砂土中柴油迁移土柱实验与反硝化条件下苯生物降解微环境实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以柴油为非混溶污染物的代表,通过土柱实验评价均一砂土介质中柴油在完全干燥、残余含水和水位波动条件下的残余饱和度;并在此基础上进行了淋滤实验,评价淋滤作用对残余饱和度的影响。研究表明介质的粒径和和含水量对柴油的残余饱和度有着较大影响。水的渗透流速小时,对残余油的重分布影响不大,以缓慢的溶解作用为主。
    生物恢复技术是一种极具应用前景的地下水有机污染治理技术。反硝化条件下苯的生物降解目前仍是一个有争议的问题。为探讨反硝化条件下苯的生物降解,以未污染的稻田土为接种物,进行了一系列的微环境实验研究。结果表明反硝化条件下苯和甲苯都能被微生物降解。甲苯比苯更易降解,甲苯的存在促进了苯的降解。本研究中反硝化条件下苯生物降解的一个显著特点是滞后期短,降解速率快,电子受体的消耗量小。在此基础上,提出了今后研究的方向。
When groundwater was contaminated by organic chemicals, the residual saturationof organic chemicals in vadose zone and saturated zone is an important parameter toestimate the range of contamination and choose remediation technology. To evaluate theresidual saturation of diesel oil in uniform sand material under dry, residual watersaturation and water table fluctuation conditions, soil column experiments were carriedout. Then water infiltration tests were performed to estimate the influence on theredistribution of residual diesel oil. The results indicate that grain size and initial watercontent have an important impact on the oil residual. When the infiltration of water is low,it has a small influence on the residual saturation. The main process is solution. Thisstudy indicates that the residual contaminants in vadose zone are long-term pollutionsources, and that can't be ignored in groundwater remediation.
    Bioremediation is a promising technology to remedy and control ground waterorganic pollution. Significant portion of petroleum contaminated aquifers are anaerobicas the result of microbial respiration consuming the low concentrations of oxygen andbecause rates of reoxygen are relatively slow. There are many studies on anaerobicbiodegradation in the past two decades. Up to now, it is still a controversial question thatwhether benzene could be biodegraded under denitrifying condition. This studyinvestigated the biodegradation of benzene in laboratory anaerobic microcosms. Theinocula were from uncontaminated rice soil. The results indicated that benzene andtoluene degradation occurred concomitantly with nitrate reduction in enrichment andtransfer cultures. Toluene was degraded more readily than benzene, and benzenedegradation was enhanced by the presence of toluene. Benzene was biodegraded rapidlyafter a short lag time. Author thinks the species of microbial may be the key factor ofbenzene biodegradation. When benzene doesn't sever as the growth substrate ofindigenous microbial, inoculation might be a feasible means.
引文
[1] Gorelick S. M., R. A. Freeze and D. Donohue et al. Groundwater Contamination. Lewis Publishers, Baca Raton, 1993.
    [2] Zhang W., E. Bouwer and L. Wilsion et al. Biotransformations of aromatic hydrocarbons in subsurface biofilms. Water Science & Technology, 1995, 31:1~14
    [3] Partrick R., E. Ford and J. Quarles. Groundwater Contamination in the U.S.A.. University of Pennsylvania Press, Philadephia, 1987.
    [4] Hirata T., Nakasugi, and Yoshioka M. et al. Groundwater pollution by volatile organochlorines in Japan and related phenomena in the subsurface environment. Water Science & Technology. 1992, 25(11): 9~16.
    [5] Berg, R. V. D. and T. M. Linden. Agricultural pesticides and groundwater. In: Groundwater contamination and control. U. Zoller (ed.). Marcel Dekker, Inc. New York. 1994. 293~313.
    [6] 胡广仁. 柴油泄漏引起的地下水污染. 见:《环境地质研究》第二辑. 北京: 地质出版社, 1993. 120~126
    [7] L. Guanghe, L. Zhaochang and Z. Kun et al. Oxidation-hydrodynamic capture technology for remediation of polluted groundwater. In Proceedings of UNEP-SCOPE workshop on groundwater contamination in China. Beijing, 1995.
    [8] 刘兆昌,聂永锋,朱昆. 地下水系统的污染与控制. 中国环境科学出版社, 北京,1991.
    [9] Fetter, C.W. Contamiant Hydrogeology. Macmillan Publishing Company, New York, 1993.
    [10] Zoftman B. C. J. Persistence of organic contaminants in groundwater. In Quality of groundwater. Edited by Duivenbodne W V. Netherlands, 1981.
    [11] 周文敏, 傅德黔, 孙宗光. 水中优先控制污染物黑名单.. 中国环境监测, 1990, 6(4): 1~3.
    [12] USEPA, Drinking water regulations and health advisories. 1996, October, EPA-822-B-96-002
    [13] 汪光焘. 城市供水行业 2000 年技术进步发展规划. 中国轻工业出版社,北京,1993.
    [14] Travis, C. C. and C. B. Doty. Can contaminated land at Superfund sites be remediated ? Environ. Sci. & Technol. 1990, 24:1464-1466.
    [15] Mohammed, N., R. I. Allayla and G. F. Nakhla et al. State-of-art review of bioremediation studies. J.Environ. Sci. Health, 1996, A31(7):1547~1574.
    [16] Swannel, R. P. J. and I. M. Head. Bioremediation comes of age. Nature, 1993, 368:396~412.
    [17] Bragg, J. R., R. C. Prince, and E. J. Harner et al. Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature, 1993, 368:413~418.
    [18] Fayad, N. M., R. L. Edora, and A. H. EL-Mubarak Effectiveness of a bioremediation product in degrading the oil spilled in the 1991 Arabian Gulf War. Bulletin of environmental Contamination and Toxicology, 1992, 49:787~796.
    [19] Bedient, P. B., H. S. Rifai and C. J. Newell. Ground Water Contamination—Transport and Remediation. PTR Prentice-Hall Inc. New Jersey. 1994.
    [20] Faust, C. R. Transport of immiscible fluids within and below the undersaturated zone: A numerical model. Water Resources Research. 1985, 21(4)587~596.
    [21] Demond, A. H. and P. V. Roberts. An examination of relative permeability relations for two-phase flow in porous media. Water resources Bulletin. 1987, 23(4):617~628.
    [22] Stone, H. L. Estimation of three-phase relative permeability and residual oil data. J. Can. Petr. Technol. 1973, 12(4):53~61.
    [23] Mercer, J. W. and R. M. Cohen. A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. Journal of Contaminant Hydrology. 1990, 6:107~163.
    [24] Corapcioglu M. Y., R. Lingam and K. K. R. Kambham. Multiphase contamintants in natural permeable media: various modeling approaches. In: Migration and fate of pollutants in soils and subsoils. D. Petruzzelli and E. G. Helfferich ed. Springer-Verlog Berlin Heidelberg. 1993.191~220.
    [25] Baehr, A. L. and M.Y. Corapcioglu. A compsitional multiphase model for groundwater contamination by petroleum products, 2, numerical solution. Water Resour. Res. 1987, 23(1):201~213.
    [26] Karickhoff, S. W., D. S. Brown and T. A. Scott. Sorption of hydrophobic pollutants on natural sediments. Water Research, 1979, Vol.13,:241-248.
    [27] Olsen R L and A Davis. Prediction the fate and transport of organic compounds in groundwater, Part 1, Hazardous Materials Control. 1990, 3(3):38-64.
    [28] McCarty, P., L., M. Reinhard and B. E. Rittman. Trace organics in groundwater. Environmental Science and Technology. 1981,15(1):40-51.
    [29] Briggs, G. G. Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficient, water solubilities, bioconcentration factors, and the parachor. Journal of Agriculture and Food Chemistry. 1981, 29: 1050-1059.
    [30] Chiou, C. T., P. E. Poorter, and D. W. Schmedding. Partition equilibrium of nonionic organic compounds between soil organic matter and water. Environmental Science and Technology. 1983, 17(4): 227-231.
    [31] Lyman, W. J. Adsorption coefficient for soil sand sediment. In Handbook of Chemical Property Estimation Methods, ed. W J Lyman et al., McGraw-Hill, New York, 1982.
    [32] Kawamoto, K. Parameters for predicting fate of organochlorine pesticides in the environment: adsorption constant to soil. Chemosphere. 1989, 19: 1223-1231.
    [33] Kenage, F. E. Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicology and Environmental Safety. 1980, 4(1): 26-38.
    [34] Means, J. C., S. G. Wood, and J. J. Hassett et al. Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environmental Science and Technology. 1980, 14(12): 1524-1528.
    [35] Ellgehausen, H.., C. D. Hondt, and R. Fuerer. Reversed-phase chromatography as a general method for determining octan-1-ol/water-water partition coefficients. Pesticide Science. 1981, 12: 219-227.
    [36] Mingelgrin, U., and Z. Gerstl. Reevaluation of partitioning as a mechanism of nonionic chemicals adsorption in soils. Journal of Environmental Quality. 1983, 12(1): 1-11.
    [37] Koch, R. Molecular connectivity index for assessing ecotoxicological behavior of organic compounds. Toxicological and Environmental Chemistry. 1983,:87-96.
    [38] Sabjic, A. Predictions of the nature and strength of soil sorption of organic pollutants by molecular topology. Journal of Agricultural and Food Chemistry. 1984,.32: 243-246.
    [39] Sabjic, A. On the prediction of soil sorption coefficients of organic pollutants from molecular structure: Application of molecular topology model. Environmental Science and Technology. 1987, 21(4): 358-365.
    [40] Stegemeier G. L. Mechanisms of entrapment and mobilization of oil in porous media. In: Improved oil recovery by surfacant and polymer flooding . D. O. Shah (ed.). Academic Press, New York, 1977,55~91.
    [41] Chatzis, I., N. R. Morrow and H. T. Lim. Magnitude and detailed structure of residual oil saturation. Society of Petroleum Engineers of AIME. 1983, 23(2):311~326.
    [42] Wilson, J. L. and S. H. Conrad. Is physical displacement of residual hydrocarbons a realistic possibility in aquifer restoration? In: NWWA/API conference on petroleum hydrocarbons and organic chemicals in groundwater—prevention, detection, and restoration. Texas, 1984, 274~298.
    [43] Hoag, G. E. And M. C. Marley. Gasoline residual saturation in unsaturated uniform aquifer materials. Journal of Environmental Engineering. 1986, 112(3):586~604.
    [44] Kessler, A. And H. Rubin. Relationships between water infiltration and oil spill migration in sandy soils. Journal of Hydrology. 1987, 91:187~204.
    [45] Abdul, A. S. Migration of petroleum products through sandy hydrogeologic systems. GWMR. 1988, 8(4)73~81.
    [46] Pantazidou M. And N. Sitar. Emplacement of nonaqueous liquid in the vadose zone. Water Res. Res. 1993, 29(3):705~722.
    [47] 郑西来,杨喜成,荆静. 地下水系统石油污染研究。西安地图出版社.1998.
    [48] Cole, G. M. Assessment and remediation of petroleum contaminated sites. Lewis Publishers. New York. 1994.
    [49] Hutchins, S. R., W. C. Downs and J. T. Wilson et al. Effect of nitrate addition on bioremediation of fule-contaminated aquifer:field demonstration. Ground Water. 1991, 29(3):571~580.
    [50] Thomas J. M., J. T. Wilson and C. H. Ward. Microbial process in the subsurface. In: subsurface restoration. C.H.Ward et al.(ed.) . Ann Arbor Press, INC., Michigan. 1997. 99~111.
    [51] Smith, R. L. and J. H. Dufff. Denitrification in a sand and gravel aquifer. Appl. Environ. Microbiol. 1988, 54(5):1071~1078.
    [52] Kao C. M. and C. B. Robert. Site-specific variability in BTEX biodegradation under denitrifying conditions. Ground Water, 1997, 35:305~307.
    [53] Chaplle, F. H., J. L. Zelibor and D. J. Grimes. Bacteria in deep coastal plain sediments of Maryland: A possible source of CO2 to groundwater. Water Resource Research. 1987, 23(8):1625~1623.
    [54] Borden, R.C. Natural bioremediation of hydrocarbon-contaminated ground water . In Handbook of bioremediation. R.D.Norris et al.(ed.). Lewis Publishers, Boca Raton. 1993. 177~199.
    [55] Ridgeway, H. F., J. Safarik, and D. Phipps et al. Identification and catabolic activity of well-derived gasoline degrading bacteria from a contaminated aquifer. Appl. Environ. Microbiol. 1990, 56(11):3565~3575
    [56] Stumm, W. and J. J. Morgan. Aquatic Chemistry: An Introduction Emphasizing chemical Equilibria in Natural Waters. John Wiley & Sons, Inc. New York 1981.
    [57] Stark, J. G. and H. G. Wallace. Chemistry Data Book. John Murray Ltd, London, 1982.
    [58] Ghiores, W. C., and D. L. Balkwill. Microbial characterization of subsurface environments. In: Ground Water Quality. Eds.,C. H. Ward et al. John Wiley & Sons, Inc. New York, 1985, 387~401.
    [59] Mckee, J. E., F. B. Laverty and R. M. Hertel. Gasoline in groundwater. Journal WPCF. 1972, 44(2)293~302.
    [60] Cline, P. V., J. J. Delfino and P. S. C. Rao. Partitioning of aromatic constituents into water from gasoline and other complex solvent mixtures. Water Resources Research. 1991,16(1):217~223.
    [61] Wilson, J. T., J. F. McNabb and B. H. Wilson et al. Biotransformation of selected organic pollutants in ground water. Dev. Ind. Microbiol. 1983, 24:225~23
    [62] Chiang, C. Y., J. P. Salamnitro and E. Y. Chai et al. Aerobic biodegradation of benzene, toluene, and xylene in sand aquifer—Data analysis and computer modeling. Ground Water. 1989, 27:823~834
    [63] Song, H. G. and R. Bartha. Bioremediation potential of terrestrial fuel spills. Appl. Environ. Microbiol. 1990, 56:652~656
    [64] Nales, M., B. J. Bulter and E. A. Edwards. Anareobic benzene biodegradation: a microcosm survy. Bioremediation Journal. 1998, 2(2):125~144.
    [65] Grbic-Galic, D. and T. M. Vogel. Transformation of toluene and benzene by mixed methanogenic cultures. Applied and Environmental Microbiology, 1987, 53:254~260.
    [66] Wilson, B. H., G. B. Smith and J. F. Rees. Biotransformation of selected alkylbenzenes and halogenated aliphatic hydrocarbons in metharnogenic aquifer material: a microcosm study. Environ. Sci. Technol. 1986, 20:997~1002.
    [67] Edwards, E. A. and D. Grbic-Galic. Anaerobic degradation of toluene and o-xylene by a methanogenic consortium. Applied and Environmental Microbiology, 1994, 60:313~322.
    [68] Kazumi, J.,M.E. Caldwell and J.M. Suflita et al. Anareobic degradation of benzene in diverse environments. Environ. Sci. Technol. 1997, 31:813~818.
    [69] Weiner, J. M. and D. R. Lovley. Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquifer. Applied and Environmental Microbiology, 1998, 64:1937~1939.
    [70] Edwards E A and D Grbic-Galic. Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions. Applied and Environmental Microbiology, 1992, 58: 2663~2666.
    [71] Edwards E A, L E Wills, M Reinhard M et al. Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions. Applied and Environmental Microbiology, 1992, 58: 794~780.
    [72] Lovley D R, J D Coates, Woodward J C et al. Phillips. Benzene oxidation coupled to sulfate reduction. Applied and Environmental Microbiology, 1995, 61: 953~958.
    [73] Hagg, F., M. Reihard, and P. L. McCarty. Degradation of toluene and p-xylene in anaerobic microcosms:evidence for sulfate as a terminal electron acceptor. Environ. Toxicol. Chem. 1991, 10:1379~1389.
    [74] Beller, H.R.,J.F,. Barker and L.A. Lemon et al. Biotransformation of BTEX under anaerobic denitrifiying conditions:field and laboratory observations. J. Contam. Hydrol. 1992, 11:245~272
    [75] Weiner J M and D R Lovley. Anaerobic benzene degradation in petroleum-contaminated aquifer sediments after inoculation with a benzene-oxidizing enrichment. Applied and Environmental Microbiology, 1998, 64: 775~778.
    [76] Lovley, D. R., J. C. Woodward and F. H. Chapelle. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe (III) ligands. Nature, 1994, 370:128~131.
    [77] Lovley D. R., J. C. Woodward and F. H. Chapelle. Rapid anaerobic benzene oxidation with a variety of chelated Fe (III) Forms. Applied Environ Microbial, 1996,62: 288~291.
    [78] Rugge K., P. L. Bjrg and T. H. Christensen. Distribution of organic compounds from municipal solid waste in the groundwater down gradient of a landfill (Grindsted, Denmark). 1995, 29: 1395~1400.
    [79] Anderson R. T., J. N. Rooney-Varga and C. V. Gaw et al. Anaerobic benzene oxidation in the Fe (III) Reduction zone of petroleum-contaminated aquifers. Environ. Sci. Technol., 1988, 32: 1222~1229.
    [80] Kuhn E. P., P. J. Colberg and J. L. Schnoor et al. Microbial transformation of substituted benzenes during infiltration of river water to groundwater: laboratory column studies. Environ. Sci. Technol., 1985, 19: 961~968.
    [81] Zeyer J., E. P. Kuhn and R. P. Schwarzenbach. Rapid microbial mineralization of toluene and 1,3-dimethylbenzene in the absence of molecular oxygen. Appl. Environ. Microbiol., 1986, 52:94~947.
    [82] Kuhn E P, J Zeyer and P Eicher et al. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl. Environ. Microbiol., 1988, 54: 490~496.
    [83] Evans P J, D T Mang, K S Kim and L Y Young. Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ. Microbiol., 1991, 57:1139~1145.
    [84] Hutchins S R, G W Sewell and D A Kovacs et al. Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions. Enciron. Sci. Technol., 1991, 25: 68~76.
    [85] Barbaro J R , J F Barker and L A Lemon et al.. Biotransformation of BTEX under anaerobic denitrifying conditions: field and laboratory observations. J Contam Hydrol, 1992, 11:245~172.
    [86] Anid P J, P J J Alvarez and T M Vogel. Biodegradation of monoaromatic hydrocarbons in aquifer columns amended with hydrogen peroxide and nitrate. Wat. Res., 1993, 27: 685~691.
    [87] Alvarez P J J and T M Vogel. Degradation of BTEX and their aerobic metabolites by indigenous microorganisms under nitrate reducing conditions. Wat. Sci. Technol., 1995, 31:15~28.
    [88] Ball H A and Martin R. Monoaromatic hydrocarbon transformation under anaerobic conditions ant seal beach, California: laboratory studies. Environmental Toxicology and Chemistry, 1996, 15: 114~122.
    [89] Lovley D. R. Potential for anaerobic bioremediation of BTEX in petroleum-contaminate aquifers. Journal of Industrial Microbiology & Biotechnology, 1997, 18:75~81.
    [90] Kao C. M. and Robert C. B. Site-specific variability in BTEX biodegradation under denitrifying conditions. Ground Water, 1997, 35: 305~307.
    [91] Borden, R. C., R. A. Daniel and L. E. LeBrun et al. Intrinsic biodefradation of MTBE and BTEX in a gasoline-contaminated aquifer. Water resources Research. 1997, 33(5)1105~1115.
    [92] Thoms, J. M., C. L. Bruce and V. R. Gordy et al. Assessment of the microbial potential for nitrate-enhanced bioremediation of a JP-4fuel-contaminated aquifer. Journal of Industrial Microbiology & Biotechnology, 1997, 18:213~221
    [93] Major, D. W., C. L. Mayfield and J. F. Barker. Biotransformation of benzene by denitrification in aquifer sand. Ground Water, 1988, 26:8~14.
    [94] Gersberg, R. M, W. J. Dawsey and M. D. Bradley. Biodegradation of monoaromatic hydrocarbons in groundwater under denitrifying conditions. Bull. Environ. Contami. Toxicol. 1991, 47:230~237.
    [95] Morgan, P., S. T. Lewis and R. J. Watkinson. Biodegradation of benzene, toluene, ethylbenzene, and xylenes in gas-condensate-contaminated groundwater. Envoron. Pollu. 1993, 83:181~190.
    [96] Burland S. M. and E. A. Edwards. Anaerobic benzene biodegradation linked t nitrate reduction. Appl. Environ. Microbiol., 1999, 65:529~533.
    [97] 吴玉成,钟佐燊,张建立. 反硝化条件下微生物降解地下水中的苯和甲苯.中国环境科学, 1999, 19:505~509
    [98] 俞毓馨. 环境工程微生物检验手册. 中国环境科学出版社,北京,1990.
    [99] Payne, W. J. Denitrification. John Wiley & Sons, Inc. New York, 1981.
    [100] Martin, K., L.L. Parsons and R.R. Murry et al. Dynamics of soil denitrifier populations: Relationships between enzyme activity, most-probable-number counts and actual N gas loss. Appl. Environ. Microbiol. 1988, 45:185~190.
    [101] Meyer, J. , M. Marcus and H. Bergman. Inhibitory interactions of aromatic organic during microbial degradation. Environ. Toxicol. Chem. 1984, 3:583~587.
    [102] Arin, E., B. K. Jensen, and A. T. Gunderssen. Substrate interactions during aerobic biodegradation of benzene. Appl. Envoron. Microbial. 1989, 55:3221~3225.
    [103] Karlson,U. And W. T. Frankenberger. Microbial degradation of benzene and toluene in groundwater. Bull. Environ. Contam. Toxicol. 1989, 43:505~510.
    [104] Thomas, J. M., V. R. Gordy and S. Fiorenza et al. Biodegradation of BTEX in subsurface materials contaminated with gasoline:Granger, Indiana. Water Sci. Technol. 1990, 6:53~62.
    [105] Rreinhard, M., S. Shang and P. K. Kitanids et al. In situ BTEX biotransformation under enhanced nitrate-and sulfate-reducing conditions. Environ. Sci. TEchnol. 1997, 31:28~36.
    [106] Davis, E., H. E. Murry and J. G. Liehr et al. Basic microbial deradation rates and chemical byproducts of selected organic compounds. Water Res. 1981, 15:1125~1127.
    [107] Verheul, J. H. A. M., R. Van den Berg and D. H. Eikelboom. In situ biorestoration of a subsoil contamiated with gasoline. In: K. Wolf et al.(ed.), Contaminated Soil. Kluwer Academic Publishers, Norwell, Mass. 1988, 705~716.
    [108] Anderson, W. C. Bioremediation. American Academy of Environmental Engineers. 1995.
    [109] Alvarez, P. J., P. J. Anid and T. M. Vogel. Substrate interaction of benzene, toluene and p-xylene during microbial degradation by pire cultures and mixed culture aquifer slurries. Appl. Environ. Microbial. 1991, 57:2981~2985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700