水稻耐盐相关QTL,SKC1的定位、克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化正越来越严重地威胁着水稻的产量,因此,了解水稻的耐盐机制,进而培育出耐盐的水稻品种,势在必行。我们利用著名的耐盐籼稻品种Nona与盐敏感的优质粳稻品种越光杂交得来的F2及相应的F3群体,进行QTL分析,定位到一些与水稻耐盐相关的QTLs。SKC1是一个与水稻地上部分K+浓度相关的主效QTL,它可以解释40.1%的K+浓度表型变异。我们利用以越光为轮回亲本的BC2F2群体中192个单株及其相应的BC2F3株系进行精细定位,将SKC1定位于STS标记K159与K061-2之间3.2 cM内,与CAPS标记K0625紧密连锁。利用标记K159与K061-2,从含有2973株的BC2F2或BC3F2群体中筛选出133个交换个体,从这133个株系挑选出30个株系,用BC2F4或BC3F4进行表型鉴定。经高精确度连锁分析,将SKC1限定于CAPS标记Pr和K036之间约7.4 kb内。该区域内只有一个候选基因,利用PCR技术从Nona的cDNA文库中获得SKC1的全长ORF。Blast分析表明SKC1属于HKT基因家属的新成员。序列分析显示SKC1基因由3个外显子和2个内含子构成,Nona和越光的SKC1有4个氨基酸的差异。我们利用Nona的启动子区加ORF成功地进行了遗传互补实验。启动子加GUS转基因水稻分析表明SKC1只在维管束中表达,主要集中在木质部周围的薄壁细胞。GUS以及RT-PCR分析显示SKC1在根部有较强的表达。同时,我们选育了含有5 cM Nona基因组片断的NIL(SKC1)(BC5F2)来研究SKC1的功能。在140 mM NaCl处理条件下,和轮回亲本越光相比,NIL(SKC1)地上部分能够保持更高的K~+和更低的Na~+;
It is necessary to understand the mechanism of rice salt tolerance forimproving new salt tolerant rice variety, because soil salinity is more and moreseriously threatening rice production. An F2 and an equivalent F3 populationderived from a cross between a high salt-tolerance indica variety, Nona Bokra,and a susceptible elite japonica variety, Koshihikari, were produced. Weperformed QTL mapping for physiological traits related to rice salt-tolerance,and several QTLs were detected. Of these QTLs, a major QTL mapped on theshort arm of chromosome 1 with the very large effect, SKC1 for shoot K+concentration, explained 40.1% of the total phenotypic variance. The backcrosspopulations (Koshihikari was as the recurrent parent) was developed. Using 192lines from BC2F2 backcross population and their equivalent progeny BC2F3,fine mapping of SKC1 was performed. SKC1 was mapped in the 3.2 cM regionbetween the STS makers K159 and K061-2, and it was closely linked to theCAPS maker K0625. 133 lines with recombination between K159 and K061-2were screened from BC2F2 or BC3F2 population containing 2973 plants.High-resolution linkage analysis performed by using 30 BC2F4 or BC3F4 lines
    selected from those 133 lines enabled us to define a genomic region of ~7.4 kbas a candidate for SKC1. Only one candidate gene is in the region, and thefull-length ORF of SKC1 was obtained from the cDNA library of Nona by usingPCR. Blast analysis revealed that SKC1 is a homolog of HKT1 in Wheat.Sequencing analysis revealed 3 exons and 2 introns in SKC1 gene, and fouramino acids difference between NSKC1 from Nona and KSKC1 fromKoshihikari. Genetic complementation analysis proved the function of thecandidate gene by using promoter-ORF from Nona. Analysis of SKC1promoter-β-glucuronidase transgenic rice plants revealed expression of SKC1 invascular bundles, and mainly in parenchyma cells at the xylem. Analysis ofSKC1 promoter-β-glucuronidase and RT-PCR revealed strong expression ofSKC1 in root. A nearly isogenic line (NIL) of the target QTL, NIL (SKC1), inwhich a 5 cM chromosomal segment of Nona including SKC1 was substitutedinto the genetic background of Koshihikari, was selected based onmaker-assisted selection for studying the function of SKC1. Under 140 mMNaCl condition, NIL (SKC1) shoot could maintain more K+ and less Na+ thanthat of Koshihikari shoot. There also was higher K+ and less Na+ in the xylemsap of NIL (SKC1) plants exposed to 25 mM NaCl. Moreover, the salt toleranceof NIL (SKC1) plants was more slightly enhanced than that of Koshihikari undersalt stress. These results suggest that SKC1 play an important role in theprogress controlling long-distance K+ and Na+ transport from root to shoot.
引文
1. Albinsky D, Masson JE, Bogucki A, Afsar K, Vass I, Nagy F, Paszkowski J. Plant responses to genotoxic stress are linked to an ABA/salinity signaling pathway. Plant J. 1999. 17: 73-82.
    2. Allen RD. Dissection of Oxidative Stress Tolerance Using Transgenic Plants. Plant Physiol. 1995. 107: 1049-1054.
    3. Amarasinghe V, Watson L. Variation in salt secretory activity of microhairs in grasses. Australian Journal of Plant Physiology. 1989. 16: 219-229.
    4. Amtmann A, Fischer M, Marsh EL, Stefanovic A, Sanders D, Schachtman DP. The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain. Plant Physiol. 2001. 126: 1061-1071.
    5. Amtmann A, Sanders D. Mechanisms of Na+ uptake by plant cells. Advances in Botanical Research. 1999. 29: 75-112
    6. Apse MP, Aharon GS, Snedden WA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science. 1999. 285: 1256-1258.
    7. Apse MP, Sottosanto JB, Blumwald E. Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J. 2003. 36: 229-239.
    8. Atkinson MR, Findlay GP, Hope AB, Pitman MG, Saddler HDW, West KR. Salt regulation in the mangroves Rhizophora mucronata Lam. And Aegialitis annulata R.Br. Australian Journal of Biological Sciences. 1967. 20: 589-599.
    9. Ball MC. Salinity tolerance in the mangroves, Aegiceras corniculatum and Avicennia marina, 1. Water use in relation to growth, carbon partitioning and salt balance. Australian Journal of Plant Physiology. 1988. 15: 447-464.
    10. Ballesteros E, Blumwald E, Donaire JP, Belver A. Na+/H+ antiporter activity in tonoplast vesicles isolated from sunflower roots induced by NaCl stress. Physiologia Plantarum. 1997. 99: 328-334.
    11. Bartels D. Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance? Trends Plant Sci. 2001. 6: 284-286.
    12. Benito B, Rodriguez-Navarro A. Molecular cloning and characterization of a sodium-pump ATPase of the moss Physcomitrella patens. Plant J. 2003. 36: 382-389.
    13. Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Very AA, Sentenac H, Casse F. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J. 2003. 22: 2004-2014.
    14. Bhandal IS, Malik CP. Potassium estimationm, uptake, and its role in the physiology and metabolism of flowering plants. International Review of Cytology. 1988. 110: 205-254.
    15. Blaha G, Stelzl U, Spahn CM, Agrawal RK, Frank J, Nierhaus KH. Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods in Enzymology. 2000. 317: 292-309.
    16. Blom-Zandstra M, Vogelzang SA, Veen BW. Sodium fluxes in sweet pepper exposed to varying sodium concentrations. J Exp Bot. 1998. 49: 1863-1868.
    17. Blumwald E, Aharon GS, Apse MP. Sodium transport in plant cells. Biochimica et Biophysica Acta. 2000. 1465: 140-151.
    18. Blumwald E. Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology. 2000. 12: 431-434.
    19. Bohnert HJ, Nelson DE, Jensen RG. Adaptations to Environmental Stresses. Plant Cell. 1995. 7: 1099-1111.
    20. Buschmann PH, Vaidynathan R, Gassmann W, Schroeder JI. Enhancement of Na+ uptake currents, time-dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells. Plant Physiol. 2000. 122: 1387-1397.
    21. Campbell SA, Close TJ. Dehydrins: genes, proteins, and association with phenotypic traits. New Phytologist. 1997. 137: 61-74.
    22. Cheeseman JM, Bloebaum PD, Wickens LK. Short term 22Na+ and 42K+ uptake in intact, mid-vegetative Spergularia marina plants. Physiologia Plantarum. 1985. 65: 460-466.
    23. Cheeseman JM. Pump-leak sodium fluxes in low salt corn roots. Journal of Membrane Biology. 1982. 70: 157-164.
    24. Chen TH, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol. 2002. 5: 250-257.
    25. Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell. 2002. 14: 559-574.
    26. Cheng NH, Pittman JK, Zhu JK, Hirschi KD. The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. J Biol Chem. 2004. 279: 2922-2926
    27. Chinnusamy V, Schumaker K, Zhu JK. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot. 2004. 55: 225-236.
    28. Clarkson DT, Hanson JB. Proton fluxes and the activity of a stelar proton pump in onion roots. J Exp Bot. 1986. 37: 1136-1150.
    29. Clemens S, Antonosiewicz DM, Ward JM, Schachtman DP, Schroeder JI. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci USA. 1998. 95: 12043-12048.
    30. Colmer TD, Epstein E, Dvorak J. Differential Solute Regulation in Leaf Blades of Various Ages in Salt-Sensitive Wheat and a Salt-Tolerant Wheat x Lophopyrum elongatum (Host) A. Love Amphiploid. Plant Physiol. 1995. 108: 1715-1724.
    31. Cram WJ, Pitman MG. The action of abscisic acid on ion uptake and water flow in plant roots. Australian Journal of Biological Sciences. 1972. 25: 1125-1132.
    32. Cramer GR, L?uchli A, Polito VS. Displacement of Ca2+ by Na+ from the plasmalemma of root cells – a primary response to salt stress. Plant Physiol. 1985. 79: 207-211.
    33. Cramer GR, L?uchli A. on activities in solution in relation to Na+-Ca2+ interactions at the plasmalemma. J Exp Bot. 1986. I 37: 321-330.
    34. Cramer GR. Sodium-calcium interactions under salinity stress. In: L?uchli, A, Lüttge U, eds. Salinity. Environment-plants-molecules. Dordrecht: Kluwer, 2002. 205-227.
    35. Cuin TA, Miller AJ, Laurie SA, Leigh RA. Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot. 2003. 54: 657-661.
    36. Davenport RJ, Reid RJ, Smith FA. Sodium-calcium interactions in two wheat species differing in salinity tolerance. Physiologia Plantarum. 1997. 99: 323-327.
    37. Davenport RJ, Tester M. A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol. 2000. 122: 823-834.
    38. DeBoer AH. Potassium translocation into the root xylem. Plant Biology. 1999. 1: 36-45.
    39. Demidchik V, Davenport RJ, Tester M. Nonselective cation channels in plants. Annu Rev Plant Biol. 2002. 53: 67-107.
    40. Demidchik V, Tester M. Sodium fluxes through non-selective cation channels in the plasma membrane of protoplasts from Arabidopsis thaliana roots. Plant Physiol. 2002. 128:379-387
    41. DeWald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Prestwich GD, Hama H. Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol. 2001. 126: 759-769
    42. Ding L, Zhu JK. Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana. Plant Physiol. 1997, 113: 795-799.
    43. Dracup M. Increasing salt tolerance of plants through cell culture requires greater understanding of tolerance mechanisms. Australian Journal of Plant Physiology. 1991. 18: 1-15.
    44. Drew MC, L?uchli A. The role of the mesocotyl in sodium exclusion from the shoot of Zea mays L. (cv. Pioneer 3906). J Exp Bot. 1987. 38: 409-418.
    45. Dubcovsky J, Santa Maria G, Epstein E, Luo M-C, Dvo?ák J. Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor and Appl Genet. 1996. 92: 448-454.
    46. Dym O, Mevarech M, Sussman JL. Structural Features That Stabilize Halophilic Malate-Dehydrogenase From An Archaebacterium. Science. 1995. 267: 1344-1346.
    47. Elphick CH, Sanders D, Maathuis FJM. Critical role of divalent cations and Na+ efflux in Arabidopsis thaliana salt tolerance. Plant, Cell and Environment. 2001. 24: 733-40.
    48. Essah PA, Davenport R, Tester M. Sodium influx and accumulation in Arabidopsis. Plant Physiol. 2003. 133: 307-318.
    49. Esterbauer H, Schauer RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic. Biol. Med. 1991. 11: 81-128.
    50. Flowers TJ, Dalmond D. Protein synthesis in halophytes: the influence of potassium, sodium and magnesium in vitro. Plant and Soil. 1992. 146: 153-161.
    51. Flowers TJ, Flowers SA, Hajibagheri MA, Yeo AR. Salt tolerance in the halophytic wild rice, Porteresia coarctata Tateoka. New Phytologist. 1990. 114: 675-684.
    52. Flowers TJ, Hajibagheri MA. Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance. Plant and Soil. 2001. 231: 75-91.
    53. Flowers TJ, Yeo AR. Breeding for salinity resistance in crop plants ? where next? Australian Journal of Plant Physiology. 1995. 22: 875-884.
    54. Flowers TJ, Yeo AR. Ion relations of plants under drought and salinity. Australian Journal of Plant Physiology. 1986. 13: 75-91.
    55. Flowers TJ. Improving crop salt tolerance. J Exp Bot. 2004. 55: 307-319.
    56. Frommer WB, Ludewig U, Rentsch D. Taking transgenic plants with a pinch of salt. Science. 1999. 285: 1222-1223.
    57. Fukada-Tanaka S, Inagaki Y, Yamaguchi T, Saito N, Iida S. Colour-enhancing protein in blue petals. Nature. 2000. 407: 581.
    58. Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol. 2004. 45: 146-159.
    59. Gabarino J, Dupont FM. Rapid induction of Na+/H+ exchange activity in barley root tonoplast. Plant Physiol. 1989. 94: 406-410.
    60. Galston AW, Sawhnet RK. Polyamines in plant physiology. Plant Physiol. 1990. 94: 406-410.
    61. Gao X, Ren Z, Zhao Y, Zhang H. Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiol. 2003. 133: 1873-1881.
    62. Garcia A, Rizzo CA, Ud-Din J, Bartos SL, Senadhira D, Flowers TJ, Yeo AR. Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanisms of sodium:potassium selectivity differs between rice and wheat. Plant, Cell and Environment. 1997. 20: 1167-1174.
    63. Garciadeblas B, Senn ME, Banuelos MA, Rodriguez-Navarro A. Sodium transport and HKT transporters: the rice model.Plant J. 2003. 34: 788-801.
    64. Gassman W, Rubio F, Schroeder JI. Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J. 1996. 10: 869-882.
    65. Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR. Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA. 2001. 98: 11444-11449.
    66. Gil-Mascarell R, Lopez-Coronado JM, Belles JM, Serrano R, Rodriguez PL. The Arabidopsis HAL2-like gene family includes a novel sodium-sensitive phosphatase. Plant J. 1999. 17: 373-383.
    67. Glenn EP, Brown JJ, Blumwald E. Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences. 1999. 18: 227-255.
    68. Golldack D, Su H, Quigley F, Kamasani UR, Munoz-Garay C, Balderas E, Popova OV, Bennett J, Bohnert HJ, Pantoja O. Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J. 2002. 31: 529-542.
    69. Gong JM, He P, Qian Q, Shen LS, Zhu LH, Chen SY. Identification of salt-tolerance QTL in rice (Oryza sativa L.). China Sci Bull. 1999. 44: 68–71.
    70. Gorham J, Wyn Jones RG, Bristol A. Partial characterization of the trait for enhanced K+/Na+ discrimination in the D genome of wheat. Planta. 1990. 180: 590-597.
    71. Gorham J. Salt tolerance in the Triticeae: Ion discrimination in rye and triticale. J Exp Bot. 1990. 41: 609-614.
    72. Greenway H, Plant response to saline substrates. I. Growth and ion uptake of several varieties of Hordeum during and after sodium chloride treatment. Australian Journal of Biological Sciences. 1962. 15: 16-38.
    73. Guo Y, Halfter U, Ishitani M, Zhu J-K. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell. 2001. 13: 1383-1400.
    74. Guo Y, Qiu QS, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS, Zhu JK. Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell. 2004. 16: 435-449.
    75. Hahnenberger, K.M., Jia, Z., and Young, P.G. Functional expression of the Schizosaccharomyces pombe Na+/H+ antiporter gene, sod2, in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 1996. 93: 5031-5036.
    76. Hajibagheri MA, Harvey DMR, Flowers TJ. Quantitative ion distribution within root cells of salt-sensitive and salt-tolerant maize varieties. New Phytologist. 1987. 105: 367-379.
    77. Hajibagheri MA, Yeo AR, Flowers TJ. Salt tolerance in Suaeda maritima (L.) Dum. Fine structure and ion concentrations in the apical region of roots. New Phytologist. 1985. 99: 331-343.
    78. Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA. 2000. 97: 3735-3740.
    79. Halliwell B, Gutteridge JMC. Protection against oxidants in biological systems: The super oxide theory of oxygen toxicity. In Free Radicals in Biology and Medicine (Halliwell, B. and Gutteridge, J.M.C., eds). Oxford: Clarendon Press, 1989. pp. 86-123.
    80. Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T. Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol. 2001. 46: 35-42.
    81. Hardie DG. Plant protein serine/threonine kinases: classification and functions. Annu Rev Plant Physiol Plant Mol Biol. 1999. 50: 97-131
    82. Haro R, Garciadeblas B, Rodriguez-Navarro A. A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett. 1991. 291: 189-191.
    83. Harvey DMR. The effects of salinity on ion concentrations within the root cells of Zea mays L. Planta. 1985. 165: 242-248.
    84. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol. 2000. 51: 463-499.
    85. Hill AE, Hill BS. Mineral ions. Encyclopedia of plant physiology, new series. 1976. 2B: 225-243.
    86. Horie T, Schroeder JI. Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol. 2004. 136: 2457-2462.
    87. Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J. 2001. 27: 129-138.
    88. Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol. 1996. 47: 377-403.
    89. Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell. 2000. 12: 1667-1678.
    90. Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG, Bohnert HJ. 1996. Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J. 9: 537-48.
    91. Jacoby B, Hanson JB. Controls on 22Na+ influx in corn roots. Plant Physiol. 1985. 77: 930-934.
    92. James RA, Rivelli AR, Munns R, von Caemmerer S. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology. 2002. 29: 1393-1403.
    93. Johansen JG, Cheeseman JM. Uptake and distribution of sodium and potassium by corn seedlings. I. Role of the mesocotyl in ‘sodium exclusion'. Plant Physiol. 1983. 73: 153-158.
    94. Karley AJ, Leigh RA, Sanders D. Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. Plant Physiol. 2000a. 122: 835-844.
    95. Karley AJ, Leigh RA, Sanders D. Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends Plant Sci. 2000b. 5: 465-470.
    96. Kasuga M, Liu G, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology. 1999. 17: 287-291.
    97. Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J. 2000. 23: 267-278.
    98. Kiegle EA, Bisson MA. Plasma Membrane Na+ Transport in a Salt-Tolerant Charophyte (Isotopic Fluxes, Electrophysiology, and Thermodynamics in Plants Adapted to Saltwater and Freshwater). Plant Physiol. 1996. 111: 1191-1197.
    99. Knight H, Knight MR. Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 2001. 6: 262-267.
    100. Knight H, Knight MR. Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis. J Exp Bot. 2000. 51: 1679-86.
    101. Knight H, Trewavas AJ, Knight MR. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J. 1997. 12: 1067-1078.
    102. Knight H. Calcium signalling during abiotic stress in plants. International Review of Cytology. 2000. 195: 269-325.
    103. Kore-eda S, Cushman MA, Akselrod I, Bufford D, Fredrickson M, Clark E, Cushman JC. Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum. Gene. 2004. 341: 83-92.
    104. Kovtun Y, Chiu WL, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA. 2000. 97: 2940-2945.
    105. Koyama ML, Levesley A, Koebner RM, Flowers TJ, Yeo AR. Quantitative Trait Loci for Component Physiological Traits Determining Salt Tolerance in Rice. Plant Physiol. 2001. 125: 406-422.
    106. Kramer D, L?uchli A, Yeo AR, Gullasch J. Transfer cells in roots of Phaseolus coccineus: ultrastructure and possible function in exclusion of sodium from the shoot. Annals of Botany. 1977. 41: 1031-1040.
    107. Kramer D. The possible role of transfer cells in the adaptation of plants to salinity. Physiologia Plantarum. 1983. 58: 549-555.
    108. Kudla J, Xu Q, Harter K, Gruissem W, Luan S. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA. 1999. 96: 4718-4723.
    109. Lacan D, Durand M. Na+-K+ exchange at the xylem/symplast boundary. Its significance in the salt sensitivity of soybean. Plant Physiol. 1996. 110: 705-711.
    110. Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989. 121: 185–199.
    111. Lander ES, Green O, Abranamson J, Barlow A, Daley MJ, Lincoln SE, Newburg L Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987. 1: 174–181
    112. Lauchli A, Kramer D, Pitman MG, Lüttge U. 1974. Ultrastructure of xylem parenchyma cells of barley roots in relation to ion transport to the xylem. Planta. 119: 85-99.
    113. Lee JH, Van Montagu M, Verbruggen N. A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells. Proc Natl Acad Sci U S A. 1999. 96: 5873-5877.
    114. Lefevre I, Gratia E, Lutts S. Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Science. 2001. 161: 943-952.
    115. Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA. Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol. 2002. 128: 400-410.
    116. Leung J, Giraudat J. Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol. 1998. 49: 199-222.
    117. Li ZK, Pinson SRM, Stansel JW, Park WD. Identification of two major genes and quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet. 1995. 91: 374-381.
    118. Lin HX, Yanagihara S, Zhuang JY, Senboku T, Zheng KL, Yashima S. Identification of QTLs for salt tolerance in rice via molecular markers. Chinese J Rice Sci. 1998. 12: 72–78
    119. Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet. 2004. 108: 253-260.
    120. Lin, H.X., Qian HR, Zhuang JY, Lu J, Min SK, Xiong ZM, Huang N, Zheng KL. RFLP mapping of QTLs for yield and related characters in rice. Theor Appl Genet. 1996a. 92: 920-927.
    121. Lin, HX, Qian HR, Xiong ZM, Min SK, Zheng KL. Mapping of major genes and minor genes for heading date in several rice varieties (Oryza sativa L.). Chinese J Genet 1996b. 23: 107-114.
    122. Lincoln S, Dalyand M, Lander E. Mapping genes controlling quantitative traits with Mapmaker/QTL1.1: a tutorial and reference manual, 2nd edn. Whitehead Institute Technical Report, Cambridge, Massachusetts. 1993.
    123. Liu J, Zhu JK. A calcium sensor homolog required for plant salt tolerance. Science. 1998. 280: 1943-1945.
    124. Liu J, Zhu JK. An arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc Natl Acad Sci USA. 1997. 94: 14960-14964.
    125. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain, separate two cellular signal transduction pathways in drought-and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998. 10: 1391-1406.
    126. Loewus FA. Murthy PN. myo-Inositol metabolism in plants. Plant Science. 2000. 150: 1-19
    127. Lohaus G, Hussmann M, Pennewiss K, Schneider H, Zhu J-J, Sattelmacher B. Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching. J Exp Bot. 2000. 51: 1721-1732.
    128. Maathuis FJM, Amtmann A. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of Botany. 1999. 84: 123-133.
    129. Maathuis FJM, Flowers TJ, Yeo AR. Sodium chloride compartmentation in leaf vacuoles of the halophyte Suaeda maritima (L.) Dum. And its relation to tonoplast permeability. J Exp Bot. 1992. 43: 491-500.
    130. Maathuis FJM, Prins HBA. Patch clamp studies on root cell vacuoles of a salt-tolerant and a salt-sensitive Plantago species. Plant Physiol. 1990. 92: 23-28.
    131. Maathuis FJM, Sanders D. Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol. 2001. 127: 1617-1625.
    132. Mackill DJ, Zhang Z, Redona ED, Colowit PM. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome. 1996. 39: 969-977.
    133. Maeshima M. Vacuolar H+-pyrophosphatase. Biochimica et Biophysica Acta. 2000. 1465: 37-51.
    134. Majee M, Maitra S, Dastidar KG, Pattnaik S, Chatterjee A, Hait NC, Das KP, Majumder AL. A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J Biol Chem. 2004. 279: 28539-28552.
    135. Mansour MMF. Nitrogen containing compounds and adaptation of plants to salinity stress. Biologia Plantarum. 2000. 43: 491-500.
    136. Marcum KB. Salinity tolerance mechanisms of grasses in the subfamily Chlorodoideae. Crop Science. 1999. 39: 1153-1160.
    137. Marschner H. Mineral nutrition of higher plants. 2nd edn. London: Academic Press. 1995.
    138. M?ser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett. 2002. 531: 157-161.
    139. M?ser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML. Phylogenetic Relationships within Cation Transporter Families of Arabidopsis. Plant Physiol. 2001. 126: 1646-1667
    140. Matsushita N, Matoh T. Characterization of Na+ exclusion mechanisms of salt-tolerant reed plants in comparison with salt-sensitive rice plants. Physiologia Plantarum. 1991. 83: 170-176.
    141. Matsushita N, Matoh T. Function of the shoot base of salt-tolerant reed (Phragmites communis Trinius) plants for Na+ exclusion from the shoots. Soil Science and Plant Nutrition. 1992. 38: 565-571.
    142. McNeil SD, Nuccio ML, Hanson AD. Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol. 1999. 120:945-950.
    143. McWhorter CG, Paul RN, Ouzts JC. Bicellular trichomes of johnsongrass (Sorghum halepense) leaves – morphology, histochemistry, and function. Weed Science. 1995. 43: 201-208.
    144. Mikami K, Kanesaki Y, Suzuki I, Murata N. The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp PCC 6803. Mol Microbiol. 2002. 46: 905-915.
    145. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002. 7: 405-410.
    146. Munns R, Guo J, Passioura JB, Cramer GR. Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley. Australian Journal of Plant Physiology. 2000a. 27: 949-957.
    147. Munns R, Hare RA, James RA, Rebetzke GJ. Genetic variation for improving the salt tolerance of durum wheat. Australian Journal of Agricultural Research. 2000b. 51: 69-74.
    148. Munns R, Tonnet L, Shennan C, Gardner PA. Effect of high external NaCl concentration on ion transport within the shoot of Lupinus albus. II. Ions in phloem sap. Plant, Cell and Environment. 1988. 11: 291-300.
    149. Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002. 25: 239-250.
    150. Munns R. Na+, K+ and Cl– in xylem sap flowing to shoots of NaCl-treated barley. J Exp Bot. 1985. 36: 1032-1042.
    151. Munns R. Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. Plant, Cell and Environment. 1993. 16: 15-24.
    152. Murthy M, Tester M. compatible solutes and salt tolerance: misuse of transgenic tobacco. Trends Plant Sci. 1996. 1: 294-295.
    153. Nelson DE, Koukoumanos M, Bohnert HJ. Myo-inositol-dependent sodium uptake in ice plant. Plant Physiol. 1999. 119: 165-172.
    154. Nelson DE, Rammesmayer G, Bohnert HJ. Related Articles, Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell. 1998. 10:753-764.
    155. Nevo E, Gorhan J, Beiles A. Variation for 22Na uptake in wild emmer wheat, Triticum dicoccoides in Israel: salt tolerance resources for wheat improvement. J Exp Bot. 1992. 43: 511-518.
    156. Niu X, Damsz B, Kononowicz AK, Bressan RA, Hasegawa PM. NaCl-Induced Alterations in Both Cell Structure and Tissue-Specific Plasma Membrane H+ -ATPase Gene Expression. Plant Physiol. 1996. 111:679-686.
    157. Nublat A, Desplans J, Casse F, Berthomieu P. sas1, an Arabidopsis mutant overaccumulating sodium in the shoot, shows deficiency in the control of the root radial transport of sodium. Plant Cell. 2001. 13:125-137.
    158. Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Letters. 2002. 532: 279-82.
    159. Orvar BL, Sangwan V, Omann F, Dhindsa R. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J. 2000. 23: 785-794.
    160. Pardo JM, Reddy MP, Yang S, Maggio A, Huh GH, Matsumoto T, Coca MA, Paino-D'Urzo M, Koiwa H, Yun DJ, Watad AA, Bressan RA, Hasegawa PM. Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc Natl Acad Sci U S A. 1998. 95: 9681-9686.
    161. Parida AK, Das AB, Mohanty P. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol. 2004. 161: 531-542.
    162. Perez-Alfocea F, Balibrea ME, Alarcon JJ, Bolarin MC. Composition of xylem and phloem exudates in relation to the salt-tolerance of domestic and wild tomato species. Journal of Plant Physiology. 2000. 156: 367-374.
    163. Piao HL, Lim JH, Kim SJ, Cheong GW, Hwang I. Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J. 2001. 27: 305-314.
    164. Pitman MG. The determination of the salt relations of the cytoplasmic phase in cells of beetroot tissue. Australian Journal of Biological Sciences. 1963. 16: 647-668.
    165. Prasad SR, Bagali PG, Hittalmani S, Shashidhar HE. Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci. 2000. 78: 162–164
    166. Qi Z, Spalding EP. Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress. Plant Physiol. 2004. 136: 2548-2555.
    167. Qiu QS, Guo Y, Dietrich M, Schumaker KS, Zhu JK. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA. 2002. 99: 8436-8441.
    168. Qiu QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu JK. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem. 2004. 279: 207-215.
    169. Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA. 2002. 99: 9061-9066.
    170. Ramanjulu S, Bartels D. Drought-and desiccation-induced modulation of gene expression in plants. Plant, Cell and Environment. 2002. 25: 141-151.
    171. Redona ED, Mackill DJ. Mapping quantitative trait loci in japonica rice. Genome. 1996. 39: 395–403.
    172. Reid RJ, Smith FA. The limits of sodium/calcium interactions in plant growth. Australian Journal of Plant Physiology. 2000. 27: 709-715.
    173. Reimann C, Breckle SW. Sodium relations in Chenopodiaceae: a comparative approach. Plant, Cell and Environment. 1993. 16: 323-328.
    174. Reinhardt DH, Rost TL. Salinity accelerates endodermal development and induces an exodermis in cotton seedlings in cotton seedling roots. Environmental and Experimental Botany. 1995. 35: 563-574.
    175. Rhodes D, Hanson AD. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol. 1993. 44: 357-384.
    176. Roberts SK, Tester M A patch clamp study of Na+ transport in maize roots. J Exp Bot. 1997. 48:431-440.
    177. Roberts SK. Regulation of K+ channels in maize roots by water stress and ABA. Plant Physiol. 1998. 116: 145-153.
    178. Robinson MF, Véry A-A, Sanders D, Mansfield TA. How can stomata contribute to salt tolerance? Annals of Botany. 1997. 80: 387-393.
    179. Rubio F, Gassmann W, Schroeder JI. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science. 1995 270: 1660-1663.
    180. Rus A, Lee BH, Munoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol. 2004. 136: 2500-2511
    181. Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA. 2001. 98: 14150-14155.
    182. Sanders D, Brownlee C, Harper JF. Communicating with calcium. Plant Cell. 1999. 11: 691-706.
    183. Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D. Salt Tolerance of Glycinebetaine-Deficient and -Containing Maize Lines. Plant Physiol. 1995. 107: 631-638.
    184. Sangwan V, Foulds I, Singh J, Dhindsa RS. Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J. 2001. 27:1-12.
    185. Santa-Cruz A, Acosta M, Rus A, Bolarin MC. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiology and Biochemistry. 1999. 37: 65-71.
    186. Santa-María GE, Epstein E. Potassium/sodium selectivity in wheat and the amphiploid cross wheat x Lophopyrum elongatum. Plant Science. 2001. 160: 523-534.
    187. Schachtman DP, Kumar R, Schroeder JI, Marsh EL. Molecular and functional characterisation of a novel low-affinity cation transporter (LCT1) in higher plants. Proc Natl Acad Sci U S A. 1997. 94: 11079-11084.
    188. Schachtman DP, Lagudah ES, Munns R. The expression of salt tolerance from Triticum auschii in hexaploid wheat. Theoretical and Applied Genetics. 1992. 84: 714-719
    189. Schachtman DP, Schroeder JI. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature. 1994. 370: 655-658.
    190. Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D. Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol. 2001. 52: 627-658
    191. Schubert S, L?uchli A. Sodium exclusion mechanisms at the root surface of two maize cultivars. Plant and Soil. 1990. 123: 205-209.
    192. Shalata A, Tal M. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon penellii. Physiologia Plantarum. 1998. 104: 169-174.
    193. Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants. Science. 1996. 274: 1900-1902.
    194. Sheveleva EV, Marquez S, Chmara W, Zegeer A, Jensen RG, Bohnert HJ. Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco. High amounts of sorbitol lead to necrotic lesions. Plant Physiol. 1998. 117: 831-839
    195. Shi H, Ishitani M, Kim C, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA. 2000. 97: 6896-6901.
    196. Shi H, Kim Y, Guo Y, Stevenson B, Zhu JK. The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell. 2003a. 15: 19-32.
    197. Shi H, Lee BH, Wu SJ, Zhu JK. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol. 2003b. 21: 81-85.
    198. Shi H, Quintero FJ, Pardo JM, Zhu JK. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell. 2002. 14: 465-477.
    199. Shomer-Ilan A, Jones GP, Paleg LG. In vitro thermal and salt stsbility of pyruvate kinase are increased by praline analogues and trigonelline. Australian Journal of Plant Physiology. 1991. 18: 279-286.
    200. Shone MGT, Clarkson DT, Sanderson J. The absorption and translocation of sodium by maize seedlings. Planta. 1969. 86: 301-314.
    201. Shono M, Wada M, Hara Y, Fujii T. Molecular cloning of Na+-ATPase cDNA from a marine alga, Heterosigma akashiwo, Biochim Biophys Acta. 2001. 1511: 193-199.
    202. Silberbush M, and Ben-Asher J. Simulation study of nutrient uptake by plants from soilless cultures as affected by salinity buildup and transpiration. Plant and Soil. 2001. 233:59-69.
    203. Singla-Pareek SL, Reddy MK, Sopory SK. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA. 2003. 100: 14672-14677.
    204. Staal M, Maathuis FJM, Wlzenga TM, Overbeek HM, Prins HBA. Na+/H+ antiporter activity in tonoplast vesicles from roots of the salt-tolerant Plantago maritime and the salt-sensitive Plantago media. Physiologia Plantarum. 1991. 82: 179-184.
    205. Stelzer R. Ion localization in the leaves of Puccinellia peisonis. Zeitschrift für Pflanzenphysiologie. 1981. 103: 27-36.
    206. Stephen EL, Lincoln SE, Lander ES. Constructing genetic maps with MAPMAKER: a tutorial and reference manual. A Whitehead Institute for Biomedical research, Cambridge, USA.1990.
    207. Sugino M, Hibino T, Tanaka Y, Nii N, Takabe T, Takabe T. Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica acquires resistance to salt stress in transgenic tobacco plants. Plant Science. 1999. 146: 81-88.
    208. Sunkar R, Bartels D, Kirch HH. Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J. 2003. 35: 452-464.
    209. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 2004. 135: 1697-1709.
    210. Takahashi S, Katagiri T, Hirayama T, Yamaguchi-Shinozaki K, Shinozaki K. Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant and Cell Physiology. 2001. 42: 214-222.
    211. Tal M. Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, L. peruvianum and L. esculentum minor to sodium chloride solution. Australian Journal of Agricultural Research. 1971. 24: 353-361.
    212. Tena G, Asai T, Chiu WL, Sheen J. Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol. 2001. 4: 392-400.
    213. Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Annals of Botany. 2003. 91:503-527.
    214. Tester M, Leigh RA. Partitioning of transport processes in roots. J Exp Bot. 2001. 52(Roots Special Issue): 445-457.
    215. Trewavas AJ, Malho R. Signal Perception and Transduction: The Origin of the Phenotype. Plant Cell. 1997. 9: 1181-1195.
    216. Tyerman SD, Skerrett M, Garrill A, Findlay GP, Leigh RA. Pathways for the permeation of Na+ and Cl– into protoplasts derived from the cortex of wheat roots. J Exp Bot. 1997. 48: 459-480.
    217. Tyerman SD, Skerrett M. Root ion channels and salinity. Scientiae Horticulturae. 1999. 78: 175-235.
    218. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA. 2000. 97: 11632-11637.
    219. Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun. 2004. 313: 369-375.
    220. Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell. 1999. 11: 1743-1754.
    221. Venema K, Quintero FJ, Pardo JM, Donaire JP. The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J Biol Chem. 2002. 277: 2413-2418.
    222. Véry A, Robinson MF, Mansfield TA, Sanders D. Guard cell cation channels are involved in Na+-induced stomatal closure in a halophyte. Plant J. 1998. 14: 509-521.
    223. Viehweger K, Dordschbal B, Roos W. Elicitor-activated phospholipase A(2) generates lysophosphatidylcholines that mobilize the vacuolar H+ pool for pH signaling via the activation of Na+-dependent proton fluxes. Plant Cell. 2002. 14:1509-1525.
    224. Vitart V, Baxter I, Doerner P, Harper JF. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant J. 2001. 27: 191-201.
    225. Wang X-Q, Ullah H, Jones A, Assmann S. G protein regulation of ion channels and abscisic acid signalling in Arabidopsis guard cells. Science. 2001. 292: 2070-2072.
    226. Wegner LH, Raschke K. Ion channels in the xylem parenchyma of barley roots. Plant Physiol. 1994. 105: 799-813.
    227. Wegner LH, Sattelmacher B, L?uchli A, Zimmermann U. Trans-root potential, xylem pressure, and cortical membrane potential of ‘low-salt' maize as influenced by nitrate and ammonium. Plant, Cell and Environment. 1999. 22: 1549-1558.
    228. White PJ, Davenport RJ. The voltage-independent cation channel in the plasma membrane of wheat roots is permeable to divalent cations and may be involved in cytosolic Ca2+ homeostasis. Plant Physiol. 2002. 130: 1386-1395.
    229. White PJ, Lemtiri-Chlieh F. Potassium currents across the plasma membrane derived from rye roots: a patch-clamp study. J Exp Bot. 1995. 46: 497-511.
    230. White PJ. The molecular mechanism of sodium influx to root cells. Trends Plant Sci. 1999. 4: 245-246.
    231. White PJ. The permeation of NH4+ through a voltage-independent K+ channel in the plasma membrane of rye roots. Journal of Membrane Biology. 1996. 152: 89-99.
    232. Wilson C, Shannon MC, Salt-induced Na+/H+ antiport in root plasma membrane of a glycophytic and halophytic species of tomato. Plant Science. 1995. 107: 147-157.
    233. Winicov I. New molecular approaches to improving salt tolerance in crop plants. Annals of Botany. 1998. 82: 703-710.
    234. Winter E. Salt tolerance of Trifolium alexandrinum L. III. Effects of salt on ultrastructure of phloem and xylem transfer cells in petioles and leaves. Australian Journal of Plant Physiology. 1982. 9: 227-237.
    235. Witz G. Biological interactions of α,β-unsaturated aldehydes. Free Radic. Biol. Med. 1989. 7: 333-349.
    236. Wolf O, Munns R, Tonnet ML, Jeschke WD. The role of the stem in the partitioning of Na+ and K+ in salt-treated barley. J Exp Bot. 1991. 42: 697-704.
    237. Wooding FBP. Absorptive cells in protoxylem: association between mitochondria and the plasmalemma. Planta. 1969. 84: 235-238.
    238. Wu CA, Yang GD, Meng QW, Zheng CC. The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol. 2004. 45: 600-607.
    239. Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, Foster R, Chua NH. Abscisic acid signalling through cyclic ADP-ribose in plants. Science. 1997. 278: 2126-2130.
    240. Xiao J, Li J, Yuan L, Tanksley SD. Theor Appl Genet. 1996. 92: 230-244.
    241. Xiong L, Lee B-H, Ishitani M, Lee H, Zhang C, Zhu J-K. FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signalling in Arabidopsis. Genes and Development. 2001. 15:1971-1984.
    242. Xiong L, Schumaker KS, Zhu JK. Cell Signaling during Cold, Drought, and Salt Stress. Plant Cell. 2002. 14: S165-S183.
    243. Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley conferred tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 1996. 110: 249-257.
    244. Yadav R, Flowers TJ, Yeo AR. The involvement of the transpirational bypass flow in sodium uptake by high-and low-sodium-transporting lines of rice developed through intravarietal selection. Plant, Cell and Environment. 1996. 19: 329-336.
    245. Yamada A, Saitoh T, Mimura T, Ozeki Y. Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant Cell Physiol. 2002. 43: 903-10.
    246. Yamaguchi T, Apse MP, Shi H, Blumwald E. Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proc Natl Acad Sci USA. 2003. 100: 12510-12515.
    247. Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet. 1997. 95: 1025–1032
    248. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell. 2000. 12: 2473-2484.
    249. Yano M, Kojima S, Takahashi Y, Lin HX, Sasaki T. Genetic control of flowering time in rice, a short-day plant. Plant Physiol. 2001. 127: 1425–1429
    250. Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol. 1997. 35: 145–153
    251. Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant, Cell and Environment. 1999. 22: 559-565.
    252. Yeo AR, Flowers TJ. The absence of an effect of the Na/Ca ratio on sodium chloride uptake by rice. New Phytologist. 1985. 99: 81-90.
    253. Yeo AR, Kramer D, L?uchli A, Gullasch J. Ion distribution in salt-stressed mature Zea mays roots in relation to ultrastructure and retention of sodium. J Exp Bot. 1977a. 28: 17-29.
    254. Yeo AR, L?uchli A, Kramer D, Gullasch J. Ion measurements by x-ray microanalysis in unfixed, frozen, hydrated plant cells of species differing in salt tolerance. Planta. 1977b. 134: 35-38.
    255. Yeo AR, Yeo ME, Flowers TJ. The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. J Exp Bot. 1987. 38: 1141-1153.
    256. Yeo AR, Yeo ME, Flowers, SA, Flowers TJ. Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor Appl Genet. 1990. 79: 377-384.
    257. Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J. 2002. 30: 529-539.
    258. Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S. Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J. 2004. 37: 21-33.
    259. Zhang GY, Guo Y, Chen SL, Chen SY. RFLP tagging of a salt tolerance gene in rice. Plant Sci. 1995. 110: 227–234.
    260. Zhang HX, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology. 2001. 19: 765-768.
    261. Zhang HX, Hodson JN, Williams JP, Blumwald E. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA. 2001. 98: 12832-12836.
    262. Zhang JS, Xie C, Li ZY, Chen SY, Expression of the plasma membrane H+-ATPase gene in response to salt stress in a rice salt-tolerant mutant and its original variety. Theor Appl Genet. 1999. 99: 1006-1011.
    263. Zhang JZ, Creelman R A, Zhu JK. From Laboratory to Field. Using Information from Arabidopsis to Engineer Salt, Cold, and Drought Tolerance in Crops. Plant Physiol. 2004. 135: 615-621.
    264. Zhu GY, Kinet JM, Lutts S. Characterization of rice (Oryza sativa L.) F-3 populations selected for salt resistance. I. Physiological behaviour during vegetative growth. Euphyeica. 2001. 121: 251-263.
    265. Zhu JK, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell. 1998. 10: 1181-1191.
    266. Zhu JK. Plant salt tolerance. Trends Plant Sci. 2001. 6: 66-71.
    267. Zhu JK. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol. 2003. 6: 441-445.
    268. Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002. 53: 247-273.
    269. Zidan I, Jacoby B, Ravina I, Neumann PM. Sodium does not compete with calcium in saturating plasma membrane sites regulating 22Na influx into salinized maize roots. Plant Physiol. 1991. 96: 331-334.
    270. 沈同,王镜岩。生物化学。第二版,高等教育出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700