626
    [33] AW van Zyl, C.F. Landy. Reduction of cogging forces in a tubular linear synchronous motor by optimizing the secondary design, IEEE AFRICON, 6~(th) Africon conference in Africa 2002, Oct.2002, vol.2:689-692
    [34] Zesheng Deng, I.Boldea, S.A. Nasar. Fields in permanent magnet linear synchronous machines, IEEE transactions on magnetics, VOL.22,NO.2, Mar,1986:107-112
    [35] Z. Deng, I.Boldea, S.A. Nasar. Forces and parameters of permanent magnet linear synchronous machines, IEEE transactions on magnetics, VOL.23,NO.1, Jan,1987:305-309
    [36] Guangyu Xiong, S.A. Nasar. Analysis of fields and forces in a permanent magnet linear synchronous machine based on the concept of magnetic charge, IEEE transactions on magnetics, VOL.25,NO.3, May,1989:2713-2719
    [37] Trumper D.L, Won-jong Kim, Williams M.E. Design and analysis framework for linear permanent magnet machines, IEEE Industry applications society annual meeting 1994, Oct.l994,vol.l:216-223
    [38] David L. Trumper, Won-jong Kim, Mark E. Williams. Design and analysis framework for linear permanent-magnet machines, IEEE transactions on industry applications, VOL.32, NO.2, Mar/Apr. 1996:371-379
    [39] Gyu - Hong Kang, Jung-Pyo Hong, Gyu-Tak Kim. A novel design of an air-core type permanent magnet linear brushless motor by space harmonics field analysis, IEEE transactions on magnetics, VOL.37,NO.5, Sep,2001:3732-3736
    [40] Gyu - Hong Kang, Jung-Pyo Hong, Gyu-Tak Kim. Design and analysis of air core yupe permanent magnet linear brushless motor by using equivalent magnetizing current,
    [41] Seok Myeong Jang, Dae joon You, Sung Ho Lee, et. Design and analysis of three types for permanent magnet linear synchronous machine,6~(th) International conference on electrical machines and systems 2003, Nov.2003, vol.1:31-33
    [42] S.M Jang, W.B Jang, S.C Han, System design of the slotless iron-cored PMLSM for dynamic parameters variation and DC Link, 14~(th) IAS Annual meeting, industry applications conference,2005, Oct.2005:2125-2131
    [43] Seok Myeong Jang, Dae joon You, Won-Bum Jang, et. Dynamic characteristics for position control of permanent magnet linear synchronous motor with control parameters, 8~(th) International conference on electrical machines and systems 2005, Sep.2005,vol.3:27-29
    [44]焦留成,袁世鹰.永磁直线同步电动机等效电路参数计算,中国电机工程学报,2002.3,第22卷,第3期:12-16
    [45]刘豪,上官璇峰,袁世鹰.无槽永磁直线同步电动机的磁场分析,煤矿机电,2006,第6期:36-38
    [46]刘豪,上官璇峰,袁世鹰.无槽永磁直线同步电动机磁场分析,微电机,2007,第40卷,第5期:18-20
    [47]刘豪,上官璇峰,袁世鹰.无槽永磁直线同步电动机的稳态分析,微特电机,2007,第5期:13-15
    [48]汪旭东,袁世鹰,王兆安,付子义.永磁直线同步电动机的二维傅里叶解析,1999.8,第24卷,第4期:411-415
    [49]汪旭东,王兆安,袁世鹰,焦留成,王福忠.基于场路结合的永磁直线同步电机的解析计算,微电机,2001,第34卷,第1期:15-17,56
    [50]汪旭东,袁世鹰,王兆安.直线运动各向异性媒质中的三维电磁场方程及一般定解问题,电工技术学报,2006.6,第21卷,第6期:59-64
    [51]王飞,汪旭东,司纪凯,许孝卓.永磁直线同步电动机非正弦磁场数学模型研究,微电机,2007,第40卷,第5期:1-5
    [52]王淑红,熊光煜.新型筒型永磁动圈式直线电动机气隙磁场解析分析,电工技术学报,2007.5,第22卷,第5期:40-44
    [53]王淑红,熊光煜.永磁直线同步电动机气隙磁场及磁阻力分析,煤炭学报,2006.12,第31卷,第6期:824-828
    [54]郭红,贾正春,詹琼华,马志云.永磁同步直线电机电磁推力的分析,电机与控制学报,2004.3,第8卷,第3期:1-4,89
    [55]郭红,贾正春,詹琼华,马志云.永磁同步直线电机电磁推力的谐波分量,微电机,2003,第36卷,第3期:14-17,23
    [56]郭瑶瑶,刘成颖,王先逵.机床进给系统用永磁直线电机法向吸力的研究,中国机械工程,2007.6,第18卷,第10期:1174-1177
    [57]郭瑶瑶,刘成颖.机床进给系统用永磁直线电机的设计方法,机械设计与制造,2007.2,第2期:1-3
    [58]李庆雷,王先逵,吴丹,刘成颖,石忠东.永磁同步直线电机推力及 垂直力的有限元计算,清华大学学报(自然科学版),2000,第40卷,第5期:20-23
    [59]李庆雷,王先逵,吴丹,刘成颖,石忠东.永磁同步直线电机推力波动分析及改善措施,清华大学学报(自然科学版),2000,第40卷,第5期:33-36
    [60]陈定积,刘泉,王先逵,石忠东,刘成颖,赵彤.永磁同步直线电机空载反电势的分层有限元分析,清华大学学报(自然科学版),2004,第44卷,第2期:212-214,218
    [61]赵彤,王先逵,刘成颖,吴丹,周天丰,林家春.机床进给用永磁同步直线伺服单元的设计与实验研究,中国机械工程,2006.12,第44卷,第2期:2421-2425
    [62]潘开林,傅建中,陈子辰.永磁直线同步电机的磁阻力分析及其最小化研究,中国电机工程学报,2004.4,第24卷,第4期:112-115
    [63]潘开林,傅建中,陈子辰.永磁直线同步电机的磁阻力分析及其优化,浙江大学学报(工学版),2005.10,第39卷,第10期:1627-1632
    [64]徐月同,傅建中,陈子辰.永磁直线同步电机推力波动优化及实验研究,中国电机工程学报,2005.6,第25卷,第12期:122-126
    [65]上官璇峰,柳春生,焦留成.永磁低速直线同步电动机研究,煤矿自动化,2001,第4期:3-6
    [66]张宏伟,焦留成,王新环,王福忠,康润生.永磁直线同步电动机功角控制策略的研究,煤炭学报,2005.8,第30卷,第4期:529-533
    [67]司纪凯,汪旭东,焦留成,袁世鹰.永磁直线同步电机暂态建模及起动过程仿真,煤炭学报,2006.12,第31卷,第6期:819-823
    [68]黄广霞,袁世鹰,汪旭东.基于lnfolytica的永磁直线同步电动机温度场分析,煤炭学报,2007.1,第26卷,第1期:29-31
    [69]王建峰,牛华.永磁直线同步电动机静特性及优化设计,电力学报,2006,第21卷,第4期:432-435
    [70]艾武,张与厚,张颖,陈幼平,金振荣.基于FAHP的永磁直线同步电动机推力波动分析与实验研究,微电机,2007,第40卷,第5期:10-14
    [71]徐月同,傅建中,陈子辰.磨床PMLSM进给单元鲁棒非线性控制器研究,浙江大学学报(工学版),2005.11,第39卷,第11期:1765-1768
    [72]徐月同,傅建中,陈子辰.永磁直线同步电机进给系统H_∞控制策略的研究,浙江大学学报(工学版),2005.6,第39卷,第61期:789-794
    [73]陆华才,徐月同,杨伟民,陈子辰.永磁直线同步电机进给系统模糊PID控制,电工技术学报,2007.4,第22卷,第4期:59-63
    [74]杨伟民,徐月同,陆华才,陈子辰.基于DSP的永磁同步直线电机无位置传感器控制系统,电机与控制应用,2007,34(4):28-32
    [75]余佩琼,陈子辰.基于UKF的永磁直线电机进给系统位置与速度估计,电工技术学报,2007.9,第22卷,第9期:56-61
    [76]余佩琼,陆亿红,王涌,杨伟民,陈子辰.永磁直线同步电动机无位置传感器控制系统的研究,中国电机工程学报,2007.8,第27卷,第24期:53-57
    [77]李庆雷,王先逵.永磁交流同步直线电机位置伺服控制系统设计,中国机械工程,2001.5,第12卷,第5期:577-581
    [78]林家春,李伟,王先逵,赵彤.高精度永磁同步直线伺服系统中的电流测量,清华大学学报(自然科学版),2006,第46卷,第11期:1820-1823
    [79]林家春,李伟,赵彤,王先逵,刘成颖.永磁直线同步电动机推力波动抑制策略,控制理论与应用,2007.6,第24卷,第3期:449-452
    [80]石忠东,陈培正,陈定积,王先逵,刘成颖.高精度数字测速及动态位置检测算法,清华大学学报(自然科学版),2004,第44卷,第8期:1021-1024
    [81]颜菡,王先逵,段广洪,赵彤.H_∞鲁棒控制在精密直线电机位移装置中的应用,清华大学学报(自然科学版),2006,第46卷,第11期:1828-1831
    [82]温照方,陈培正,王先逵.高推力永磁直线同步电动机控制中的电流补偿,2004.3,第24卷,第3期:233-237
    [83]郭庆鼎,李晓慧.直线伺服系统的鲁棒二次最优控制,沈阳工业大学 学报,2007.8,第29卷,第4期:409-417
    [84]郭庆鼎,蓝益鹏.永磁直线伺服电机L_2鲁棒控制的研究,中国电机工程学报,2005.9,第25卷,第18期:146-150
    [85]孙宜标,郭庆鼎,孙艳娜.基于模糊自学习的交流直线伺服系统滑模变结构控制,电工技术学报,2001.2,第16卷,第1期:52-56
    [86]孙宜标,郭庆鼎.基于神经网络给定补偿的交流永磁直线伺服系统滑模控制,电工技术学报,2002.6,第17卷,第3期:21-25,87
    [87]孙宜标,郭庆鼎等.基于神经元补偿的直线伺服系统全程滑模控制,沈阳工业大学学报,2002(24):473-476
    [88]孙宜标,郭庆鼎.基于滑模观测器的直线伺服系统反馈线性化速度跟踪控制,沈阳工业大学学报,2004.6,第21卷,第3期:391-397
    [89]孙宜标,郭庆鼎.基于RBF神经网络补偿的直线伺服系统滑模鲁棒跟踪控制,控制理论与应用,2004.4,第21卷,第2期:252-256
    [90]孙宜标,郭庆鼎等.基于模糊小脑模型神经网络的直线伺服跟踪控制研究,组合机床与自动化加工技术,2005(8):50-51
    [91]孙宜标,王桂宏等.基于迭代学习的直线伺服系统离散变结构控制,组合机床与自动化加工技术,2007(3):37-40
    [92]蓝益鹏,郭庆鼎,孙宜标.永磁直线伺服系统的速度H_∞控制器优化设计,电工技术学报,2004.5,第19卷,第5期:76-80,86
    [93]蓝益鹏,王雷,郭庆鼎.数控机床直线伺服系统智能PI控制的研究,组合机床与自动化加工技术,2007(7):44-49
    [94]赵希梅,郭庆鼎,孙宜标.永磁直线同步伺服电机的零相位二自由度H_∞鲁棒跟踪控制,电工技术学报,2004.10,第19卷,第10期:32-37,
    [95]赵希梅,郭庆鼎.永磁直线同步电动机的变增益零相位H_∞鲁棒跟踪控制,中国电机工程学报,2005.10,第25卷,第20期:132-136
    [96]赵希梅,郭庆鼎.为提高轮廓加工精度采用DOB和ZPETC的直线伺服鲁棒跟踪控制,电工技术学报,2006.6,第21卷,第6期:111-114,124
    [97]孙宜标,杨雪,夏加宽.基于二阶滑模的永磁直线同步电机的鲁棒速度控制,电工技术学报,2007.10,第22卷,第10期:35-41
    [98]夏加宽,王成元,李嗥东,黄伟.高精度数控机床用直线电机端部效应分析及神经网络补偿技术研究,中国电机工程学报,2003.8,第23卷,第8期:100-104
    [99]刘莉莉,夏加宽,姜平.永磁直线同步电机端部效应及其补偿技术,沈阳工业大学学报,2005.6,第27卷,第3期:261-265
    [100]夏加宽,董婷,王贵子.抑制永磁直线电机推力波动的电流补偿控制策略,沈阳工业大学学报,2006.8,第28卷,第4期:379-383,400
    [101]王成元,刘莉莉,夏加宽.基于学习前馈控制的高精度直线伺服系统跟踪控制研究,电工技术学报,2004,1(10):27-31
    [102]ITO Kazumasa,Naka Kouki.Design optimization of,slotless linear synchronous motors with permanent magnets.The Sixth International Symposium on Linear Drive for Industrial Applications,LDIA2007,2007.
    [103]秦世耀,熊光煜,牛华.永磁电机气隙磁场的解析分析.太原理工大学学报,2002,33(2):121-124.
    [104]Z.Q.ZHU,Y.E SHI,D.HOWE,Rotor position sensing in brushless ac motors with self-shielding magnets using linear Hall sensors,Journal of applied physics,2006,99(8):313 1-3
    [105]唐任远.现代永磁电机--理论与设计,北京:机械工业出版社,1997.12
    [106]孙克军,赫苏敏,高玉奎.中小型交流电机绕组制造工艺与试验方法,北京:机械工业出版社,2000.2
    [107]汤蕴缪.电机内的电磁场,北京:科学出版社,1981.12
    [108]章名涛,肖如鸿.电机的电磁场,北京:机械工业出版社,1988.10
    [109]马志云.电机瞬态分析,北京:中国电力出版社,1998.5
    [110]丁志刚,蒋黔麟,陶志鹏.微特直线电机及其控制,杭州:浙江大学出版社,1987.3
    [111]Erwan Simon.Implementation of a speed field oriented control of 3-phase PMSM motor using TMS320F240,TI Application report,1999.9
    [112]鲁捷,焦振宇,孟凡文,徐益清.Protel DXP电路设计基础教程,北京:清华大学出版社,2005.9
    [113]赵亮,侯国锐.单片机C语言编程与实例,北京:人民邮电出版社,2003.9
    [114]潘开林.永磁直线电机的驱动特性理论及推力波动优化设计研究,浙江大学博士学位论文,2003.12
    [115]徐月同.高速精密永磁直线同步电机进给系统及控制技术研究,浙江大学博士学位论文,2004.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700