络合—超滤耦合新技术及过程模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究聚电解质络合—超滤耦合新技术,采用聚丙烯酸钠选择性络合重金属离子,通过聚砜中空纤维超滤膜实现分离。在揭示金属离子及聚电解质溶液超滤行为的基础上,围绕络合体系截留特性、金属离子选择性分离、络合物解离等方面,系统探讨络合—超滤耦合过程的参数优化、反应动力学行为和数学模型,并考察在低浓度含铜线路板工业废水中的应用。
     1、金属离子溶液超滤行为。在金属离子溶液超滤过程中,系统研究了超滤膜的电性能,并考察流动电位与膜渗透性、离子传递之间的相互关系。结果表明,在Na+或K~+、ca~(2+)或Mg~(2+)、Al~(3+)溶液中,膜等电点分别为2.9±0.1、3.5±0.1、3.8±0.1。在等电点处,膜渗透性达到最大值。金属离子截留系数随流动电位增大而增大。对重金属离子而言,膜对其亲和能力顺序为Hg~(2+)>Cu~(2+)>Cd~(2+)。
     2、聚电解质溶液超滤特性。考察操作参数对聚电解质超滤过程的影响,探讨聚电解质在超滤膜表面吸附机理,进而建立膜污染阻力模型。研究发现,当pH<4.5时,聚电解质在膜表面吸附明显,导致膜通量显著降低。聚丙烯酸钠在膜表面吸附动力学符合拟二级速率方程,吸附等温线可采用Langmuir方程描述。在高pH及低pH值下,膜总阻力分别取决于膜自身阻力R_m和不可逆污染阻力R_f;而在整个pH范围内,可逆及不可逆浓差极化层阻力R_(p,r)、R_(p,ir)影响不大。
     3、聚电解质络合—超滤耦合过程。研究络合反应动力学和聚电解质络合容量,优化耦合过程操作参数,并对两相模型予以修正。所得结论为,在优化的操作条件下,Hg~(2+)、Cu~(2+)和Cd~(2+)络合平衡时间分别为25、40和50min,络合反应动力学符合拟一级速率方程,聚丙烯酸钠PAASS对Hg~(2+)、Cu~(2+)和Cd~(2+)络合容量分别为1.0、0.05和0.033gmetal/g PAASS。对计算截留系数的两相模型进行多项修正后,模拟值与实验值能更好地吻合。
     4、聚电解质络合—超滤耦合选择性分离金属离子。比较单一及混合金属离子溶液截留行为,优化操作参数,研究混合体系金属离子的选择性分离。结果表明,pH值和负载比LR对分离效果影响明显。在pH=5时,控制Hg~(2+)和Cd~(2+)混合体系LR=1.5,选择性分离系数S
A novel coupling technology of complexation-ultrafiltration has been studied, in which poly (acrylic acid) sodium salt (PAASS) was reacted with metal ions to form metal complexes and polysulfone hollow fiber ultrafiltration membrane was used to concentrate the complexes. Based on the disclosure of ultrafiltration behavior during filtrating metal ions and PAASS solutions respectively, the coupling process has been investigated systematically, including rejection coefficient of complexation systems, selective separation of metal ions, and decomplexation of complexes. The process operational parameters, reaction kinetics and mathematic models are also concerned. At last, it has been discussed to apply the technology to the treatment of wastewater containing copper ions discharged from a printed wiring board factory.
    1. Ultrafiltration of metal ion solutions. After the charge properties of the membranes were known fully, the relationships between membrane permeability, ion transmission and streaming potential were further investigated in the process of metal ion solution ultrafiltration. It was found that isoelectric points (IEP) of the membranes were 2.9±0.1, 3.5 ± 0.1, 3.8 ± 0.1 respectively in the solution of Na~+ or K~+, Ca~(2+) or Mg~(2+), Al~(3+). At the IEP, The permeability of the membrane reached maximum value, and rejection coefficient of metal ion increased with increasing streaming potential. For heavy metal ions, it could be seen that the affinity to membrane followed Hg~(2+)> Cu~(2+)> Cd~(2+).
    2. Ultrafiltration of PAASS solutions. Effects of operational parameters on PAASS solution ultrafiltration have been studied. The resistance model for membrane fouling was established on the basis of PAASS adsorption on membrane surface. The results showed that since the membranes could adsorb PAASS remarkably at pH<4.5, permeate flux declined rapidly. A pseudo-second-order model could describe the adsorption kinetics, and the Langmuir equation fit perfectly to the adsorption isotherm. Membrane total resistances depended respectively on membrane resistance R_m or irreversible fouling resistance R_f at high or low pH values. On the other hand, reversible and irreversible concentration polarization resistances R_(p,r) and R_(p,ir) could be neglected.
引文
[1] 王湛.膜分离技术基础[M].北京:化学工业出版社,2000,1-5.
    [2] 王学松.膜分离现状及发展趋势[J].化学进展,1994,6(4):321-335.
    [3] 张国俊,刘忠洲.膜过程中超滤膜污染机制的研究及其防治技术进展[J].膜科学与技术,2001,21(4):39-45.
    [4] Aimar P, Taddei C, Lafaile J Pet al.Mass transfer limitations during ultrafltration of cheese whey with inorganic membranes[J].J.Membr.Sci., 1988, 38: 203-212.
    [5] Zeaman LJ.Adsorption effects in the rejection of macromolecules by ultrafiltration membranes[J].J.Membr.Sci., 1983, 15: 214-230.
    [6] Jones K L, Omelia C R.Ultrafiltration of protein and humic substances: effect of solution chemistry on fouling and flux decline[J].J.Membr.Sci., 2001, 193: 163-173.
    [7] Nystrom M, Zhu H.Characterization of cleaning results using combined flux and streaming potential methods[J].J.Membr.Sci., 1997,131:195-205.
    [8] Softer Y, Gilron J, Adin A.Streaming potential and SEM-EDX study of UF membranes fouled by colloidal iron[J].Desalination, 2002,146: 115-121.
    [9] Koutake M, Mastsuno I, Nabetani I, et al.Classification of resistance to permeation caused by fouling during ultrafiltration of whey and skim milk[J].Biosci.Biotechnol.Biochem, 1992, 56(5):697-700.
    [10] Zhu H, Nystrom M, Cleaning results characterized by flux, streaming potential and FTIR measurements, Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 1998,138:309-321.
    [11] Hanemaaijer J H, Robbertsen T, Van Den Boomgaa T, et al.Fouling of ultrafiltration membranes: the role of protein adsorption and salt precipitation[J].J.Membr.Sci., 1989, 40(2): 199-217.
    [12] Cafiizares P, Lucas A D, Perez A, et al.Effect of polymer nature and hydrodynamic conditions on a process of polymer enhanced ultrafiltration[J].J.Membr.Sci., 2005, 253: 149-163.
    [13] McDonogh R M, Bauser H, Sontakke M, et al.Concentration polarization and adsorption effects in cross flow ultrafiltration of proteins[J].Desalination, 1990, 79: 217-231.
    [14] Guell C, Davis R H.Protein fouling during microfiltaation of protein mixtures[J].J.Membr.Sci., 1996, 116: 269-284.
    [15] Bowen W R, Hughes D T.Properties of microfiltration membranes.Part 2: adsorption of bovine serum albumin at aluminium oxide membranes[J].J.Membr.Sci., 1990, 51: 189-200.
    [16] Cheryan M, Merin U.A study of fouling phenomenon during ultrafiltration of cottage cheese whey: ultrafiltration membranes and application.A.R.Cooper (ed.) Plenum Press, New York, 1997: 96-133.
    [17] Grandison A S, Rao R H G.Effect of soluble calcium of milk on fouling of UF membranes[J].J.Food Science.1994, 65: 249-256.
    [18] 姜丽琴,张国亮,张凤宝等.用于清除胆红素的壳聚糖膜的吸附性能研究[J].高校化学工程学报,2003,17(2):128-133.
    [19] 李秀芬.膜法实现味精行业清洁生产的膜吸附污染及其防治研究[D].天津:南开大学,2003,50-58.
    [20] 伍艳辉.膜污染层分析及膜过程传质强化[D].天津:天津大学,2000,23-75.
    [21] Sheldon J M, Reed I M, Hawes C R.The fine-structure of ultrafiltration membranes.Ⅱ.Protein fouled membranes[J].J.Membr.Sci., 1991, 62:87-102.
    [22] Pontie M, Durand-Bourlier L, Lemordant D, et al.Control fouling and cleaning procedures of UF membranes by a streaming potential method[J].Separation and Purification Technology, 1998,14: 1-11.
    [23] Cabassud C, Laborie S, Durand-Boudier L, et al.Air sparging in ultrafiltration holow fibers: relationship between flux enhancement, cake characteristics and hydrodynamic parameters[J].J.Membr.Sci., 2001,181:57-69.
    [24] 崔岸,胡勇有,黄蕙华等.大豆蛋白超滤中污染膜的清洗研究.食品与发酵工业[J].1999,24(6):24-26.
    [25] Kim K J, Sun P S, Chen V, et al.The cleaning of ultrafiltration membranes fouled by protein[J].J.Membr.Sci., 1993, 80:241-249
    [26] Pontie M, Chasseray X, Lemordant D et al.The streaming potential method for characterization of ultrafiltration organic membranes and the control of cleaning treatments[J].J.Membr.Sci.,1997, 129:125-133.
    [27] Munoz-Aguado M J, Wiely D E, Fane A G.Enzymatic and detergent cleaning of a polysulfone ultrafiltration membrane fouled with BSA and whey[J].J.Membr.Sci., 1996, 117:175-187.
    [28] Huisman I H, Pradanos P, Hernandez A.Electrokinetic characterization of ultrafiltration membranes by streaming potential, electroviscous effect and salt retention[J].J Membrane Sci, 2000, 178: 55-64.
    [29] Ricq L, Pagetti J.Inorganic membrane selectivity to ions in relation with streaming potential[J].J.Membr.Sci., 1999, 155: 9-18.
    [30] Ricq L, Pierre A, Reggiani J C et al.Streaming potential and ions transmission during ultra- and micro- filtration on inorganic membranes[J].Desalination, 1997, 114: 101-109.
    [31] Huisman I H, Praidanos P, Hernandez A.Electrokinetic characterisation of ultrafiltration membranes by streaming potential, electroviscous effect, and salt retention[J].J.Membr.Sci., 2000, 178: 55-64.
    [32] Causserand C, Nystrom M, Aimar P.Study of streaming potentials of clean and fouled ultrafiltration membranes[J].J.Membr.Sci., 1994, 88:211-222.
    [33] Nystrom M.Fouling of unmodified and modified polysulfone ultrafiltration membranes by ovalbumin[J].J.Membr.Sci., 1989, 44:183-196.
    [34] Jucker C, Clark M M.Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes[J].J.Membr.Sci., 1994, 97: 37-52.
    [35] Ricq L, Narcon S, Reggiani J C, et al.Streaming potential and protein transmission ultrafiltration of single proteins and proteins in mixture: β-lactoglobulin and lysozyme[J].J.Membr.Sci., 1999, 156: 81-96.
    [36] Rodemann K, Staude E.Electrokinetic characterization of porous membranes made from epoxidized polysulfone[J].J.Membr.Sci., 1995, 104, 147-155.
    [37] Mockel D, Staude E, Dal-Cin M, et al.Tangential flow streaming potential measurements: Hydrodynamic cell characterization and zeta potentials of carboxylated polysulfone membranes[J].J.Membr.Sci., 1998, 145: 211-222.
    [38] Lin S W, Espinoza-Gomez H.Development of energy-saving spinning membrane system and negatively charged ultrafiltration membranes for recovering oil from waste machine cutting fluid[J].Desalination, 2005, 174: 109-123.
    [39] Um M J, Yoon S H, Lee C H, et al.Flux enhancement with gas injection in crossflow ultrafiltration of oily wastewater[J].Water Research, 2001, 35: 4095-4101.
    [40] Srijaroonrat P, Julien E, Aurelle Y.Unstable secondary oil/water emulsion treatment using ultrafiltration: fouling control by backflushing[J].J.Membr.Sci., 1999, 159,: 11-20.
    [41] Ahmad A L, Ismail S, Bhatia S.Membrane treatment for palm oil mill effluent: Effect of transmembrane pressure and cross-flow velocity[J].Desalination, 2005, 179: 245-255.
    [42] 王静荣,吴光夏,吴开芬等.中空纤维超滤膜处理油田含油污水的研究[J].膜科学与技术,1998,18(2):25-27.
    [43] 王东海、文湘华.低浓度生活污水化学强化一级处理的试验研究[J].给水排水,1999,25(9):10-13.
    [44] 师绍琪、袁琳、蒋展鹏等.生活污水生物絮凝吸附强化一级处理的研究[J].给水排水,1998,14(2):5-7.
    [45] Xing C H, Tardieu E, Qian Y, et al. Ultrafiltration membrane bioreactor for urban wastewater reclamation[J]. J. Membr. Sci., 2000, 177: 73-82.
    [46] Tchobanoglous G, Darby J, Bourgeous K, McArdle J, et al. Ultrafiltration as an advanced tertiary treatment process for municipal wastewater[J]. Desalination, 1998, 119: 315-321.
    [47] 孙德栋 张启修.用超滤法处理回用生活污水[J].中南工业大学学报(自然科学版),2003,34(2):144-147.
    [48] 曾坚贤,石顺存,史红文.絮凝—膜过滤处理生活污水的研究[J].工业水处理,2004,24(9):69-73.
    [49] He Y L, Xu P, Li C J, Zhang B. High-concentration food wastewater treatment by an anaerobic membrane bioreactor[J]. Water Research, 2005, 39: 4110-4118.
    [50] Bohdziewicz J, Sroka E. Treatment of wastewater from the meat industry applying integrated membrane systems[J]. Process Biochemistry, 2005, 40: 1339-1346.
    [51] Mutlu S H, Yetis U, Gurkan T, et al. Decolorization of wastewater of a baker's yeast plant by membrane processes[J]. Water Research, 2002, 36: 609-616.
    [52] Afonso M D, Borquez R. Review of the treatment of seafood processing wastewaters and recovery of proteins therein by membrane separation processesprospects of the ultrafiltration of wastewaters from the fish meal industry[J]. Desalination, 2002, 142: 29-45.
    [53] Chai X J, Mi Y L, Yue P L, et al. Bean curd wastewater treatment by membrane separation[J]. Separation and Purification Technology, 1999, 15: 175-180.
    [54] Tay J H, Jeyaseelan S Membrane filtration for reuse of wastewater from beverage industry[J]. Resources, Conservation and Recycling, 1995, 15: 33-40.
    [55] Schoeberl P, Brik M, Braun R, et al. Treatment and recycling of textile wastewatercase study and development of a recycling concept[J]. Desalination, 2005, 171: 173-183.
    [56] Fersi C, Gzara L, Dhahbi M. Treatment of textile effluents by membrane technologies[J]. Desalination, 2005, 185: 399-409.
    [57] Badani Z, Ait-Amar H, Si-Salah Aet al. Treatment of textile waste water by membrane bioreactor and reuse[J]. Desalination, 2005, 185: 411-417.
    [58] Marcucci M, Ciardelli G, Matteucci A, et al. Experimental campaigns on textile wastewater for reuse by means of different membrane processes[J]. Desalination, 2002, 149: 137-143.
    [59] Banata F, Al-Bastakib N. Treating dye wastewater by an integrated process of adsorption using activated carbon and ultrafiltration[J]. Desalination, 2004, 170: 69-75.
    [60] Zhang G J, Liu Z Z, Song L F, et al. One-step cleaning method for flux recovery of an ultrafiltration membrane fouled by banknote printing works wastewater[J]. Desalination, 2004, 170: 271-280.
    [61] 冯冰凌,叶菊招,朗雪梅.聚氨基葡萄糖超滤膜的研制及其在印染废水处理中的应用[J].工业水处理,1998,18(4):16-18.
    [62] Koyuncu I, Yalcin F, Ozturk I. Color removal of high strength paper and fermentation industry effluents with membrane technology[J]. Water Science and Technology, 1999, 40: 241-248.
    [63] Martin Lo Y, Cao D, Argin-Soysal S, et al. Recovery of protein from poultry processing wastewater using membrane ultrafiltration[J]. Bioresource Technology, 2005, 96: 687-698.
    [64] Fugere R, Mameri N, Gallot J E et al. Treatment of pig farm effluents by ultrafiltration[J]. J. Membr. Sci., 2005, 255: 225-231.
    [65] Konieczny K, Bodzek M. Ultrafiltration of latex wastewaters[J]. Desalination, 1996, 10: 75-82.
    [66] Sostar-Turk S, Petrinic I, Simonic M. Laundry wastewater treatment using coagulation and membrane filtration[J]. Resources, Conservation and Recycling, 2005, 44,: 185-196.
    [67] Laitinen N, Kulovaara M, Levanen E, et al. Ultrafiltration of stone cutting mine wastewater with ceramic membranes—a case study[J]. Desalination, 2002, 149: 121-125.
    [68] Ersu C B, Braida W, Chao K P, et al. Ultrafiltration of ink and latex wastewaters using cellulose membranes[J]. Desalination, 2004, 164: 63-70.
    [69] 孟祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社,2000.
    [70] 王绍文,姜凤有.重金属废水治理技术[M].北京:冶金工业出版社,1993.
    [71] Kobya M, Demirbas E, Senturk E, et al. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone[J]. Bioresource Technology, 2005, 96: 1518-1521.
    [72] Mohan D, Chander S. Single component and multi-component adsorption of metal ions by activated carbons[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 177: 183-196.
    [73] Larous S, Meniai A H, Lehocine M B. Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust[J]. Desalination, 2005, 185: 483-490.
    [74] Srivastava P, Singh B, Angove M. Competitive adsorption behavior of heavy metals on kaolinite[J]. Journal of Colloid and Interface Science, 2005, 290: 28-38.
    [75] Erdem E, Karapinar N, Donat R. The removal of heavy metal cations by natural zeolite[J]. Journal of Colloid and Interface Science, 2004, 280: 309-314.
    [76] 张永锋,许振良.络合-超滤过程中电沉积回收重金属研究[J].化学工程,2005,33(1),48-51.
    [77] Pardar M, Bouzek K, Laurich M, et al. Application of a three-dimensional electrode to the electrochemical removal of copper and zinc ions from diluted solutions[J]. Water Environment Research, 2000, 72(5): 618-625.
    [78] Fernandez Y, Marauon E, Castrillon L, et al. Removal of Cd and Zn from inorganic industrial waste leachate by ion exchange[J]. Journal of Hazardous Materials, 2005, 126: 169-175.
    [79] Dabrowski A, Hubicki Z, Podkoscielny P, et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 2004, 56: 91-106.
    [80] Johnston H K. Reverse osmosis rejection of heavy metal cations[J]. Desalination, 1975, 16: 205-224.
    [81] Qdais H A, Moussa H. Removal of heavy metals from wastewater by membrane processes: a comparative study[J]. Desalination, 2004, 164: 105-110.
    [82] Ozaki H, Sharma K, Saktaywin W. Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters[J]. Desalination, 2002, 144: 287-294.
    [83] Ujang Z, Anderson G K. Performance of low pressure reverse osmosis membrane (LPROM) for separating mono-and divalent ions[J]. Water Science and Technology, 1998, 38: 521-528.
    [84] Fujiwara N, Numata K, Kumano A, et al. The effect of heavy metal ions on the oxidation of cellulose triacetate membranes[J]. Desalination, 1994, 96: 431-439.
    [85] Mohammad A W, Othaman R, Hilal N. Potential use of nanofiltration membranes in treatment of industrial wastewater from Ni-P electroless plating[J]. Desalination, 2004, 168: 241-252.
    [86]Linde K, Jonsson A S. Nanofiltration of salt solutions and landfill leachate [J]. Desalination, 1995, 103:223-232.
    [87]Bougen A, Rabiller-Baudry M, Chaufer B, et al. Retention of heavy metal ions with nanofiltration inorganic membranes by grafting chelating groups [J]. Separation and Purification Technology, 2001, 25:219-227.
    [88]Wong F S, Qin J J, Wai M N, et al. A pilot study on a membrane process for the treatment and recycling of spent final rinse water from electroless plating [J]. Separation and Purification Technology, 2002, 29: 41-51.
    [89]Jakobs D, Baumgarten G. Nanofiltration of nitric acidic solutions from picture tube production[J]. Desalination, 2002,145:65-68.
    [90]Liu C K, Li C W, Lin C Y. Micellar-enhanced ultrafiltration process (MEUF) for removing copper from synthetic wastewater containing ligands[J]. Chemosphere, 2004, 57: 629-634.
    [91]Juang R S, Xu Y Y, Chen C L. Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration[J]. J. Memb. Sci., 2003, 218:257-267.
    [92]Tung C C, Yan Y M, Chang C H et al. Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration with mixed surfactants [J]. Waste Management, 2002, 22: 695-701.
    [93]Yurlova L, Kryvoruchko A, Kornilovich B. Removal of Ni(II) ions from wastewater by micellar-enhanced ultrafiltration [J]. Desalination, 2002, 144:255-260.
    [94]Gzara L, Dhahbi M. Removal of chromate anions by micellar-enhanced ultrafiltration using cationic surfactants [J]. Desalination, 2001, 137:241-250.
    [95]Akita S, Li Y, Takeuchi H. Micellar-enhanced ultrafiltration of gold(III) with nonionic surfactant[J]. J. Memb. Sci., 1997,133:189-194.
    [96]Pramauro E, Prevot A B, Zelano V, et al. Preconcentration and selective metal ion separation using chelating micelles [J]. Talanta,1994,41:1261-1267.
    [97]Mohammadi T, Razmi A, Sadrzadeh M. Effect of operating parameters on Pb~(2+) separation from wastewater using electrodialysis[J]. Desalination, 2004, 167:379-385.
    [98]Marder L, Bernardes A M, Ferreira J Z. Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system[J]. Separation and Purification Technology, 2004, 37:247-255.
    [99]Amado F D R, Rodrigues L F, Rodrigues M A S, et al. Development of polyurethane/polyaniline membranes for zinc recovery through electrodialysis[J]. Desalination, 2005, 186: 199-206.
    [100] Xue D M, Song D Z, Liu X Y. The treatment of cupric chloride solution after the etching process by ion exchange membrane electrodialysis[J]. Desalination, 1987, 62: 251-257.
    [101] 王骋,姚秉华,谢伟.重金属镉离子的支撑液膜分离研究[J].水处理技术,2004,30(5):266-269.
    [102] Venkateswaran P, Palanivelu K. Studies on recovery of hexavalent chromium from plating wastewater by supported liquid membrane using tfi-n-butyl phosphate as carrier[J]. Hydrometallurgy, 2005, 78: 107-115.
    [103] 潘涌璋.液膜法处理电路板刻蚀废液中的铜[J].上海环境科学,1996,15 (9):25-27.
    [104] 许效红,袁云龙,竺和平等.乳状液膜萃取铬(Ⅵ)的研究[J].山东大学学报(自然科学版)1999,34(2):208-213.
    [105] Hayashl Y, Yuzaki S, Kawanishi T, et al. An efficient ethanol concentration process by vapor permeation through asymmetric polyimide membrane[J]. J. Membr. Sci., 2000, 177: 233-239.
    [106] Wang D M, Lin F C, Wu T T, et al. Pervaporation of water-ethanol mixtures through symmetric and asymmetric TPX membranes[J]. J. Membr. Sci., 1997, 123: 35-46.
    [107] 陈翠仙,韩宾兵,秦继定等.渗透蒸发和蒸气渗透技校的研究、应用现状及发展.第四届全国膜过程学术报告会论文集(南京),2000,15-23.
    [108] Lawson K W, Lloyd D R. Membrane distillation Ⅱ: Direct contact MD[J]. J. Membr. Sci., 1996, 120: 123-133.
    [109] Khayet M, Velazquez A, Mengual J I. Direct contact membrane distillation of humic acid solutions[J]. J. Membr. Sci., 2004, 240: 123-128.
    [110] 苏毅,杨亚玲,胡亮.膜萃取技术及其应用研究进展.化工装备技术,2002,23(1):15-18.
    [111] 王玉军,骆广生,戴酞元.膜萃取的应用研究.现代化工,2000,20(1):13-18.
    [112] Hossain M M. Reactive extraction of amino acids and dipeptides using an extra-flow hollow-fiber module[J]. Separation and Purification Technology, 2005, 42: 227-236.
    [113] Tong Y P, Hirata M, Takanashi Hirokazu, et al. Extraction of lactic acid from fermented broth with microporous hollow fiber membranes[J]. J. Membr. Sci., 1998, 143: 81-91.
    [114] Kubota F, Kakoi T, Goto M, et al. Permeation behavior of rare earth metals with a calix[4] arene carboxyl derivative in a hollow-fiber membrane[J]. J. Membr. Sci., 2000, 165: 149-158.
    [115] 马润宇,王艳辉,涂感良.膜结晶技术研究进展及应用前景[J].膜科学与技术,2003,23(4):145-150.
    [116] Curcio E, Criscuoli A, Drioli E. Membrane crystaliizers[J]. Industry and Engineering Chemistry Research, 2001, 40 (12): 2679-2684.
    [117] Tun C M, Fane A G, Matheickal J T. Membrane distillation crystallization of concentrated salts—flux and crystal formation[J]. J. Membr. Sci, 2005, 257: 144-155.
    [118] Curcio E, Simone S, Profio G D, et al. Membrane crystallization of lysozyme under forced solution flow[J]. J. Membr. Sci, 2005, 257: 134-143.
    [119] Curcio E, Profio G D, Drioli E. Recovery of fumaric acid by membrane crystallization in the production of L-malic acid[J]. Separation and Purification Technology, 2003, 33: 63-73.
    [120] Curcio E, Profio G D, Drioli E. Membrane crystallization of macromolecular solutions[J]. Desalination, 2002, 145: 173-177.
    [121] 张宝泉,刘丽丽,林跃生.超临界流体与膜过程耦合技术的研究进展[J].现代化工,2003,23(5):9-12.
    [122] Semenova S I, Ohya H, Higashijima T, et al. Separation of supercritical CO_2 and ethanol mixtures with an asymmetric polyimide membrane[J]. J. Membr. Sci., 1992, 74: 131-139.
    [123] Carlson L H C, Bolzan A, Machado R A F. Separation of d-limonene from supercritical CO2 by means of membranes[J]. The Journal of Supercritical Fluids, 2005, 34: 143-147.
    [124] Spricigo C B, Bolzan A, Machado R A F, et al. Separation of nutmeg essential oil and dense CO2 with a cellulose acetate reverse osmosis membrane[J]. J. Membr. Sci., 2001, 188: 173-179.
    [125] Patil V E, van den Broeke L J P, Vercauteren F F, et al. Permeation of supercritical carbon dioxide through polymeric hollow fiber membranes[J]. J. Membr. Sci., 2006, 271: 77-85.
    [126] Sarmento L A V, Spricigo C B, Petrus J C C, et al. Performance of reverse osmosis membranes in the separation of supercritical CO2 and essential oils[J]. J. Membr. Sci., 2004, 237: 71-76.
    [127] Melzoch K, Rychtera M. Application of a membrane recycle bioreactor for continuous ethanol production[J]. Appl. Microbiol. Biotechnol., 1991, 34(4): 469-472.
    [128] Ohashi R, Kamoshita Y. Continuous production and separation of ethanol without effluence of wastewater using a distiller integrated SCM-Reactor system[J]. Journal of Fermentation and Bioengineering, 1998, 86(2): 220-225.
    [129] Prazeres D M F, Serralheiro M L M, Cabral J M S. Continuous production and simultaneous precipitation of a dipeptide in a reversed micellar membrane reactor[J]. Enzyme Microb. Technol., 1999, 24(5): 507~513.
    [130] Artiga P, Ficara E, Malpei F, et al. Treatment of two industrial wastewaters in a submerged membrane bioreactor[J]. Desalination, 2005, 179: 161-169.
    [131] Liu R, Huang X, Chen L J, et al. Operational performance of a submerged membrane bioreactor for reclamation of bath wastewater[J]. Process Biochemistry, 2005, 40: 125-130.
    [132] Wenten I G, Widiasa I N. Enzymatic hollow fiber membrane bioreactor for penicillin hydrolysis[J]. Desalination, 2002, 149: 279-285.
    [133] Giorno L, Molinari R, Natoli M, et al. Hydrolysis and regioselective transesterification catalyzed by immobilized lipases in membrane bioreactors[J]. J. Membr. Sci., 1997, 125: 177-187.
    [134] 李发永,李阳初,孔瑛等.无机膜及无机膜反应器研究进展[J].膜科学与技术,2002,26(6):48-53.
    [135] Abashar M E E, Al-Rabiah A A. Production of ethylene and cyclohexane in a catalytic membrane reactor[J]. Chemical Engineering and Processing, 2005, 44: 1188-1196.
    [136] Lin W H, Chang H F. A study of ethanol dehydrogenation reaction in a palladium membrane reactor[J]. Catalysis Today, 2004, 97: 181-188.
    [137] Juang R S, Liang J F. Equilibrium studies for the interaction of aqueous metal ions and polyacrylic acid by a batch ultrafiltration method[J]. J. Membr. Sci., 1993, 82: 163-171.
    [138] Geckeler K E, Volchek K. Removal of hazardous substances from water using ultrafiltration in conduction with soluble polymers[J]. Environment Science and Technology, 1996, 30, 725-737.
    [139] Volchek K, Keller L, Veliccogena D, et al. Selective removal of metal ions from ground water by polymeric binding and microfiltration[J]. Desalination, 1993, 89: 247-254.
    [140] Volchek K, Krentsel E, Zhilin Y. Polymer binding / ultrafiltration as a method for concentration and separation metals[J]. J. Membr. Sci., 1993, 79: 253-272.
    [141]Muslehiddinoglu J, Uludag Y, Onder H, et al. Effect of operating parameters on selective separation of heavy metals from binary mixture via polymer enhanced ultrafiltration[J]. J. Membr. Sci., 1998,140: 251-266.
    [142]Korus I, Bodzek M, Loska K. Removal of zinc and nickel ions from aqueous solutions by mean of the hybrid complexation-ultrafiltration process[J]. Separation and Purification Technology, 1999,17: 111-116.
    [143]Bodzek M, Korus I, Loska K. Application of the hybrid complexation-ultrafiltration process for removal of metal ions from galvanic wastewater[J]. Desalination, 1999,121: 117-121.
    [144]Uludag Y, Ozbelge H O, Yilmaz L. Removal of mercury from aqueous solutions via polymer-enhanced ultrafiltration[J]. J. Membr. Sci., 1997, 129: 93-99.
    [145]Molinari R, Gallo S, Argurio P. Metal ions removal from wastewater or washing water from contaminated soil by ultrafiltration-complexation[J]. Water Research, 2004,38:593-600.
    [146]Juang R S, Chiou C H. Ultrafiltration rejection of dissolved ions using various weakly basic water-soluble polymers[J]. J. Membr. Sci., 2000,177: 207-214.
    [147]Juang R S, Chen M N. Retention of copper(II) - EDTA chelates from dilute aqueous solutions by a polyelectrolyte-enhanced ultrafiltration process [J]. J. Membr. Sci., 1996, 119: 25-37.
    [148]Baticle P, Kiefer C, Lakhchaf N, et al. Treatment of nickel containing industrial effluents with a hybrid process comprising of polymer complexation-ultrafiltration-electrolysis[J]. Separation and Purification Technology, 2000,18: 195-207.
    
    [149]Masse P, Choe T B, Verdier A. Separation of Cu( II)- Ni( II) by a complexation- ultrafiltration method[J]. Annali di Chimica, 1987,77:925-934.
    [150]Rumeau M, Persin F, Sciers V, et al. Separation by coupling ultrafiltration and complexation of metallic species with industrial water soluble polymers. Application for removal or concentration of metallic cations[J]. J. Membr. Sci., 1992,73:313-322.
    [151]Mundkur S D, Watters J C. Polyelectrolyte enhanced ultrafiltration of copper from a waste stream[J]. Separation Science and Technology, 1993,28,1157-1169.
    [152]Strathman H. Selective removal of heavy metals ions from aqueous solution by diafiltration of macromolecular complexes[J]. Separation Science and Technology, 1980,15,1135-1152.
    [153]Mavrov V, Petrova I, Davorsky K, et al. Studies of the UF-25PAN membrane characteristics in the complexing ultrafiltration process of Cu, Ni and Co with polyvinylalcohol[J]. Desalination, 1991, 83: 289-300.
    [154]Kryvoruchko A, Yurlova L, Kornilovich B. Purification of water containing heavy metals by chelating-enhanced ultrafiltration[J]. Desalination, 2002, 144: 243-248.
    [155]Sarzanini C, Masse P, Mentasti E, et al. Preconcentration of iron by complexation and ultrafiltration[J]. Separation Science and Technology, 1990, 25: 729-737.
    [156]Juang R S, Liang J F. Removal of copper and zinc from aqueous sulfate solution with polyacrylic acid by a batch ultrafiltration-complexation process[J]. J. Membr. Sci., 1993, 82: 175-183.
    [157]Barron-Zambrano J, Laborie S, Viers P, et al. Mercury removal and recovery from aqueous solutions by coupled complexation-ultrafiltration and electrolysis [J]. J. Membr. Sci., 2004, 229: 179-186.
    [158]Canizares P, Perez A, Camarillo R. Recovery of heavy metals by means of ultrafiltration with water- soluble polymers: calculation of design parameters[J]. Desalination, 2002, 144: 279-285.
    [159]Sabate J, Pujola M, Llorens J. Two-phase model for calcium removal from aqueous solution by polymer enhance ultrafiltration[J]. J. Membr. Sci., 2002, 204: 139-152.
    [160]Rether A, Schuster M. Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers [J]. Reactive and Functional Polymers, 2003, 57: 13-21.
    [161]Aliane A, Bounatiro N, Cherif A T, et al. Removal of chromium from aqueous solution by complexation - ultrafiltration using a water-soluble macroligand[J]. Water Research. 2001, 35: 2320-2326.
    [162]Zakrzewska-Trznadel G. Radioactive solutions treatment by hybrid complexation-UF-NF process[J]. J. Membr. Sci., 2003,225: 25-39.
    [163]Zhang Yong-Feng, Xu Zhen-Liang. Study on the treatment of industrial wastewater containing Pb~(2+) ion using a coupling process of polymer complexation - ultrafiltration[J]. Separation Science and Technology, 2003,38: 1585-1596.
    [164]Barron-Zambrano J, Laborie S, Viers P, et al. Mercury removal from aqueous solutions by complexation-ultrafiltration[J]. Desalination, 2002, 144: 201-206.
    [165]Vieira M, Tavares C R, Bergamasco R, et al. Application of ultrafiltration- complexation process for metal removal from pulp and paper industry wastewater [J]. J. Membr. Sci., 2001, 194: 273-276.
    [166] Dilek C, Ozbelge H O, Bicak N, et al. Removal of boron from aqueous solutions by continuous polymer-enhanced ultrafiltration with polyvinyl alcohol[J]. Separation Science and Technology, 2002, 37: 1257-1271.
    [167] Tomida T, Hamaquchi K, Tunashima S, et al. Binding properties of a water-soluble chelating polymer with divalent metal ions measured by ultrafiltration[J]. Industrial and Engineering Chemistry Research, 2001, 40: 3557-3562.
    [168] Kryvoruchko A P, Yurlova L Y, Atamanenko I D, et al. Ultrafiltration removal of U(Ⅵ) from contaminated water[J]. Desalination, 2004, 162: 229-236.
    [169] Llorens J, Pujola M, Sabate J. Separation of cadmium from aqueous streams by polymer enhanced ultrafiltration: a two phase model for complexation binding[J]. J. Membr. Sci., 2004, 239: 173-181.
    [170] Petrov S, Nenov V. Removal and recovery of cooper from wastewater by a complexation-ultrafiltration process[J]. Desalination, 2004, 162: 201-209.
    [171] Bohdziewicz J. Removal of chromium ions (Ⅵ) from underground water in the hybrid complexation-ultrafiltration process[J]. Desalination, 2000, 129: 227-235.
    [172] Pookrod P, Hailer K J, Scamehom J F. Removal of arsenic anions from water using polyelectrolyte-enhanced ultrafiltration[J]. Separation Science and Technology, 2004, 39: 811-831.
    [173] 张永锋,许振良.络合—超滤过程处理重金属工业废水[J].化学工程,2004,32(3):54—58.
    [174] Jarvis N V, Wagener J M. Mechanistic studies of metal ion binding to watersoluble polymers using potentiometry[J]. Talanta, 1995, 42(2): 219-226.
    [175] Tavares C R, Vieira M, Petrus J C C, et al. Ultrafiltration/complexation process for metal removal from pulp and paper industry wastewater[J]. Desalination, 2002, 144: 261-265.
    [176] 国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法,第四版[M].北京:中国环境科学出版社,2002.
    [177] Willard H H, Merritt L L, Dean, J J A, et al. Instrumental Methods of Analysis, 7th edition[M]. Belmont: Wadsworth Publishing Co., 1988, 184-186.
    [178] Vonk P, Noordman R, Schippers D et al. Ultrafiltration of a polymer-electrolyte mixture[J]. J. Membr. Sci., 1997, 130: 249-263.
    [179] Hernandez A, Calvo J I, Martinez L, et al. Measurement of the hydraulic permeability of microporous membranes from the streaming potential decay[J]. Sep. Sci. and Tech., 1991, 26: 1507-1514.
    [180] Christoforou C C, Westermann-Clark G B, Anderson J L. The streaming potential and inadequacies of the Helmholtz equation[J]. Journal of Colloid and Interface Science, 1985, 106: 1-11.
    [181] Yaroshchuk A E, Vovkogon Y A. Changes in pH value caused by pressure-driven transport of strong electrolytes across charged membranes[J]. Journal of Colloid and Interface Science, 1995, 172: 324-330.
    [182] Szymczyk A, Pierre A, Reggiani J C et al. Characterization of the electrokinetic properties of plane inorganic membranes using streaming potential measurements[J]. J Membrane Sci, 1997, 134: 59-66.
    [183] Yaroshchuk A E, Vovkogon Y A. Phenomenological theory of pressure-driven transport of ternary electrolyte solution with a common coion and its specification for capillary space-charge model[J]. J Membrane Sci, 1994, 86: 1-18.
    [184] Bowen W R, Mukhtar H. Characterization and prediction of separation performance of nanofiltration membrane[J]. J Membrane Sci, 1996, 112: 263-274.
    [185] 杭州大学化学系分析化学教研室编.分析化学手册,第1分册[M].北京:化学工业出版社,1997,100-102.
    [186] 郑德圣.天然锰钾矿处理含Hg~(2+),Cd~(2+),Pb~(2+)废水实验研究[D].北京:中国地质大学,2002,4-5.
    [187] 王德铭.水环境汞污染及其毒理反应系统的研究进展[J].水科学进展,1997,8(4):359-365.
    [188] Canizares P, Lucas A D, Perez A et al. Effect of polymer nature and hydrodynamic conditions on a process of polymer enhanced ultrafiltration[J]. J Membrane Sci, 2005, 253: 149-163.
    [189] Tsapiuk E A. Ultrafiltration separation of aqueous solutions of poly(ethylene glycol)s on the dynamic membrane formed by gelatin[J]. J Membrane Sci, 1996, 116: 17-29.
    [190] Vladisavljevic G T, Vukosavljevic P, Bukvic et al. Permeate flux and fouling resistance in ultrafiltration of depectinized apple juice using ceramic membranes[J]. J Food Engineering, 2003, 60: 241-247.
    [191] 姜丽琴,张国亮,张凤宝等.用于清除胆红素的壳聚糖膜的吸附性能研究[J].高校化学工程学报,2003,17(2):128-133.
    [192] 钟璟,徐南平,时钧.溶液环境对陶瓷膜微滤微米级颗粒悬浮液的影响[J].高校化学工程学报,2000,14(1):19-24.
    [193] Labbc J P, Quemerais A, Michel F et al. Fouling of inorganic membranes during whey ultrafiltration: analytical methodology[J]. J Membrane Sci, 1990, 51: 293-307.
    [194] 曾坚贤,邢卫红,徐南平.肌苷发酵液的陶瓷膜过滤研究[J].湖南科技大学学报(自然科学版),2004,19(2):91-94.
    [195] Morlay C, Cromer M, Mouginot Y et al. Potentiometric study of Cu(Ⅱ)and Ni(Ⅱ) complexation with two high molecular weight poly(acrylic acids)[J]. Talanta, 1998, 45: 1177-1188.
    [196] Morlay C, Cromer M, Mouginot Y et al. Potentiometric study of Cd(Ⅱ)and Pb(Ⅱ) complexation with two high molecular weight poly(acrylic acids); comparison with Cu(Ⅱ )and Ni(Ⅱ)[J]. Talanta, 1999, 48: 1159-1166.
    [197] 实用化学手册编写组.实用化学手册[M].北京:科学出版社,2001,P492-493.
    [198] 李梦龙.化学数据速查手册[M].北京:化学工业出版社,2003,p217-218.
    [199] Alguacil F J, Alonso M. Separation of zinc(Ⅱ) from cobalt(Ⅱ) solutions using supported liquid membrane with DP-8R (di(2-ethylhexyl) phosphoric acid) as a cartier[J]. Separation and Purification Technology, 2005, 41: 179-184.
    [200] Pastor M R, Samper-Vidal E, Galvan P V et al. Analysis of the variation in the permeate flux and of the efficiency of the recovery of mercury by polyelectrolyte enhanced ultrafiltration (PE-UF)[J]. Desalination, 2002, 151: 247-251.
    [201] 候立安.特殊废水处理技术及工程实例[M].化学工业出版社,2003,p253-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700