Tb-Dy-Fe巨磁致伸缩合金在静磁场诱导下的定向凝固
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁致伸缩材料的主要功能是实现电信号和机械信号之间的转换。具有实用价值的巨磁致伸缩材料Tb-Dy-Fe自上世纪70年代问世以来,最先用于军事方面的声纳装置。在上世纪90年代以来,在民用工业领域的用途不断取得拓展,到目前已形成5亿美元以上并在不断增长的市场。
     巨磁致伸缩材料的磁致伸缩性能具有各向异性,对于Tb0.3Dy0.7Fe1.9合金,晶体沿易磁化轴<111>取向可以获得最佳的磁致伸缩性能。但是采用传统的定向凝固技术只能获得<112>和<110>择优取向。运用籽晶技术在提拉法中可以获得<111>取向,但这种方法工艺较复杂,并且成分沿棒的轴向不一致。因而寻找一种有工业价值的方法制备沿轴向<111>取向的Tb0.3Dy0.7Fe1.9合金是有意义的。
     近20来年的研究表明,磁性材料在磁场中凝固可以直接制备沿易磁化轴或难磁化轴取向的晶体。在磁场中取向的机理与传统定向凝固中晶体取向生长的机理完全不同,在传统的定向凝固中,热流沿着单一方向导出,沿着热流方向形核晶粒经竞争生长后在液固界面以最小界面能的晶面不断向液相延伸,界面的过冷因素最终修正定向生长的晶体取向。而在磁场中非定向传热的凝固,形核单晶晶粒的磁能与环境的无序扰动能的对比决定晶体的取向,在液相占主体的固液相中环境的无序扰动因素主要包括热无序效应和熔体的湍流。静磁场的作用在于抑制熔体湍流的同时为形核单晶提供克服熔体粘性和热无序效应的平行于磁场方向的磁能,从而实现晶体在凝固过程的取向。对于有各向异性的磁性材料,抗磁性材料能够获得沿难磁化轴取向的晶体组织,铁磁性材料等则获得沿易磁化轴取向的晶体组织。
     由于设备方面的因素,对于高温和远高于居里点的情况下,磁性材料在凝固中取向的基本条件还缺乏较为定量的研究和认识,因而该技术到目前还未能得到工业化运用。
     我们自制了简易的磁场装置,该磁场装置可以安置在超高温度梯度定向凝固的真空容器中。当熔体以较慢的冷却速率凝固时,磁场装置可以提供140mT的磁场强度。试验采用高频加热。在140mT的静磁场中,在较慢冷却速率的样品中,平行于磁场方向的织构开始出现。对于φ16mm×18mm的Tb0.3Dy0.7Fe1.9合金,当冷却速率为0.8℃/min时,在试样的中部以平行于磁场的<111>取向的晶体组织为主,沿易轴取向的晶体组织约占70%。取向的晶体组织以平行于磁场方向的片状的Laves相为主。晶粒粗大,粗大的晶粒有利于磁致伸缩性能。当磁场为0时,在同样的冷却速率下,晶体组织是非取向的。
     在同为立方Laves相ReFe系的磁致伸缩材料中,室温状态与Tb0.3Dy0.7Fe1.9合金相比,TbFe2和DyFe2具有强的磁晶各向异性。在与Tb0.3Dy0.7Fe1.9合金接近的凝固参数和磁场条件下,TbFe1.9和DyFe1.9合金同样能获得沿易磁化轴取向的晶体,其中TbFe1.9以<111>为取向,DyFe1.9以<100>为取向。Tb0.3Dy0.7Fe1.9和TbFe2合金的磁晶各向异性常数K1为负,DyFe2合金的磁晶各向异性常数K1为正,因而他们的易磁化轴取向不同。但是在我们的试验中,TbFe2和DyFe2并未比室温下磁晶各向异性接近软磁的Tb0.3Dy0.7Fe1.9合金表现出更为优异的顺磁生长特性,可能这与它们在高温下的各向磁化率Δχ的差别减少有关。
     在试验中,对于影响晶体取向的其他因素也进行了初步研究。材料的成分被发现对晶体取向的影响较大,对于RFex合金,当铁含量趋于x≥2时,液固相中将有过量的RFe3相析出,其次,随着铁含量的增加,液固并存的两相区的温度区间大大减少,这样在凝固时随着温度的降低,固相迅速增加、熔体的粘度上升很快因而不利于晶体取向。因此控制好RFex合金的材料成分有利于获得良好的晶体取向。
     在磁场中定向的Tb0.3Dy0.7Fe1.9合金在18.7MPa的压应力和6900Oe的磁场中的磁致伸缩系数可以达到1700ppm,这一数值要高于磁场预取向粉末冶金法制备的产品,低于籽晶法制备的单晶<111>取向的性能。可以预计在实际运用中,随着取向度的增加和晶体质量的改善,用这种技术可以制备更高磁致伸缩系数的Tb0.3Dy0.7Fe1.9合金。
     试验表明,降低熔体的冷却速率,可以大大降低熔体的湍流程度,这意味着慢凝的熔体的湍流可以被较弱的静磁场所抑制。在这里需指出的是熔体的湍流被抑制与熔体内部的运动被抑制是有区别的,前者指湍流向层流转变,熔体内部的运动仍是存在的,熔体内部的运动被抑制需要很强的磁场。湍流被抑制就已经可满足晶体取向所需要的较均匀的温度场的要求。综合这些内容,文中给出了磁场中凝固取向控制的参考模型。许多铁磁性材料由于在高温熔点附近具有相对较高的残余磁晶各向异性,因而在磁场中凝固时应当有着优良的顺磁生长特性。
It is the main function of magnetostrictive materials to achieve electromechanical convertibility. Giant magnetostrictive material Tb-Dy-Fe found in 1970s. One of its earliest applications was as hydroacoustic transducers for military purpose. With the increasing use in civil industry from 1990s, the increasing market is about 5 hundred millions dollar.
     Magnetostrictive properties of magnetostriction materials depend greatly on the grain orientation and microstructure for highly anisotropic magnetostriction. The best magnetostrictive properties can be obtained along the <111>direction of Tb0.3Dy0.7Fe1.9 alloy. However, <112> or <110> is the preferred growth direction in conventional directional solidification technique. The <111> oriented crystal of Tb0.3Dy0.7Fe1.9 alloy can only be grown by seeding technique, but this process is complicated and chemical composition along the axial direction of rod is heterogeneous. It is of significant that searching an industrial method to prepare Tb0.3Dy0.7Fe1.9 with <111> orientation.
     Studies in recent twenty years show that Solidification in a static magnetic field is a novel process, which can produce oriented magnetic materials with either their easy or their hard magnetization axes along the field. There are different orientation mechanism for conventional directional solidification and that in static magnetic field. Heat is transferred along a direction in conventional directional solidification; the crystal faces with minimum interface energy after competitive growth extend continually into liquid along the direction of heat, supercooling factors in interface will modify the direction of crystal growth eventually. In solidification with non-directional heat conduction under a static magnetic field, the rivalry between magnetic energy of single nuclei and disorder disturbance energy in environment will determine the crystal orientation. In a liquid-solid coexisting area with a majority of liquid, disorder disturbance factors include mainly thermal disorder effect and turbulence in melt. Static magnetic field will suppress the turbulence in melt, meanwhile, induce magnetic energy of single nuclei along the field to overcome melt viscosity and thermal disorder effect. Consequently, the orientation of crystals will be achieved during solidification course. For magnetic materials possessing magnetic anisotropy,crystal structure will be oriented along hard-magnetization axes in diamagnetic materials, and crystal orientation along the easy magnetization axes will be obtained in ferromagnetic materials etc..
     Due to absence of experimental equipment, no quantitative researches were done for essential conditions of orientation for magnetic materials solidified at high temperatures far above their Curie point. Therefore there is no industrial application of solidification in a magnetic field to achieve crystal orientation presently.
     We made a simple magnetic apparatus, which can be installed in a vacuum container of a directional solidification equipment with super high temperature gradient. The magnetic field of 140 mT can be maintained while solidification at slow cooling rate. Adaptation of high-frequency was to heat sample in experiment. Textures begin to appear along the field while sample solidified at slow cooling rate in a magnetic field of 140 mT. For Tb0.3Dy0.7Fe1.9 alloy with sizeφ16mm×18mm, the crystal structure with <111> orientation along the field is dominant in middle part of sample while at cooling rate of 0.8℃/min, crystal grains along the easy axes are about of 70% in specimen. Plate-like crystal grains of Laves phase in oriented specimen are along the field, size of crystal grains is coarser, which is beneficial to magentostrictive properties. The orientation of crystal grains are in random while at the same cooing rate in zero magnetic field.
     As a magnetostrictive material of cubic Laves phase in Re-Fe system, the TbFe2 and DyFe2 compounds possess the large magnetocrystalline anisotropy at room temperature. Due to the combination of the TbFe2 compound and DyFe2, the magnetocrystalline anisotropy of Tb0.3Dy0.7Fe1.9 alloy is reduced greatly. Crystal orientation along the easy axis for TbFe1.9 and DyFe1.9 also can be obtained by the similar condition of orientating Tb0.3Dy0.7Fe1.9 alloy. TbFe1.9 alloy is oriented along <111> direction while DyFe1.9 alloy along <100> direction. The TbFe2 compound and Tb0.3Dy0.7Fe1.9 alloy possess the minus magnetocrystalline anisotropy constant K1, and DyFe2 exhibits a large positive K1. Therefore, their directions of easy magnetic axis are along different crystal orientations. However, for those compounds, the great difference in magnetocrystalline anisotropy at room temperature seems to have no notable influence on the texture formation during their solidification course at high temperature respectively. It may be explained by that the values ofΔχ(the anisotropy of the paramagnetic susceptibility of crystal) for TbFe2、DyFe2 and Tb0.3Dy0.7Fe1.9 alloy tend to be close to each other at high temperatures.
     Other factors influencing the crystals orientation are also studied in experiment. The composition is found to affect the crystal orientation during solidification. For RFey alloys, excessive RFe3 phases will precipitate in liquid-solid phase when Fe content tends to y≥2. Furthermore, the temperature interval of liquid-solid phase is greatly reduced, then solid phase increase greatly as well as viscosity of liquid as temperature of melt decreases, which are unfavorable for crystal orientation. It is necessary to control the composition of RFex alloys for a better crystal orientation.
     The magnetostriction of the oriented Tb0.3Dy0.7Fe1.9 alloy along the field reaches 1700ppm under 18.7MPa and 6900 Oe. Such a value is higher than that in the grain-aligned sintered compact prepared by powder metallurgy technique, and lower than that in <111>-oriented single crystal. However, the higher orientation degree of Tb0.3Dy0.7Fe1.9 alloy should be achieved in practical application by slow cooling in a relatively strong magnetic field, the magnetostrictive properties would be enhanced further.
     Experiments show that using a low cooling rate can greatly weaken the disturbance degree inside melt, and a weak disturbance can be restrained in a relatively weak magnetic field. It necessary to make clear that there are differences for suppressed turbulence and restrained motion in melt. The former means that laminar flow replaces turbulence but the motion in melt still exists. Restraining the motion requires very strong magnetic field. The even temperature field can be fit for crystal orientation by suppressing turbulence in melt. Summarizing those investigation and application, a model of controlling crystal orientation by solidification in magnetic field is proposed. Many ferromagnetic materials may be readily oriented during solidification course in field due to their relatively large residual |Δχ| at high temperatures near melting point.
引文
[1]钟文定,铁磁学,中册,科学出版社,1987,p21
    [2] Clark A.E, Belson. H.S, Magnetostriction of Tb-Fe and Tb-Co Compounds, AIP Conf.Proc.1972,5;1498
    [3]Clark A.E., Ferromagnetic Materials, Vol 1. Wohlfarth E P, North-Holland Publishing Company, Amsterdam, 1980, p531
    [4]Becky Jones and Chen Liang, Magnetostriction: Revealing the unknown, IEEE AES systems Magazine, 1996, March: 3-6
    [5]Koon N.C, Williams C.M and Das B.N., Giant magnetostiction mateials, J.Magn. Magn.Mater., 1991, 100:173-185
    [6]Clark A.E and Savage H.T., Magnetostriction of rare earth-Fe2 compounds under compressive stress, J.Magn.Magn.Mater.,1983,31-34: 849-851
    [7]Vethoeven J.D,Gibson E.D,McMasters O.D and Baker H.H.,The growth of single crystal Tefenol-D crystals,Metallugical Transaction A,1987,18A: 223-231
    [8]Bi Y.J and Abell J.S., Microstuctural characterization of Terfenol-D crystals prepared by the Czochralski technique,J.Crystal Growth, 1997, 172:440-449
    [9] Jiang Chengbao, Zhou Shouzeng, Xu Huibin, et al., Investigation on the formation of the peferred orientations in a TbDyFe alloy with directional solidification, Materials Science and Engineering B58(1999):191-194
    [10]Mikelson A E,Karklin Y K. Control of crystallization process by means of magnetic fields. J Crystal Growth,1981,52(1-4):524-529.
    [11] De Rango P, Lees M, Lejay P, et al. Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature, 1991, 349:770.
    [12] Legrand BA, Chateigner D, Perrier Dela Bathie R,et al. Oirentation by solidification in a magnetic dield:A new process to texture SmCo compounds used as permanent magnets. J.Magn.Magn.Mater,1997,173: 20.
    [13] Utech HP, Flemings MC. Elimination of solute banding in Indium Antimonide crystals by growth in a magnetic field. J.Appl.phys 1966;37:2021.
    [14] Kim KM, Langlois WE.Computer simulation of Boron transport in magnetic Czochralski growth of silicon. J.Electrochem.soc 1986;133:2586.
    [15] 张伟强. 金属电磁凝固原理与技术.冶金工业出版社,2004,p1-18.
    [1]R.C. 奥汉德利著,周永洽等译,现代磁性材料原理和运用,化学工业出版社,p13
    [2]田民波,磁性材料,清华大学出版社,2001,p11
    [3]R.S.特贝尔,D.J.克雷克著,北京冶金研究所《磁性材料》翻译组译,科学出版社,1979,p9
    [4]周寿增,董清飞,超强永磁体——稀土铁系永磁材料,冶金工业出版社,2004,p31
    [5] Legrand BA, Chateigner D,Perrier Dela Bathie R,et al. Oirentation by solidification in a magnetic dield:A new process to texture SmCo compounds used as permanent magnets. J.Magn.Magn.Mater,1997,173: 20.
    [6] R.C. 奥汉德利著,周永洽等译,现代磁性材料原理和运用,化学工业出版社,2002,p190
    [7]姜寿亭,铁磁性理论,科学出版社,1993,P462
    [8]姜寿亭,李卫,凝聚态磁性物理,科学出版社,2003,p216
    [9]龙毅,张正义,李守卫,新功能磁性材料及其应用,机械工业出版社,1997,p193
    [10]杨大智,智能材料与智能系统,天津大学出版社,2000,p284-348
    [11]王博文,超磁致伸缩材料制备与器件设计,冶金工业出版社,2003,p5
    [12] Won-Je Parka, Dae-Rak Sonb, Zin-Hyoung Lee, Modeling of magnetostriction in grain aligned Terfenol-D and preferred orientation change of Terfenol-D dendrites,J.Magn.Magn.Mate.,2002,248:223-229
    [13] Xunyong Jiang, Huibin Xu, Chengbao Jiang,et al.The influence of stress and heat treatment on the magnetization of TbDyFe films, Journal of Alloys and Compounds,2000,311:86-89
    [14] Jones D.G.R, Fairclough J.P, Abell J.S, et al., Powder metallurgical processing of Tb0.27Dy0.73Fe2-x(0    [15] Sato K, Isikawa. Y, Mori K, Clark A.E, et al., The reorientation of the magnetic moment for Laves phase compound Tb0.27Dy0.73Fe2 ,J.Magn.Magn.Mater.,1986, 54-57:875-876
    [16] Savage H.T and Abbundi R, Perpendicular susceptibility, magnetomechanical coupling and shear modulus in Tb0.27Dy0.73Fe2 , IEEE Trans. Magn., 1978, 14(5): 545-547
    [17]Legvold S,Alstad J, and Rhyne J., Giant magnetostriction in dysprosium and holmium single crystals, Phys.Rev.Lett., 1963, 10:509-511
    [18]Clark A.E, Bozorth R.M, and Desavage B.F., Anomalous thermal expansion and magnetostriction of single crystals of dysprosium, Physics Lett., 1963,5(2):100-102
    [19] Clark A.E, Desavage B, Coleman W, et al., Saturation magnetostriction of single-crystal YIG.,J.Appl.Phys.,1963b,34(4):1296-1297
    [20] Rhyne J.J and Legvold S., Magnetostriction of Tb single crystal, Phys. Rew.A,1965,138:507-514
    [21] Clark A.E, Belson H.S, Giant room-temperature magnetostrictioon in TbFe2 and DyFe2, Phys. Rev. B,1972,5(9):3641-3644
    [22] Proceeding of the sixth international conference on magnetic fluids, 20-24.July.1992,Paries,France.J J.Magn.Magn.Mater.,1993,122(1-3)
    [23] Clark A.E., and Belson H.S., AIP conf. Proc., 1973, 10:749-753
    [24] Clark A.E., Magnetostrictive rare earth-Fe2 compound.In:wohlfarth E P, EDS. Ferromagnetic Materials, Vol.I. Amsterdam:North-Holland Publishing Company,1980,531-567.
    [25] Clark A.E., Proc. 19th. Conf. on Magn and Magn.Materials, Aip conf. Proc.No.1974,18:1015-1029
    [26]Peterson D T, Verhoeven J D, Mcmasters O D et al. Strength of Terfenol-D. J.Appl.Phys, 1989, 65(9) :3712-3713
    [27] Wu C.H, Jin X.M, Ge W.Q, et al., Magnetostriction and anisotropy compensation composition of Dy0.9-xTbxPr0.1Fe1.85, Dy1-xTbx(Fe0.9Mn0.1)1.8 and Dy0.9-xTbxP0.1 (Fe0.9Mn0.1)1.8alloys, J.Magn.Magn.Mater., 1996, 163:360-364
    [28] Clark A.E, Teter J.P, Wun-Fogle M, et al., Magnetic poperties of RZn with R=Tb1-xDyx(0 ≤ x ≤ 0.6)and R=Tb1-yGdy(0 ≤ y ≤ 0.4), IEEE Trans.Magn., 1995, 31(6):4032-4034
    [29]Mei Wu, Okane T, and Umeda T.,Phase diagram and inhomogeneity of (TbDy)-Fe(T) (T=Mn,Co,Al,Ti) systems, J.Alloys and Compounds, 1997, 248: 132-138
    [30] Fujimori H, Kim J.Y, Suzuki S, etc., Huge magnetostriction of amorphous bulk(Sm,Tb)Fe2-B with low exciting fields, J.Magn.Magn.Mater., 1993, 124:115-118
    [31] Clark A.E, Teter J.P and McMasters O.D., Magnetostrictive properties of Tb0.3Dy0.7(Fe1-xCox)1.9 and Tb0.3Dy0.7(Fe1-xNix)1.9, IEEE Trans.Magn.,1987, MAG-23(5):3526-3528
    [32] Sahashi M, Kobayashi T, and Funayama T., The 10th Workshop on Rare-earth Magnets and Their Applications, Kyoto, 1989, 347-356
    [33] Funayama T,Kobayashi T, Sakai L,et al., Mn substitution effect on magnetostrict ion temperature dependence in Tb0.3Dy0.7Fe2, Appl. Phys. Lett., 1992, 61(1):114-115
    [34] Clark A.E, Teter J.P, and Wun-Fogle M., Anisotropy compensation and magnetostriction in TbxDy1-x(Fe1-yTy)1.9(T=Co,Mn)J.Appl.Phys., 1991, 69(8): 5771-5773
    [35] Teter J.P, Clark A.E, Wun-Fogle M, etc., Magnetostriction and hysteresis for Mnsubstitutions in(TbxDy1-x)(MnyFe1-y)1.95, IEEE Trans.Magn.,1990,26(5): 1748-1750
    [36] Hui-qun Guo, Hong-ying Yang, Bao-gen Shen, et al., Structure, magnetic and magnetostrictive studies of Tb0.27Dy0.73(Fe1-xAlx)2, J.Alloys and Compounds, 1993, 190: 255-258
    [37] Guo Zhijun, Zhang Zhidong, Zhao Xingguo, Wang Bowengeng Dianyu,Phase ransformation and magnetostriction of (R-Pr)(Fe-T)(R=Dy,Tb;T=Co,Ni), J.Mater.Sci.Tech., 2000,16(2):172-174
    [38] Wang Bowen.Liu Weili, Jin Guang,Bi Jianzhi,Structure and magnetostriction of (Dy0.Tb0.3)0.5 Pr0.5Fex alloys(1.10≤x≤1.85),J.Mater.Sci.Tech.,2000,16(2):177-178
    [39] Li Yuanxian, Xu Gguizhi, Qu jingping, Synthesis and magneyostriction of(CexTb1-x)Pr0.5Fe2 compounds, J.Mater.Sci.Tech.,2000,16(2):179-180
    [40] Webster P.J,Magnetic order and phase transformation in Ni2MnGa,Phil. Mag .B,1984,49(3):295-310
    [41] Ullakko k,Magnetically controlled shape memory effect in NiMnGa intermetallics,scripta metal,1997,36(10):1133-1138
    [42] Mnrray S .J., 6% Magnetic-field-induced strain by twin boundary motion in Ferromagnetic Ni-Mn-Ga, Appl Phys Lett,2000,77(6):886-888
    [43] Ezeray,Sozinov A,,Kimmel G,Magnetic shape memory (msn) effect in textured polycrystalline NiMnGa, Proc SPIE The international society for optical engineering,1999,3675:244-751
    [44] Clark A E, Wun-Fogle M, Restorff J B, Lograsso,T. A, Magnetostrictive properties of galfenol alloys under compressive stress, Mater.Trans.,2002,43(5):881-886
    [45] Guruswamy.S, Srisukhumbowornchai.N.,Clark A.E, Restorff J B, Wun-Fogle M, Strong, ductile, and low-field-magnetostrictive alloys based on Fe-Ga., Scripta Mater.,2000,43:239-244
    [46] Farber P., KronmuKller H., Crystallization behaviour and magnetic properties of highly magnetostrictive Fe-Tb-Dy thin films, J.Magn.Magn.Mater., 2000,214: 159-166
    [47] Quandt E, Geriach B, and Seemann K., Preparation and application of magnetostrictive thin films, J.Appl. Phys.,1994,76(10):7000-7002
    [48] Lim S H, Choi Y S, Han S H,Kim H J, Shima T, Fujimori H.Magnetostriction of Sm-Fe and Sm-Fe-B thin films fabricated by RF magnetron sputtering, J.Appl. Phys.,1994,76:7024-7026
    [49] Miyazaki T, Satio T, Fujino Y. magnetostrictive propertise of sputtered binary Tb-Fe and pseudo-binary (Tb-Dy)-Fe alloy films. J.Magn.Magn.Mater.,1997,171:320-324
    [50] 江田弘,常温超磁歪材料开发,精密工学会志,1991,57(3):47-54
    [51] Goran Engdahl, Handbook of Giant Magnetostrictive Materials. SanDiego : Academic Press;2000,
    [52] Klaus lenz, Present state of the art in new actuator technologies ,Proc. Inter. Symp.ongiant magnetostrictive materials and their application,1992:69-72
    [53] Zhu Houqing, Liu Jianguo, Wang Xiurong, et al., Applications of Terfenol-D in China, J.Alloys and Compounds, 1997,258:49-52
    [54] B.W. Wang, S.C. Busbridge, Y.X. Li etc., Magnetostriction and magnetization process of Tb0.27Dy0.73Fe2 single crystal, Journal of Magnetism and Magnetic Materials, 2000, 218: 198-202
    [55] Savage H.T., Clark; A.E., McMasters O.D., Rare earth-iron magnetostrictive materials and devices using these materials, US patent 4308474. 1981
    [56] Clark A.E., Savage; HT., Variable delay line, USP 3949351, 1976
    [57] Clark A.E., Belson, Heny S., Conversion between magnetic energy and mechanical energy, USP4378258, 1983
    [58] Koon N.C., Schindler; Albert I., Use of cubic rare earth-iron laves phase intermetallic compounds as magnetostrictive transducer materials, USP 4375372, 1983
    [59] Larson L.G., Past, present and future prospects of Terfenol-D, ICGMM196, Nov.6-8,1996 Honolulu, Hawaii, U.S.A.
    [60] Fahlander M, and Richardson M., Proc, of 10th Int. Workshop on RE Magnets and their Applications, Kyoto, Japan, 16-19, May, 1989. Part 1, 1989:289-302
    [61] Eda H, Oyatsu M, Nadmi A, etal., The 10th Workshop on Rare-earth Magnets and Their Applications, Kyoto,1989,285-302
    [62] 贾宇辉,谭久彬,超磁致伸缩材料微位移驱动系统的研究,仪器仪表学报,2000(2):38-41
    [63] 欧阳光耀,施引,磁致伸缩材料及其作动器设计,海军工程学院学报,1998(1):44-48
    [64] Steven A., Magnetostrictive actuators, Mechanical Engineering(American), 1998, 120(6): 68-70
    [65] Goran E,Handbook of giant magnetostrictive materials,Sa Diego:Academic Press, 2000
    [66] 施纪泽,施昭云,磁致伸缩形变传感器,磁性材料及设计,1996(4):25-27
    [67] Binary alloy phase diagrams, V2, ed. Thaddeus B.Massalski, 1986, 1113
    [68] Thaddeus Massalski B, Binary alloy phase diagrams,New York:American society for metals,1990
    [69] Westwood P, Abell J S, Phase relationships in the Tb-Dy-Fe ternary system,J.Appl.Phys.,1990,67(9):4998-5000.
    [70] Landing S, Agren J, Calculation of Tb-Dy-Fe ternary system, J.Alloys Compd 1994;207:449-453
    [71] Verhoeven J.D, Gibson E.D, McMasters O.D et al., The growth of single crystal Terfenol-D crystals, Metallurgical Transaction A, 1987, 18A:223-231
    [72] Verhoeven J.D, Bevolo A.J, Peterson D.T, et al., Hydride formation on polishing rare earth alloys and reflected electron loss maps, Metallography, 1985, 18: 277-290
    [73] Westwood P,Abell J.S, Clark A.E, et al., Microstructure and magnetostriction in rare earth-iron alloys,J.Appl.Phys., 1988,64(10):5414-5417
    [74] Abell J.S and Lord D.G., Microstructural studies of ternary rare earth iron alloys, JLess-Common Met., 1986, 126:107-112
    [75] Westwood P, Abell J.S, and Pitman K.C, Microstructural characterization of ternary rare earth-iron alloys, IEEE. Trans. Magn., 1988,24(2):1873-1875
    [76] Cullen J.R, and Clark A.E, Magnetostriction and structural distortion in rare-earth intermetallics, Phys. Rew., 1977,B15(9):4510-4515
    [77] Clark A.E, Cullen J.R.,McMasters O.D,et al., AIP Conf.Proc., 1976, 29:192-193
    [78] Savage H.T, Abbundi R, Clark A.E, et al., Permeability, magnetomechanical couplingand magnetostriction in grain-oriented rare earth-iron alloys, J.Appl. Phys., 1979, 50(3):1674-1676
    [79] Verhoeven J.D, Gibson E.D, McMasters O.D et al., The growth of single crystal Terfenol-D crystals, Metallurgical Transaction A, 1987, 18A:223-231
    [80] Clark A.E, Verhoeven J.D, McMasters O.D, et al., Magnetostriction in twinned crystals of Tb0.27Dy0.73Fe2. IEEE Trans. Magn., 1986, 22(5): 973-975
    [81] McMasters O.D,Holland G.E, and Gschneider K.A.Jr., Single cystal growth by the horizontal levitation zone melting method, J.Cryst.Growth,1978,43:577-583
    [82] 张克从,张乐惠,晶体生长科学与技术,北京:科学出版社,1997
    [83] Versnyder F.L, Barlow R.B, Sink L.W, et al., Directional solidification in the precision casting of gas-turbine parts, Modern Casting,1967,52(6):68-75
    [84]Higginbotham G J S, From research to cost-effective directional solidification and single-crystal production-an intergrated approach, Mater. Sci.Technol., 1986,2:442-459
    [85] Giamei A.F and Erickson J.S., Computer application in directional processing. Superalloys: Metallurgy and Manufacture. Eds Kear B.H et al, proc.3rd.Intern. Symp.Seven springs,U.S.A.1976,405-424
    [86] 周尧和,胡壮麟,介万其,凝固技术,机械工业出版社,1998, p155-214
    [87]李建国,毛协民,傅恒志,Al-Cu 合金高梯度定向凝固过程的形态转变,材料科学进展,1991,5(6):461-466
    [88] Kiminami C. S., Axmann .W., Sahm .P.R., Solidification of a supercooled Pd77.5Cu6Si16.5 buck sample, J.Mater.Sci.Lett.,1989,8:201-203
    [89] Lux .B, Haour .G, Mollard .F., Dynamic undercooling of superalloys, Metal,1981,35(12):1235-1239
    [90] Stansscu. J., Sahm .P .R, Ludwig .A., Autonomous directional solidification for single crystal turbine blade, 40th Annul technical meeting:investment Casting institute,1992,las vegas,29:4-13
    [91] Ludwig .A.,Wagner .I, Laakmann.J Etal, Undercooling of superalloy melts: basis of a new manufacturing technique for single-crystal turbine blades, Mat. Sci.Eng.A,1994,178(1-2):299-303
    [92] Clark A.E, Teter J.P and McMasters O.D., Magnetostrictive properties of Tb0.3Dy0.7(Fe1-xCox)1.9 and Tb0.3Dy0.7(Fe1-xNix)1.9, IEEE Trans.Magn.,1987, MAG-23(5):3526-3528
    [93] McMasters O.D, Verhoeven J.D, and Gibson E.D., Preparation of Terfeno1-D by float zone solidification, J.Magn.Magn.Mater.,1986, 54-57:849-850
    [94] Wang B.W, Tang L.S,Jin X.M, et al., Microstructure and magnetostriction of(Dy0.7Tb0.3)1-xPrxFe1.85and(Dy0.7Tb0.3)0.7Pr0.3Feyalloys,Appl.Phys.Lett.,1996, 69(22): 3429 -3431
    [95] Savage H.T, Abbundi R, Clark A.E, et al., Magnetomechanical coupling and magnetostriction in vertically zoned Tb0.27Dy0.73) Fe2, J.Magn. Magn. Mate., 1980, 15-18: 609-910
    [96] Wu Lei, Zhan Wenshan,and Chen Xi chen, Microsegregation phemomenon in Terfenol-D rods grown by electron beam zoning method, J. Alloys and Compounds, 1997,255:262-265.
    [97] McMasters O.D., Performance characteristics of Terfenol-D magnetostrictive materials and transducers, Proc. Inter. Symp. on giant magnetostrictive materials and their applications.1992,21-25
    [98] Koon N.C Schindler A.L, Williams C.M, et al., Magnetostritive properties of HoxTb1-xFe2 intermetallic compounds, J.Appl.Phys., 1974, 45(12):5389-5391
    [99] Teter J.P, Clark A.E, and McMasters O.D., Anisotropic magnetostriction in Tb0.27Dy0.73Fe1.95 , J.Appl. Phys., 1987, 61(8):3787-3789
    [100] Lord D.G, Elliott V,Clark A.E, et al., Optical observation of closure domains in Terfenol-D single crystals, IEEE Trans.Magn., 1988,24(2):1716-1718
    [101] Williams C.M, Koon N.C, and Das B.N., Torque measurements on single crystal DyxTB1-xFe2 compounds,J.Magn.Magn.Mater., 1980,15-18:553-554
    [102] Clark A.E., Proc.19th.Conf. on Magn and Magn.Materials, Aip conf. Proc. No. 1974,18:1015-1029
    [103] Milstein J.B,Koon N.C,Johnson L.R.,et al.,The growth of single crystals of cubic Laves phase compounds in the Ho-Tb-Fe system, Mate. Res. Bull., 1974, 9: 1617-1622
    [104] 杨森,黄卫东,林鑫,周尧和,定向凝固技术的研究新进展,兵器材料科学与工程,2000,23(2):44-50
    [105] Mei Wu, Okane T, Umeda T., et al, Directional solidification of Tb-Dy-Fe magnetostrictive alloy, J.Alloys and Compounds, 1997, 248:151-158
    [106] Shi Zhengxing, Chen Zhongmin, Wang Xianhui, et al., Directionally solidified TbxDy1-x(MyFe1-y)1.9 giant magnetostrictive materials and their applications in transducer,J.Alloys and Compounds, 1997, 258:30-33
    [107] Jiang Chengbao, Zhou Shouzeng, Xu Huibin, et al., Investigation on the formation of the peferred orientations in a TbDyFe alloy with directional solidification,Materials Science and Engineering B58(1999):191-194
    [108] Ji Chengchang, Li Jianguo, Ma Weizeng, Preparation of Terfenol with precise <110> orientation and observation of the oriented growth crystal morphlogy. J.AlloysCompd., 2002,33:291-295
    [109] Olivier Bonino, Patricia De Rango, and Robert Tournier.<110>Diectional growth of polycrystalline magnetostrictive TbxDy1-xFey compounds by casting in a stong unidirectional gradient. J.Magn.Magn.Mater.,2000,212:225-230
    [110] Verhoeven J.D, Gibson E.D, McMasters O.D, Directional solidification and heat treatment of Terfenol-D magnetostrictive materials, Metallurgical Transactions A, 1990, 21A:2249-2255
    [111] Jile.D.C, The development of highly magnetostrictive rare earth-iron alloys,J.Phys.D:Appl.Phys.,1994,27:1-11
    [112] Clark A.E, Verhoeven J.D, McMasters O.D, et al., Magnetostriction in twinned
    [112] crystals of Tb0.27Dy0.73Fe2 IEEE Trans. Magn., 1986, 22(5): 973-975
    [113] Rutter J.W and Charmers B., A prismatic substructure formed during solidification of metals, Can.J.Phys.,1953,31:15-39
    [114] Tiller W.A, Jackson K.A,Rutter J.W, et al., The redistribution of solute atoms during the solidification of metals, Acta. Metall., 1953,1:428-437
    [115] Mullins W.W and Sekerka R.F., Stability of a planar interface during solidification of a dilute binary alloy,J.Appl. Phys.,1964,35(2):444-451
    [116] Mullins W.W and Sekerka R,F., Morphological stability of a particle growing by diffusion or heat flow,J.Appl. Phys.,1963,34(2):323-329
    [117] Mei Wu ,Toshimitsu Okane,Takateru Umeda, Directional solidification of Tb-Dy-Fe magnetostrictive alloy, J.Alloys and Compounds,,248(1997)151-158
    [118] 李建国,凝固新型材料,西北工业大学,1995,p72,
    [119] Zhao Xuegen, Wu Guangheng, Wang Jinghua, et al., Stress dependence of magnetostriction and strains in <111>-oriented single crystals of Terfenol-D,J.Appl. Phys., 1996, 79(8):6225-6227
    [120] Wu Guangheng, Zhao Xuegen, Wang Jinghua,etal.,<111>oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible,Appl.Phys.Lett.,1995,67(14):2005-2007
    [121] Mei W,.Yoshizumi M,.Okane T, et al. Crystal growth of giant magnetostrictive Tb-Dy-Fe alloy. J.Alloys Compd.,1997,258:34-38
    [122] Jing-lan Chen, Shu-xia Gao, Wen-hong Wang, et al., Single crystal of Tb0.3Dy0.7Fe2 grown by Czochralski method with cold crucible, J.Crystal Growth, 2002, 236: 305-310
    [123]徐光宪,稀土,下册。冶金工业出版社,1995,p92
    [124] Clark A.E and Savage H.T., Magnetostriction of rare earth-Fe2 compounds under compressive stress, J.Magn.Magn.Mater.,1983, 31-34: 849-851
    [125] Zhao Xuegen, Wu Guangheng, Wang Jinghua, et al., Stress dependence of magnetostriction and strains in <111>-oriented single crystals of Terfenol-D,J.Appl. Phys., 1996, 79(8):6225-6227
    [126] 应启明,罗梓贤,李东培等,稀土大磁致伸缩材料研究,稀土,1999,20(1):72-74
    [127] Mei Wu, Umeda Taketeru, Zhou Shouzeng, et al., Magnetostriction of grain-aligned Tb0.3Dy0.7Fe1.95, J. Alloys and Compounds, 1995, 224:76-80
    [128] Croat J.J., Liquid phase sintering of rare earth-iron(Dy0.7Tb0.3Fe2) magnetostrictive materials,J. Appl. Phys., 1978,49(3):1972-1977
    [129] Malekzadeh M and Pickus M.R., Magnetostrictive properties of rare earth-iron Laves phase materials prepared by powder metallurgy techniques, IEEE Trans. Magn.,1980,MAG-16(3)5:536-540
    [130] Jones D.G.R, Abell J.S, and Harris I.R., Powder metallurgical processing of Tb0.27Dy0.73Fe2-x (0    [131] Mei W, Umeda T,.Zhou S, Preparation and magnetostriction of Tb-Dy-Fe sintered ompacts , J Magn.Magn.Mater , 1997,174:100-108
    [132]江丽萍,赵增祺,吴双霞等,粘结稀土磁致伸缩材料的制备工艺研究,稀土,2005,26(4):30-32
    [133] Verhoeven J.D, Ostenson J.E, Gibson E.D, et al., The effect of composition and magnetic heat treatment on the magnetostriction of TbxDy1-xFey twinned single crystals, J.Appl.Phys., 1989,66(2):772-779
    [134] 沙玉辉,江丽萍,赵增祺等,真空磁场热处理对 Tb0.3DyFe1.95 的磁致伸伸缩性能的影响,真空,2004,41(6):12-14
    [135] 赵容斌,周红光,陈世朴等,磁场热处理后多晶 Ni2MnGa 铁磁形状记忆合金组织的变化,理化检验-物理分册,2003,39(4):171-178
    [136] 褚卫国,费维栋,杨德庄,高温磁场热处理 AlNiCo8 永磁合金组织粗化过程的稳定性分叉,金属学报,1999,35(12):1252-1257
    [137] Molodov.D.A.,Gottstein.g.,Heringhans.Fetal, Motion of planar grain boundaries in bismuthbicrystals driven by a magenetic field, Scripta Mater.,1997(37):1207-1213
    [138] Molodov.D.A.,Sheikh-Ali,Effect of magnetic field on texture evolution in titanium,Acta.Mater.,2004(52):4377-4383
    [139] 王晖,任忠鸣,邓康,徐匡迪. 磁场对 Bi-Mn 合金两相区 MnBi 相定向排列的影响[J].中国有色金属学报,2002,12(3):556-560.
    [140] Mikelson A E,Karklin Y K. Control of crystallization process by means of magnetic fields. J Crystal Growth,1981,52(1-4):524-529.
    [141] De Rango P, Lees M, Lejay P, et al. Texturing of magnetic materials at hightemperature by solidification in a magnetic field. Nature, 1991, 349:770.
    [142] 张伟强. 金属电磁凝固原理与技术.冶金工业出版社,2004,p1-10.
    [143] Minggawa H, K Kamada , T Konishi, et al .Unidirectional solidification of TbFe2 alloy using magnetic field in microgravity.J. Magn .Mag. Mater, 2001,234:437-442.
    [144] Minggawa H, Kamada K, Nagai H, et al. Synthesis of Tb0.3 Dy0.7Fe1.9 magnetostrictive alloy by unidirection solidification in a magnetic field and microgravity. J.Magn.Magn.Mater, 2002, 248:230-235
    [1] 刘光华,稀土材料与应用技术,北京:化学工业出版社,2005,P20-36
    [2] Legrand BA, Chateigner D, Perrier Dela, Bathie R, et al. Oirentation by solidification in a magnetic field: A new process to texture SmCo compounds used as permanent magnets. J.Magn.Magn.Mater, 1997, 173: 20.
    [3] 戴琳,侯文,徐熙文,电磁学及其应用,北京:中国电力出版社,1998,p91-103
    [4] 赵凯华,陈熙谋,电磁学,北京:高等教育出版社,2003,p207-294
    [5] 徐游,电磁学,北京: 科学出版社,2004,p260-299
    [1] Cullen J.R, and Clark A.E, Magnetostriction and structural distortion in rare-earth intermetallics, Phys. Rew., 1977,B15(9):4510-4515
    [2] Teter J.P, Clark A.E, and McMasters O.D., Anisotropic magnetostriction in Tb0.27Dy0.73Fe1.95 , J.Appl. Phys., 1987, 61(8):3787-3789
    [3] McMasters O.D,Holland G.E, and Gschneider K.A.Jr., Single cystal growth by the horizontal levitation zone melting method, J.Cryst.Growth,1978,43:577-583
    [4] McMasters O.D, Verhoeven J.D, and Gibson E.D., Preparation of Terfeno1-D by float zone solidification, J.Magn.Magn.Mater.,1986, 54-57:849-850
    [5] Shi Zhengxing, Chen Zhongmin, Wang Xianhui, et al., Directionally solidified TbxDy1-x(MyFe1-y)1.9 giant magnetostrictive materials and their applications in transducer,J.Alloys and Compounds, 1997, 258:30-33
    [6] Jiang Chengbao, Zhou Shouzeng, Xu Huibin, et al., Investigation on the formation of the peferred orientations in a TbDyFe alloy with directional solidification,Materials Science and Engineering B58(1999):191-194
    [7] Ji Chengchang, Li Jianguo, Ma Weizeng, Preparation of Terfenol with precise <110> orientation and observation of the oriented growth crystal morphlogy. J.Alloys Compd., 2002,33:291-295
    [8] Wu Guangheng, Zhao Xuegen, Wang Jinghua,et al.,<111>oriented and twin-freesingle crystals of Terfenol-D grown by Czochralski method with cold crucible,Appl.Phys.Lett.,1995,67(14):2005-2007
    [9] Mei W.,Yoshizumi M., Okane T, et al. Crystal growth of giant magnetostrictive Tb-Dy-Fe alloy, J.Alloys Compd.,1997,258:34-38
    [10] Mikelson A E, Karklin Y K. Control of crystallization process by means of magnetic fields. J Crystal Growth,1981,52(1-4):524-529.
    [11] De Rango P, Lees M, Lejay P, et al. Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature, 1991, 349:770.
    [12] Legrand BA, Chateigner D,Perrier Dela Bathie R, et al. Oirentation by solidification in a magnetic field: A new process to texture SmCo compounds used as permanent magnets. J.Magn.Magn.Mater,1997,173: 20.
    [13] 王晖,任忠鸣,邓康,徐匡迪. 磁场对 Bi-Mn 合金两相区 MnBi 相定向排列的影响.中国有色金属学报,2002,12(3):556-560.
    [14] Minggawa H, Kamada K, Nagai H, et al. Synthesis of Tb0.3 Dy0.7Fe1.9 magnetostrictive alloy by unidirection solidification in a magnetic field and microgravity. J.Magn.Magn.Mater, 2002, 248:230-235
    [15] Salam K., Selvamanickam V., Gao L., Et Al, High current density in bulk yba2cu3ox superconductor, Appl.Phys.Lett.,1989,54(23):2252-2254.
    [16] Bi Y.J, Abell J.S, Microstructural characterization of Terfenol-D crystals prepared by the Czochralski technique, J.Crystal Growth ,1997,172, 440-449.
    [17]Verhoeven J.D, Gibson E.D, McMasters O.D, Directional solidification and heat treatment of Terfenol-D magnetostrictive materials, Metallurgical Transactions A, 1990, 21A:2249-2255
    [18] Verhoeven J.D, Gibson E.D, McMasters O.D,The growth of single crystal Terfenol-D , Metallurgical Transactions A,1987,18A:223-231
    [19]周寿增,董清飞,超强永磁体——稀土铁系永磁材料,冶金工业出版社,2004,
    [20]唱鹤鸣,感应炉熔炼与特种铸造技术,冶金工业出版社,2002,p1-18
    [21]Engdahl G, Handbook of Giant Magnetostrictive Materials. SanDiego. Academic Press,2000, p211.
    [22] Quan Yang, Zheng Zhang, Numerical Simulation in Casting and Solidification Process for Metal. HangZhou,China :Zhejiang University Publisher; 1996, p309.
    [23] Clark A.E. and Savage H.T., Magnetostriction of rare earth-Fe2 compounds under compressive stress, J.Magn.Magn.Mater.,1983, 31-34: 849-851
    [24] Clark A.E., Spano M.L, and Savage H.T., Effect of stress on the magnetostriction and magnetization of rare earth-Fe1.95 alloys, IEEE. Trans. Magn., 1983, 19(5): 1964-1966
    [25] Savage H.T., Clark A.E., Lord D.L, et al., Topography, domain structure, andmagnetostriction measurements on Tb0.5Dy0.5Fe2 under stress, J.Appl. Phys., 1985,57(1):3747
    [1] R.C. 奥汉德利著,周永洽等译,现代磁性材料原理和运用,化学工业出版社,2002,p190
    [2] Jile DC, The development of highly magnetostrictive rare earth-iron alloys, J.Phys.D:Appl.Phys.,1994, 27:1-11
    [3] Clark A.E., and Belson H.S., AIP conf. Proc., 1973, 10:749-753
    [4] Clark A.E., Magnetostrictive rare earth-Fe2 compound.In:wohlfarth E P, EDS. Ferromagnetic Materials, Vol.I. Amsterdam:North-Holland Publishing Company,1980,531-567.
    [5] Clark A.E., Proc. 19th. Conf. on Magn and Magn.Materials, Aip conf. Proc.No.1974,18:1015-1029
    [6] Legrand BA, Chateigner D,Perrier Dela Bathie R,et al. Oirentation by solidification in a magnetic dield:A new process to texture SmCo compounds used as permanent magnets. J.Magn.Magn.Mater,1997,173: 20.
    [7] De Rango P, Lees M, Lejay P, et al. Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature, 1991, 349:770.
    [1] Jin S, Tiefel TH, Sherwood RC, et al,High critical currents in Y-Ba-Cu-O superconductors, Appl.Phys.Lett 1988;52:2074-2077.
    [2] Salama K, Selvamanickam V, Gao L, et al, High current density in bulk YBa2Cu3Ox superconductor,Appl.Phys.Lett 1989;54:2352-2354.
    [3] Meng RL, Kinalidis C, Sun Y, et al, Manufacture of bulk superconducting YBa2Cu3O7-δ by a continuous process, Nature 1990;345:326-327.
    [4]Minggawa H, Kamada K, Nagai H, et al. Synthesis of Tb0.3 Dy0.7Fe1.9 magnetostrictive alloy by unidirection solidification in a magnetic field and microgravity.J.Magn.Magn.Mater, 2002,248:230-235
    [5] Mei Wu, Okane T, Umeda T., et al, Directional solidification of Tb-Dy-Fe magnetostrictive alloy, J.Alloys and Compounds, 1997, 248:151-158
    [6] Shi Zhengxing, Chen Zhongmin, Wang Xianhui, et al., Directionally solidified TbxDy1-x(MyFe1-y)1.9 giant magnetostrictive materials and their applications in transducer,J.Alloys and Compounds, 1997, 258:30-33
    [7] Jiang Chengbao, Zhou Shouzeng, Xu Huibin, et al., Investigation on the formation of the peferred orientations in a TbDyFe alloy with directional solidification,Materials Science and Engineering B58(1999):191-194
    [8] Ji Chengchang, Li Jianguo, Ma Weizeng, Preparation of Terfenol with precise <110> orientation and observation of the oriented growth crystal morphlogy, J.Alloys Compd., 2002,33:291-295
    [9] Olivier Bonino, Patricia De Rango, and Robert Tournier.<110>Diectional growth of polycrystalline magnetostrictive TbxDy1-xFey compounds by casting in a stong unidirectional gradient. J.Magn.Magn.Mater.,2000,212:225-230
    [10]Mikelson A E,Karklin Y K. Control of crystallization process by means of magnetic fields. J Crystal Growth,1981,52(1-4):524-529.
    [11] De Rango P, Lees M, Lejay P, et al. Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature, 1991, 349:770. [12Legrand BA, Chateigner D,Perrier Dela Bathie R,et al. Oirentation by solidification in a magnetic dield:A new process to texture SmCo compounds used as permanent magnets.
    [13] Minggawa H, K Kamada , T Konishi, et al .Unidirectional solidification of TbFe2 alloy using magnetic field in microgravity.J. Magn .Mag. Mater, 2001,234:437-442.
    [14]Minggawa H, Kamada K, Nagai H, et al. Synthesis of Tb0.3 Dy0.7Fe1.9 magnetostrictive alloy by unidirection solidification in a magnetic field and microgravity. J.Magn.Magn.Mater, 2002,248:230-235
    [15]Peterson D T, Verhoeven J D, Mcmasters O D et al. Strength of Terfenol-D. J.Appl.Phys, 1989, 65(9) :3712-3713
    [1] Legrand BA, Chateigner D,Perrier Dela Bathie R,et al. Oirentation by solidification in a magnetic field:A new process to texture SmCo compounds used as permanent magnets, J.Magn.Magn.Mater,1997,173: 20-28.
    [2] 宛德福,罗世华,磁性物理,电子工业出版社,1987 年,p19-23
    [3] R.C. 奥汉德利著,周永洽等译,现代磁性材料原理和运用,化学工业出版社,2001年,p45-48
    [4] 宛德福,马兴隆,磁性物理学,电子工业出版社,1999 年,p158-159
    [5] 姜寿亭,李卫,凝聚态磁性物理,科学出版社,2003,p207-281
    [6] 王晖,任忠鸣,邓康,徐匡迪. 磁场对 Bi-Mn 合金两相区 MnBi 相定向排列的影响中国有色金属学报,2002,12(3):556-560.
    [7] 张邦文,任忠鸿,王晖等合金凝固过程中晶粒取向的动力学研究,金属学报,2004,40(6):604-608
    [8] De Rango P, Lees M, Lejay P, et al. Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature, 1991, 349:770.
    [9] Mikelson A E,Karklin Y K. Control of crystallization process by means of magnetic fields. J Crystal Growth,1981,52(1-4):524-529.
    [10] Probstein R.F,Physicochemical Hydrodynamics;An Introduction, Butterworths, Boston, 1989,p107-113
    [11] 唱鹤鸣,感应炉熔炼与特种铸造技术,冶金工业出版社,2002,p53-54
    [12] 张伟强,金属电磁凝固原理与技术,冶金工业出版社,2004,p1-10
    [13] 韩至成,电磁冶金学,冶金工业出版社,2000
    [14] Moreau R, Lascar O, Tanaka M, Thermoelectric magnetohydrodynamic effects on solidification of metallic alloys in the dendritic regime, Maer. Sci .Eng., 1993,A173:93-100
    [15] Moreau R, Lascar O, Tanaka M, In:Asai S ED,International Symposium on EPM(EPM’94).Japan:ISIT,1994:549-554
    [16] 姜寿亭,李卫,凝聚态磁性物理,科学出版社,2003,p4-16
    [17] R.S.特贝尔,D.J.克雷克著,北京冶金研究所《磁性材料》翻译组译,科学出版社,1979,p9
    [18] 韩至诚. 电磁冶金学,北京:冶金工业出版社,2001:p397.
    [19] 周永溶,半导体材料,北京:北京理工大学出版社,1992:p126
    [20] Utech HP, Flemings MC. Elimination of solute banding in Indium Antimonide crystals by growth in a magnetic field. J.Appl.phys 1966;37:2021.
    [21] Chedzey HA, Hurle D. Avoidance of growth-striae in semiconductor and metal crystal grown by Zone-melting techniques. Nature 1966;210:933.
    [22] Kim KM, Smetana.P. Striations in CZ silicon crystals grown under various axial magnetic field strengths J.Appl.phys 1985;58(7):2731.
    [23] Kim KM, Langlois WE.Computer simulation of Boron transport in magnetic Czochralski growth of silicon. J.Electrochem.soc 1986;133:2586.
    [24] Engdahl G, Handbook of Giant Magnetostrictive Materials. SanDiego. Academic Press,2000, p211.
    [25] 杨全,张真,金属凝固与铸造过程数值模拟,浙江大学出版社,1996, p289-311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700