鼻咽癌MSCT灌注与血管生成、缺氧状态的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分VX2肿瘤MSCT灌注值与微血管的关系
     目的
     研究VX2肿瘤生长过程中微血管生成情况,以及肿瘤微血管密度与MSCT灌注值之间的变化关系。
     材料和方法
     8只腿部肌肉种植VX2肿瘤的新西兰大白兔,分别于肿瘤生长第7、14、21、28天行MSCT灌注扫描,兔耳缘静脉注射碘对比剂(碘海醇300mgI/ml)6ml,流率0.6ml/s,注射同时行定层MSCT扫描,扫描条件4×5mm,旋转时间0.75s,间隔时间1.5s,持续时间至注射后45s,扫描图像输送入Function分析软件中,自动生成灌注图,手绘ROI区分别测量肿瘤及正常肌肉组织内血流量(BF)、最大强化指数(PEI)、峰值到达时间(TTP)及血容量(BV)作为灌注指标。于第7、14、21、28天行CT灌注扫描后分别处死瘤兔2只,取出肿瘤组织行免疫组化CD34单克隆抗体染色,进行微血管密度(Micro-vessel density,MVD)计数。不同时间段灌注值比较行方差分析SNK均数比较,各项MSCT各灌注指标与MVD计数之间行Pearson相关分析。P值小于0.05定为统计学显著性差异阈值。
     结果
     肿瘤生长大小分别为14.1±2.9mm、27.7±4.5mm、39.5±8.3mm、52.5±7.8mm,第7天MSCT灌注值BF为135.10±13.08ml/100g/min,其余灌注参数分别为PEI73.11±5.25HU,TTP18.57±1.38,BV45.0±2.53ml/100g,至第28天,相应灌注值为BF46.05±7.55ml/100g/min、PEI70.25±6.25HU、TTP35.90±1.90s、BV51.63±4.77ml/100g,第7、14天的CT灌注值与第21、28天灌注值中的BF和TTP存在显著性差异,四次灌注中的BV和PEI没有统计学显著性差异。第7、14、21、28天肿瘤标本MVD计数分别为36.5±2.12,41.5±4.94,38.0±4.24,46.5±2.12。CT灌注值中的BV与MVD存在相关性(r=0.71,P=0.02),PEI与MVD存在弱相关(r=0.68,P=0.06),BF、TTP与MVD之间没有显著性差异(r=0.59,r=0.15,P>0.05)。
     结论
     VX2兔肿瘤模型中,随肿瘤生长,其灌注值BF在早期较高,随肿瘤生长灌注值BF下降,早期MSCT灌注值与肿瘤生长后期灌注值有明显差异。在肿瘤多层CT灌注成像的灌注值中BV值和PEI值与VX2肿瘤血管生成存在相关关系,MSCT灌注成像可以反映VX2肿瘤微血管生成特征,以及肿瘤在不同生长时期的微血管变化情况。
     第二部分VX2肿瘤MSCT灌注值与缺氧状态、血管生成的关系
     目的
     研究VX2肿瘤乏氧状态与微血管生成情况的相互影响,探讨MSCT灌注值与VX2肿瘤乏氧状态、微血管生成之间的关系。
     材料和方法
     8只腿部肌肉种植VX2肿瘤的新西兰大白兔,分别于肿瘤生长第7、14、21、28天行MSCT灌注扫描,兔耳缘静脉注射碘对比剂(碘海醇300mgI/ml)6ml,流率0.6ml/s,注射同时行定层MSCT扫描,扫描条件4×5mm,旋转时间0.75s,间隔时间1.5s,持续时间至注射后45s,扫描图像于Function分析软件中,分别测量肿瘤及正常肌肉组织内血流量(BF)、最大强化指数(PEI)、峰值到达时间(TTP)及血容量(BV)作为灌注指标。于肿瘤种植后第7、14、21、28天行CT灌注扫描后分别处死瘤兔2只,肿瘤组织行HIF-1α、VEGF免疫组化染色,根据肿瘤细胞着色深度和阳性细胞百分比统计HIF-1α、VEGF表达等级。不同时间段HIF-1α、VEGF表达等级分布分别进行x~2检验,HIF-1α、VEGF表达等级之间行x~2检验,HIF-1α、VEGF与CT灌注值、MVD之间行Spearman等级相关分析。
     结果
     肿瘤第7、14、21、28天HIF-1α等级由低到高再降低,但其变化没有统计学显著性差异(x~2=1.49,P=0.22),第7、14、21、28天VEGF分布无显著性差异x~2=0.27,P=0.60,HIF-1α、VEGF之间等级分布也没有显著性差异:不同时间段CT灌注BF值与HIF-1α表达存在相关性(r=0.87,P<0.05),不同时间段CT灌注值中PEI值和BV值与VEGF之间存在相关性(r=0.75,P=0.03;r=0.77,P=0.02)。MVD计数与HIF-1α和VEGF均没有明显相关关系。
     结论
     HIF-1α在VX2肿瘤血管生成调控和肿瘤生长中有着重要作用,VEGF的上调是肿瘤早期缺氧调控的重要途径,也存在其它途径参与。CT灌注值不仅与肿瘤内部微血管密度有关,部分灌注值能够反映肿瘤缺氧状态及其内部血管生成调节的过程,VX2肿瘤血流灌注与肿瘤缺氧状态和血管生成之间存在依存关系。
     第三部分鼻咽癌MSCT灌注成像与其微血管生成关系的研究
     目的
     研究鼻咽癌MSCT灌注值与肿瘤微血管密度(MVD)、肿瘤分期的关系,探讨MSCT灌注成像对鼻咽癌微血管生成评价的价值。
     材料和方法
     经活检病理证实的鼻咽癌62例,静脉注射50ml对比剂后行CT灌注扫描,动态图像经function CT软件处理,自动生成灌注图像,手绘感兴趣区分别测量鼻咽癌肿瘤部位的血流量(BF)、最大强化指数(PEI)、峰值到达时间(TTP)及血容量(BV)作为灌注指标,其中35例鼻咽癌活检组织行免疫组化CD34单抗染色后,Weidner方法计数微血管密度(Micro-vessel density,MVD)。各组灌注值比较行方差分析及均数SNK比较,CT灌注值与MVD之间行Pearson相关分析,CT灌注值、MVD与肿瘤分期之间行Spearman等级相关分析,P值小于0.05定为统计学有显著性意义。
     结果
     35例鼻咽癌肿瘤CT灌注值BF为51.65±3.25ml/100g/min,其余各参数分别为PEI28.65±1.52HU,TTP30.68±2.01s,BV12.49±1.07ml/100g,PEI和BV与鼻咽癌分期相关(r=0.46,r=0.53,P<0.05),BF和BV与鼻咽癌独立T分期相关(r=0.37,r=0.42,P<0.05),其余指标与独立的T分期和N分期无明显相关性;35例鼻咽癌MVD为41.29±14.79,与BF、PEI、TTP、BV均存在相关性,MVD与肿瘤TNM分期存在相关性,但与独立的T分期和N分期无明显相关性。
     结论
     鼻咽癌具有特征的CT灌注表现,肿瘤灌注值明显高于周围组织,多层CT灌注成像的灌注值可以反映鼻咽癌微血管密度特征,灌注值高低与微血管密度存在相关关系,CT灌注中的PEI和BV值与肿瘤血管生成及鼻咽癌的TNM分期均存在一定的相关性。
     第四部分鼻咽癌缺氧状态、血管生成和CT灌注之间的关系
     目的
     研究鼻咽癌缺氧状态、血管生成与CT灌注之间的关系,探讨多层CT灌注成像作为鼻咽癌缺氧状态及血管生成评估手段的可行性。
     材料和方法
     经活检病理证实的鼻咽癌62例中,具备完整资料的35例鼻咽癌活检标本行免疫组化HIF-1α和VEGF单抗染色,按阳性细胞着色程度和阳性细胞百分比评定HIF-1α和VEGF表达等级,35例患者均于放疗前一周内行CT灌注检查,静脉注射50ml对比剂后行CT灌注扫描,动态系列图像经function CT软件处理,自动生成各值灌注图像,手绘ROI区测量鼻咽癌肿瘤部位的血流量(BF)、最大强化指数(PEI)、峰值到达时间(TTP)及血容量(BV)作为灌注指标。CT灌注值、HIF-1α、VEGF、MVD之问行Spearman等级相关分析,HIF-1α和VEGF分级与肿瘤分期之间行双向有序行列表x~2检验。
     结果
     鼻咽癌肿瘤CT灌注值BF、PEI、TTP、BV分别为51.65±3.25ml/100g/min、28.65±1.52HU、30.68±2.01s、12.49±1.07ml/100g,35例鼻咽癌中HIF-1α阳性染色27例(77.14%),其表达等级与肿瘤分期之间没有显著性差异(x~2=2.91,P=0.08),与CT灌注中BF值存在负相关(r=-0.54,P<0.05),与BV值弱相关(r=0.42,P=0.07);VEGF阳性表达31例(88.57%),表达等级与肿瘤分期之间有显著性差异(x~2=4.10,P=0.04),VEGF与CT灌注中PEI值存在相关性(r=0.57,P<0.05)。HIF-1α和VEGF表达等级之间有显著关系(x~2=9.70,P<0.05),HIF-1α和VEGF与MVD之间均存在相关关系(r=0.62,r=0.78 P<0.05)。
     结论
     鼻咽癌HIF-1α和VEGF阳性表达率较高,而且两者表达存在依从关系,HIF-1α表达虽然与肿瘤分期没有显著性关系,但HIF-1α与肿瘤灌注值BF及BV之间、及MVD之间存在相关性;VEGF与肿瘤分期和肿瘤微血管生成均存在联系,并与CT灌注中的PEI存在相关,CT灌注成像中BF、BV、PEI能够部分反映鼻咽癌的乏氧状态和血管生成的部分特征,对于HIF-1α和VEGF的血管调控尚待进一步研究。
     第五部分鼻咽癌MSCT灌注、血管生成及缺氧状态与放疗的关系
     目的
     研究鼻咽癌MSCT灌注、缺氧状态及血管生成与肿瘤放疗后短期肿瘤消退的关系,评价MSCT灌注通过缺氧状态及血管生成评估鼻咽癌放疗敏感性的可行性。
     材料和方法
     从62例鼻咽癌中,选取临床病理及影像资料完整的鼻咽癌35例,35例鼻咽癌活检标本行免疫组化HIF-1α和VEGF单抗染色,按阳性细胞着色程度和阳性细胞百分比评定HIF-1α和VEGF表达等级。35例患者均于放疗前、放疗中(34cGy~38cGy)、放疗结束后行MSCT灌注检查,静脉注射50ml对比剂后行CT灌注扫描,动态图像经function CT软件处理,自动生成灌注图像,并测量每次鼻咽癌肿瘤部位的血流量(BF)、最大强化指数(PEI)、峰值到达时间(TTP)及血容量(BV)作为灌注指标。测量肿瘤长径计算每例鼻咽癌放疗中、放疗结束时的肿瘤消退率,并按照肿瘤消退率将35例鼻咽癌分为放疗敏感组(Gs)和放疗不敏感组(Gns),对两组的CT灌注值、MVD分别进行组间t检验,两组HIF-1α和VEGF表达等级行x~2检验。对两组放疗前后BF、PEI、TTP和BV值分别进行方差分析和SNK均数比较,了解放疗前后灌注值变化情况。
     结果
     35例鼻咽癌放疗中及放疗结束后总体肿瘤消退率为0.41±0.20和0.54±0.24,消退在0.11-1.0之间,放疗中及放疗结束后消退率的比较两次复查消退率并无显著性差异,其中敏感组消退率为0.50±0.17和0.67±0.16,不敏感组消退率为0.19±0.05和0.24±0.03,两组间消退率比较存在显著性差异(t=5.66,t=8.11,P<0.01),敏感组(Gs)初始CT灌注值BF为57.04±18.39ml/100g/min,其余各参数分别为PEI27.72±9.46HU,TTP27.32±8.57s,BV13.14±5.77ml/100g;不敏感组初始灌注值分别为BF38.20±14.62ml/100g/min,PEI24.00±7.49HU,TTP 39.10±15.24s,BV10.89±7.64ml/100g,两组间初始BF值、TTP值之间有显著性差异(F=8.23,F=8.48,P<0.01),但两组之间的PEI和BV没有显著性差异。比较两组放疗前后灌注值的比较发现,敏感组放疗后BF、PEI和BV均有下降,TTP上升,均具有统计学差异,其中BF值和PEI值在放疗中即有明显下降(F=50.59,F=4.85,P<0.01);而在不敏感组,仅有BF值在放疗后下降(F=9.64,P<0.01),PEI、TTP和BV改变均无显著性差异。敏感组及不敏感组HIF-1α表达阳性率分别为76%(19/25)和80%(8/10),其等级分布在两组中有显著性差异(x~2=6.00,P<0.05),VEGF表达阳性率分别为92%(23/25)和80%(8/10),其等级分布在两组中没有显著性差异(x~2=2.01,P=0.16)。敏感组及不敏感组MVD分别为46.6±13.25和35.0±15.8,两组间MVD比较具有显著性差异(F=4.90,P<0.05)。
     结论
     鼻咽癌放疗敏感性与CT灌注值、HIF-1α表达等级、MVD之间有着明显的相关性,与VEGF表达等级无明显相关,CT灌注中高灌注的肿瘤,HIF-1α表达等级低,MVD高,对放疗敏感性高,反之CT灌注低的肿瘤,MVD低,HIF-1α表达等级高,对放疗有一定的抵抗。对放疗敏感的鼻咽癌在放疗中即可发现BF及PEI值明显下降,放疗后灌注值改变不明显的鼻咽癌常提示肿瘤消退不满意,对放疗不敏感。CT灌注成像能够部分反映鼻咽癌的乏氧状态和血管生成,可通过CT灌注值高低和放疗中灌注值的变化对鼻咽癌放疗敏感性作出评估。
PARTⅠThe Correlation Of MSCT Perfusion Parameters WithAngiogenesis In VX2 Tumor
     Objective
     To study angiogenesis of VX2 soft-tissue tumor in the rabbit, and analysis thecorrelation of MSCT perfusion parameters and micro-vessel density(MVD) during theprocess of tumor growth.
     Materials and methods
     8 rabbits were implanted with VX2 tumor tissue in proximal thighs. MSCT perfusionscan were performed on those rabbits with Mx8000 Quad CT in the 7,14,21,28 days afterimplant respectively. The functional maps were produced automatically and perfusionparameters including blood flow(BF), peak enhancement index(PEI), time to peak(TTP)and blood volume(BV) were calculated by the workstation. The perfusion values weremeasured by the manually defined ROI within tumor. 2 rabbits were sacrificed every 7 daysafter CT perfusion, and the resected specimens were staining by CD34 for quantification ofMVD. The perfusion parameters and MVD of different phase were analyzed by ANOVA;MSCT perfusion parameters were correlated with MVD by Pearson correlation analysis,with significance assigned at the 5% level.
     Results
     The tumor diameters of 7~(th), 14~(th), 21~(st), 28~(th) day were 14.1mm, 27.7mm, 39.5mm and52.5mm. The values of BF, PEI, TTP and BV in 7~(th) day were 135.10±13.08ml/100g/min,73.11±5.25HU, TTP 18.57±1.38s and 45.0±2.53ml/100g, and which were 46.05±7.55ml/100g/min, 70.25±6.25HU, 35.90±1.90s and 51.63±4.77ml/100g in 28~(th) day respectively.The BF and TTP values of 7~(th) day and 14~(th) day have significant difference with those in 21~(st)day and 28~(th) day. The MVD counting of 7~(th), 14~(th), 21~(st), 28~(th) day were 36.5±2.12, 41.5±4.94,38.0±4.24, 46.5±2.12. BV (r=0.71, P=0.02)and PEI(r=0.68, P=0.06) were correlatedpositively with MVD, but BF (r=0.59, P>0.05) and TTP (r=0.15, P>0.05) did not.
     Conclusion
     MSCT perfusion was an accurate and relatively simple functional imaging techniqueto give a quantitative assessment of blood perfusion of soft-tissue tumors. Tumor BV andPEI correlate positively with MVD and may reflect the character and change ofmicro-vessel of tumor in different stages.
     PARTⅡThe Relationship Among MSCT Perfusion Parameters,Angiogenesis And Hypoxia In The VX2 Tumor Model
     Objective
     To study the relationship of angiogenesis, hypoxia and MSCT perfusion parameters ofVX2 soft-tissue tumor in the rabbit model, and to analysis the influence by hypoxia,angiogenesis and blood flow during the process of tumor growth.
     Materials and methods
     8 rabbits were implanted with VX2 tumor tissue in proximal thighs. MSCT perfusionscan were performed on those rabbits with Mx8000 Quad CT in the 7,14,21,28 days afterimplant respectively. The 45s-perfusion CT examination was underwent and perfusionmaps were produced automatically. Blood flow(BF), peak enhancement index(PEI), time topeak(TTP) and blood volume(BV) were measured by the manually defined ROI withintumor. 2 rabbits were sacrificed every 7 days after CT perfusion, and the resectedspecimens were stained immunohistochemically to identified HIF-1αand VEGF forassessment of their stage. The perfusion parameters and stage of HIF-1αand VEGF wereanalyzed using Spearmen rank correlation, the distribution of HIF-1αand VEGF staginganalyzed usingχ~2 test, with significance assigned at the 5% level.
     Results
     The HIF-1αstaging of 7~(th), 14~(th), 21~(st), 28~(th) day increase gradually with time and thenfollowing decrease. The HIF-1αstaging of vary time have no significance difference(χ~2=1.49, P=0.22). There were no significance difference of VEGF staging(χ~2=0.27, P=0.60). There were no significant associations between HIF-1αand VEGF. Significantcorrelation were observed between BF with HIF-1α(r=0.87, P<0.05), PEI and BV werecorrelated positively with VEGF(r=0.75, P=0.03; r=0.77, P=0.02). There were nosignificant associations between MVD and HIF-1αor VEGF.
     Conclusion
     HIF-1αis an important factor in the regulation of angiogenesis and tumor growth in VX2 soft-tissue tumor, up-regulating of VEGF is the major path in hypoxia modulation,other pathway exist too. Blood perfusion values correlate positively with HIF-1αandVEGF and they may reflect the regulation of hypoxia and micro-vessel partially in tumor. Ithave correlation among the blood perfusion, hypoxia and angiogenesis in VX2 tumor.
     PARTⅢThe Correlation Between MSCT Perfusion Parametersand Tumor Angiogenesis in Nasopharyngeal Carcinoma
     Objective
     To explore the correlation of MSCT perfusion parameters and biologic character innasopharyngeal carcinoma (NPC), To investigate the clinical utility of MSCT perfusion fornasopharyngeal carcinoma.
     Materials and methods
     62 NPC patients were underwent MSCT perfusion imaging of nasopharynx withMx8000 Quad CT. The perfusion data of tumors and nasopharyngeal wall such as bloodflow(BF), peak enhancement index(PEI), time to peak(TTP) and blood volume (BV)weremeasured. MVD was counted by CD34 staining of biopsy tissues using Weidner's methodin 35 cases of NPC. The perfusion values in different stages were analyzed with ANOVAand means SNK. The correlation of MSCT perfusion parameters with MVD was analysedusing Pearson correlation analysis, perfusion parameters and MVD were correlated withMVD by Spearman rank correlation analysis, with significance assigned at the 5% level.
     Results
     In 35 cases of NPC, BF, PEI, TTP and BV of NPC lesion were 51.65±3.25ml/min/100g, 28.65±1.52HU, 30.68±2.01s, 12.49±1.07 ml/100g respectively, PEI andBV in NPC were correlated positively with its clinical stage(r=0.46, r=0.53, P<0.05), BFand BV were correlated positively with T stage of NPC(r=0.37, r=0.42, P<0.05), otherperfusion values have no correlation with T stage or N stage. The value of MVD in 35 casesNPC group was 41.29±14.79, which was correlated with BF, PEI, TTP and BV values ofMSCT perfusion. MVD was correlated positively with TNM stage of NPC, but have nocorrelation with T stage or N stage.
     Conclusion
     It had characteristic manifest in NPC perfusion image. NPC have highly perfusionthan normal tissue. The MSCT perfusion values can reflect the character of micro-vessel ofNPC and clinical stage. PEI and BV have positively correlation with angiogenesis and clinical stage of nasopharyngeal carcinoma.
     PARTⅣThe Study of Correlation in MSCT Perfusion arametersand hypoxia, angiogenesis in Nasopharyngeal Carcinoma
     Objective
     To explore the correlation of MSCT perfusion parameters and hypoxia, angiogenesisin nasopharyngeal carcinoma (NPC), To investigate the value of clinical utility to predicthypoxia or angiogenesis by MSCT perfusion for nasopharyngeal carcinoma.
     Materials and methods
     35 NPC patients which have complete image and tissue specimens, were underwentMSCT perfusion imaging of nasopharynx with Mx8000 Quad CT. The perfusion data oftumors such as blood flow(BF)、peak enhancement index(PEI)、time to peak(TTP) andblood volume (BV)were calculated. The biopsy specimens were staining by HIF-1αandVEGF. The correlation of MSCT perfusion parameters, HIF-1α, VEGF and MVD wereanalysed using Spearman rank correlation analysis, the relationship in HIF-1α, VEGF andclinical stage were analyzed byχ~2 test, with significance assigned at the 5% level.
     Results
     Mean BF、PEI、TTP and BV of NPC lesion were 51.65±3.25 ml/min/100g,28.65±1.52HU, 30.68±2.01s, 12.49±1.07ml/100g respectively. In 35 cases of NPC,HIF-1αexpress positively in 27 cases(77.14%), HIF-1αexpress ranks had no correlationwith clinical stage of NPC(χ~2=2.91, P=0.08), but had correlations with BF (r=-0.54,P<0.05) and BV(r=0.42, P=0.07). VEGF express positively in 31 cases(88.57%), VEGFexpression ranks had significant correlation with clinical stage of NPC(χ~2=4.10, P<0.05),and its ranks had correlations with PEI of tumor perfusion(r=0.57, P<0.05). Theexpression ranks of HIF-1αand VEGF had significant correlation(χ~2=9.70, P=0.01).HIF-1αand VEGF were correlated positively with MVD of NPC(r=0.62, r=0.78, P<0.05).
     Conclusion
     It have highly positive express of HIF-1αand VEGF in NPC specimen, and their express rank have positive correlation. Though the express of HIF-1αhave no correlationwith clinical stage, it have positive correlation with BF, BV in MSCT perfusion and MVDof specimen. The VEGF express correlate positively with clinical stage, angiogenesis andPEI in MSCT perfusion. The BF, BV and PEI of MSCT perfusion can reflect partially thecharacter of angiogenesis and hypoxia of NPC. However, the regulation of hypoxia, bloodflow and microvessel angiogenesis in NPC still need to be explore further.
     PARTⅤThe Study Of Relationship Of Radiation Therapy withMSCT Perfusion Parameters, Hypoxia and Angiogenesis InNasopharyngeal Carcinoma
     Objective
     To study the relationship of tumor regression with its MSCT perfusion parameters,hypoxia and angiogenesis in nasopharyngeal carcinoma (NPC), To evaluate the feasibilityof MSCT perfusion to predict radiosensitivity, hypoxia and angiogenesis fornasopharyngeal carcinoma.
     Materials and methods
     35 NPC patients, which have complete image and tissue specimen, were underwentMSCT perfusion examination of nasopharynx with Mx8000 Quad CT three times, whichwere before radiation therapy, within radiation therapy(34cGy~38cGy) and radiationtherapy ending respectively. The perfusion data of tumors such as blood flow(BF), peakenhancement index(PEI), time to peak(TTP) and blood volume (BV)were measured inperfusion maps. The tumor regression rate were calculated through the diameters of tumorbefore and after radiotherapy.35 cases of NPC was divided into radiosensitivity group andnon-radiosensitivity group. MSCT perfusion parameters and MVD of two group wereanalyzed by t-test. The express ranks were analyzed byχ~2 test. The perfusion data of NPCin different time were analyzed by ANOVA and mean SNK, with significance assigned atthe 5 % level.
     Results
     Mean tumor regression rate in 35 cases was 0.41±0.20 and 0.54±0.24 in processingand ending of radiotherapy respectively, tumor regression rate in radiosensitivity group was0.50±0.17 and 0.67±0.16,those in non-radiosensitivity group was 0.19±0.05 and 0.24±0.03,significant difference was exist in tumor regression rate in two group(t=5.66, t=8.11,P<0.01). The preliminary BF value in radiosensitivity group was 57.04±18.39ml/100g/min,its PEI, TTP, BV values were 27.72±9.46 HU, 27.32±8.57s, 13.14±5.77ml/100grespectively. The preliminary BF value in non-radiosensitivity group was 38.20±14.62 ml/100g/min, its PEI, TTP, BV values were 24.00±7.49HU, 39.10±15.24, 10.89±7.64ml/100g respectively. The preliminary BF value and TTP value between two groups hadsignificant difference(F=8.23, F=8.48, P<0.01), no significant difference exist in PEI andBV value. In radiosensitivity group, BF, PEI and BV values decreased, TTP value increasedwith radiotherapy, BF and PEI markly decreased within radiation therapy(34cGy~38cGy)(F=50.59, F=4.85, P<0.01); but in non-radiosensitivity group, only BF value decreasedin the ending of radiation therapy(F=9.64, P<0.01), the change of PEI、TTP and BV hadno significant difference. HIF-1αpositive express in two group were 76%(19/25)and80%(8/10), their distribution had significant difference(χ~2=6.00, P<0.05), VEGF positiveexpress in two group were 92%(23/25) and 80%(8/10), their distribution had no significantdifference(χ~2=2.01, P=0.16), MVD in two group were 46.6±13.25 and 35.0±15.8, MVD intwo group had significant difference(F=4.90, P<0.05).
     Conclusion
     There were positive correlation among radiosensitivity with blood perfusion,HIF-1αand MVD of NPC, but VEGF express did not. The high CT perfusion valuetumors were radiosensitivity, and had highly MVD value and lowly HIF-1αexpress;otherwise, lowly CT perfusion tumors had lowly MVD value and high HIF-1αexpress,they appeared to radiation resistance. BF and PEI values can be decreased significant after34-38cGy dose in the radiosensitivity NPC, in contrast, if CT perfusion values didn'tchange early with radiation therapy, those NPC may be nonradiosensitivity and poorlyprognosis. CT perfusion can reflect hypoxia and angiogenesis of NPC, and may predict theradiosensitivity of NPC by the perfusion parameters and their early changes withradiotherapy.
引文
1 Folkman J. Tumor angiogenesis: therapeutic implication. N Engl J Med, 1971, 285(21):1182-1186
    2 Morikawa S, Baluk P, Kaldoh T, et al. Abnormalities in Pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol, 2002,160(6): 985-1000
    3 Stephen BF, Gotter KC, Haarris Al. Tumor angiogenesis. J Pathol, 1996,179(3):232-237
    4 Markovic O, Marisavljevic D, Cemerikic V, et al. Expression of VEGF and microvessel density in patients with multiple myeloma: clinical and prognostic significance. Med Oncol. 2008;25(4):451-457
    5 Provenzale JM. Imaging of Angiogenesis: Clinical Techniques and Novel Imaging Methods. Am J Roentgenol. 2007,188(1): 11-23
    6 Park YN, Kim YB, Yang KM, et al. Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med,2000,124(7): 1061-1065.
    7 Tsuzuki Y, Fukumura D, Oosthuyse B, et al. Vascular endothelial growth factor(VEGF) modulation by targeting hypoxia-inducible factor-1alpha--> hypoxia response element-->VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res,2000,60:6248- 6252
    8 Lee BL, Kim WH, Jung J, et al. A hypoxia-independent up-regulation of hypoxia-inducible factor-1 by AKT contributes to angiogenesis in human gastric cancer.Carcinogenesis, 2008, 29(1):44-51
    9 Ninomiya S, Inomata M, Tajima M, et al. Effect of Bevacizumab, a Humanized Monoclonal Antibody to Vascular Endothelial Growth Factor, on Peritoneal Metastasis of MNK-45P Human Gastric Cancer in Mice. J Surg Res.2008 , 9, Epub ahead of print
    10 Mazeron R, Bourhis J, Deutsch E. Angiogenesis inhibitors and radiation therapy:concept and preliminary results. Bull Cancer, 2009, 96(3): 299-310
    11 Harada H, Itasaka S, Zhu Y, Treatment regimen determines whether an HIF-1 inhibitor enhances or inhibits the effect of radiation therapy. Br J Cancer, 2009, 100(5):747-757
    12 Tol J, Koopman M, Cats A, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med. 2009, 360(6):563-572
    13 McDonald DM, Foss AJ. Endothelial cells of tumor vessels: abnormal but not absent.Cancer Metastasis Rev, 2000,19(1-2): 109-120
    14 Sutherland RM. Tumor hypoxia and gene expression: Implications for Malignant Progression and Therapy. Acta Oncol, 1998, 37(6): 567-574
    15 Ke QD, Costa M. Hypoxia-Inducible Factor-1 (HIF-1). Mol Pharmacol, 2006, 70(11):1469-1480
    16 Dordevic G, Matusan-Llijas K, Babarovic E, et al. Hypoxia inducible factor-1 alpha correlates with vascular endothelial growth factor A and C indicating worse prognosis in clear cell renal cell carcinoma. J Exp Clin Cancer Res, 2009, 28(1):40-46
    17 Gillespie DL, Whang K, Ragel BT, et al. Silencing of Hypoxia Inducible Factor-1 {alpha} by RNA Interference Attenuates Human Glioma Cell Growth In vivo.Clin Cancer Res, 2007,13(4): 2441-2448
    18 Miles KA, Griffiths MR. Perfusion CT: a worthwhile enhancement? Br J Radiol, 2003,76(904):220-231
    19 Goh V, Halligan S, Daley F, et al. Colorectal tumor vascularity: quantitative assessment with multidetector CT--do tumor perfusion measurements reflect angiogenesis? Radiology, 2008, 249(2):510- 517
    20 Jankovic B, Aquino-Parsons C, Raleigh JA, et al. Comparison between pimonidazole binding, oxygen electrode measurements and expression of endogenous hypoxia markers in cancer of the uterine cervix. Cytometry B Clin Cytom, 2006, 70(2):45-55
    21 Hong Yuan, Thies S, James EB, et al. Intertumoral Differences in Hypoxia Selectivity of the PET Imaging Agent ~(64)Cu(?)-Diacetyl-Bis (N4-Methyl- thiosemicarbazone). J Nucl Med, 2006, 47(6): 989-998
    1 Stephen BF, Gotter KC, Haarris AI. Tumor angiogenesis. J Pathol, 1996,179(3):232-237
    2 Morikawa S, Baluk P, Kaldoh T, et al. Abnormalities in Pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol, 2002,160(6): 985-1000
    3 McDonald DM, Foss AJ. Endothelial cells of tumor vessels: abnormal but not absent.Cancer Metastasis Rev, 2000, 19(1-2): 109-120
    4 Mazeron R, Bourhis J, Deutsch E. Angiogenesis inhibitors and radiation therapy:concept and preliminary results. Bull Cancer, 2009, 96(3): 299-310
    5 Provenzale JM. Imaging of Angiogenesis: Clinical Techniques and Novel Imaging Methods. Am J Roentgenol, 2007, 188(1):11-23
    6 Kan Z, Phongkitkarun S, Kobayashi S, et al. Functional CT for quantifying tumor perfusion in anti-angiogenic therapy in a rat model. Radiology, 2005, 237(1): 151-158.
    7 Tsushima Y, Funabasama S, Aoki J, et al. Quantitative perfusion map of malignant liver tumors, created from dynamic computed tomography data. Acad Radiol 2004; 11(1):215-223
    8 Weidner N. Tumor vascularity and proliferation: clear evidence of a close relationship. J Pathol, 1999, 189 (3): 297-299
    9 Poncelet C, Fauvet R, Feldmann G, et al. Prognostic value of von Willebrand factor,CD34, CD31, and vascular endothelial growth factor expression in women with uterine leiomyosarcomas. J Surg Oncol, 2004, 86(2):84-90
    10 Purdie TG, Henderson E, Lee TY, et al. Functional CT imaging of angiogenesis in rabbit VX2 soft-tissue tumor. Phys Med Bio, 2001,46 (12): 3161-3175
    11 张景峰,王仁法,王敏,等.兔VX2软组织肿瘤MSCT灌注成像与病理对照研究.临床放射学杂志,2005,24(5):445-448.
    12 Song J, Li C, Wu L, et al. MRI-guided brain tumor cryoablation in a rabbit model. J Magn Reson Imaging. 2009, 29(3):545-51
    13 Virmani S, Rhee TK, Ryu RK, et al. Comparison of hypoxia-inducible factor-1alpha expression before and after transcatheter arterial embolization in rabbit VX2 liver tumors. J Vasc Interv Radiol, 2008, 19(10):1483-1489
    14 Tu M, Xu L, Wei X, et al. How to Establish a Solitary and Localized VX2 Lung Cancer Rabbit Model? A Simple and Effective Intrapulmonary Tumor Implantation Technique.J Surg Res, 2008, 7 Epub ahead of print
    15 曾功君,柳建华,高云华,等.脂膜超声造影剂增强兔肾VX2肿瘤显像及鉴别的实验研究.中国临床医学影像杂志,2008,19(6):412-414
    16 张俊,苏丹柯,金观桥,等.兔鼻咽部VX2肿瘤模型与人类鼻咽癌CT灌注和病理学对照研究.实用放射学杂志,2008,24(2):253-256
    17 Miles KA. Perfusion CT for the assessment of tumor vascularity: which protocol? Br J Radiol, 2003; 76(1):S36-S42
    18 Nabavi DG, Cenic A, Dool J, et al. Quantitative Assessment of Cerebral Hemodynamics Using CT: Stability, Accuracy, and Precision Studies in Dogs. Journal of Computer Assisted Tomography,23(4):506-515
    19 Cenic A, Nabavi DG, Craen RA, et al. Dynamic CT Measurement of Cerebral Blood Flow: A Validation Study. AJNR Am J Neuroradiol, 1999, 20(1):63-73
    20 Sahani DV, Kalva SP, Hamberg LM, et al. Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: initial observations. Radiology, 2005;234(3):785-792
    21 Gandhi D, Hoeffner EG, Carlos RC, et al. Computed tomography perfusion of squamous cell carcinoma of the upper aerodigestivetract: initial results. J Comput Assist Tomogr, 2003, 27(6):687-693
    22 邢宁,蔡祖龙,赵绍宏,等.肺癌的CT灌注成像与脱氧葡萄糖正电子发射计算机体层扫描及肿瘤微血管密度的相关性.中华放射学杂志,2007,41(11):1180-1182
    23 孙灿辉,孟悛非,李子平,等.结直肠癌微血管密度与螺旋CT灌注成像的相关性.中华放射学杂志,2006,40(1):77-80
    24 Goh V, Halligan S, Daley F, et al, Colorectal tumor vascularity: quantitative assessment with multidetector CT-do tumor perfusion measurements reflect angiogenesis?Radiology, 2008, 249(2):510-517
    1 Reynolds TY, Rockwell S, Glazer PM. Genetic instability induced by the tumor micro-environment. Cancer Res, 1996, 56(18): 5754-5757
    2 Birner P, Schindl M, Obermair A, et al. Overexpression of hypoxia- inducible factor 1 is a marker for an unfavorable prognosis in early-stage invasive cervical, cancer. Cancer Res, 2000, 60(16): 4693-4696
    3 郭芮伶,吴国明,戢福云.缺氧对人小细胞肺癌H446细胞DNA错配修复基因MLH1、MSH2表达的影响及其机制探讨.中国癌症杂志,2008,18(1):26-29
    4 Rapisarda A, Melillo G. HIF-1 Inhibitors: Novel Opportunities for Cancer Therapy.Asco Educational Book 2008. 2008:543-547
    5 Dordevic G, Matusan-Llijas K, Babarovic E, et al. Hypoxia inducible factor-1 alpha correlates with vascular endothelial growth factor A and C indicating worse prognosis in clear cell renal cell carcinoma. J Exp Clin Cancer Res. 2009, 28(1):40-46
    6 Park YN, Kim YB, Yang KM, et al. Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med,2000,124(7): 1061-1065
    7 Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF-1alpha in hypoxia- mediated apoptosis cell proliferation and tumour angiogenesis. Nature,1998,394(6692):485-490
    8 Tsuzuki Y, Fukumura D, Oosthuyse B, et al. Vascular endothelial growth factor(VEGF) modulation by targeting hypoxia-inducible factor-1alpha--> hypoxia response element-->VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res,2000,60(22):6248-6252
    9 Zhong H, Demarzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor1alpha in common human cancers and their metastases. Cancer Res,1999,59 (22):5830-5835
    10 隋军,吴金鹏,李晓江,等。缺氧诱导因子-1α与微血管密度在人鼻咽癌中的表达及相关性研究.临床耳鼻咽喉头颈外科杂志,2008,22(6):269-272
    11 Yeo EJ, Chun YS, Cho YS, et al. YC1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst, 2003,95(7): 516-525
    12 Straight AM, Oakley K, Moores R, et al. Aplidin reduces growth of anaplastic thyroid cancer xenografts and the expression of several angiogenic genes. Cancer Chemother Pharmacol, 2006,57(1):7-14
    13 Melillo G. Inhibiting Hypoxia-Inducible Factor 1 for Cancer Therapy. Mol Cancer Res,2006, 4(9): 601-605
    14 Poulaki V, Mitsiades CS, Mcmullan C, et al. Regulation of vascular endothelial growth factor expression by insulin-like growth factor I in thyroid carcinomas. J Clin Endocrinol Metab, 2003, 88(11):5392- 5398
    15 Ke QD, Costa M. Hypoxia-Inducible Factor-1 (HIF-1). Mol Pharmacol, 2006, 70(11):1469-1480
    16 Mohamed KM, Le A, Duong H, et al. Correlation between VEGF and HIF-1alpha expression in human oral squamous cell carcinoma. Exp Mol Pathol, 2004, 76(2):143-152.
    17 Lee BL, Kim WH, Jung J, et al. A hypoxia-independent up- regulation of hypoxia-inducible factor-1 by AKT contributes to angiogenesis in human gastric cancer.Carcinogenesis, 2008, 29(1):44-51
    18 Hiraga T, Kizaka-Kondoh S, Hirota K, et al. Hypoxia and Hypoxia-Inducible Factor-1 Expression Enhance Osteolytic Bone Metastases of Breast Cancer. Cancer Res, 2007,67(9): 4157-4163
    19 Oliver S, Marya F. McCarty, Jane SW, et al. Role of Hypoxia- Inducible Factor-1(?) in Gastric Cancer Cell Growth, Angiogenesis, and Vessel Maturation. J Natl Cancer Inst,2004, 96(12): 946-956
    20 Gillespie DL, Whang K, Ragel BT, et al. Silencing of Hypoxia Inducible Factor-1 {alpha} by RNA Interference Attenuates Human Glioma Cell Growth In vivo.Clin Cancer Res, 2007,13(4): 2441-2448
    21 Rini BI, Rathmell WK. Biological Aspects and Binding Strategies of Vascular Endothelial Growth Factor in Renal Cell Carcinoma. Clin Cancer Res, 2007, 13(2):741-746
    22 Jankovic B, Aquino-Parsons C, Raleigh JA, et al. Comparison between pimonidazole binding, oxygen electrode measurements and expression of endogenous hypoxia markers in cancer of the uterine cervix. Cytometry B Clin Cytom, 2006, 70(2):45-55.
    23 Lehti(o|¨) K, Eskola O, Viljanen T, et al. Imaging perfusion and hypoxia with PET to predict radiotherapy response in head-and-neck cancer. Int J Radiation Oncology Biol Phys, 2004, 59(4): 971-982.
    24 Hong Yuan, Thies S, James EB, et al. Intertumoral Differences in Hypoxia Selectivity of the PET Imaging Agent ~(64)Cu(Ⅱ)-Diacetyl-Bis (N4-Methyl- thiosemicarbazone). J Nucl Med, 2006, 47(6): 989-998.
    25 Covello KL, Simon, MC, Keith B, et al. Targeted Replacement of Hypoxia-Inducible Factor-1{alpha} by a Hypoxia-Inducible Factor-2 {alpha} Knock-in Allele Promotes Tumor Growth. Cancer Res, 2005, 65(6): 2277-2286
    26 郑延波,徐克.缺氧诱导因子-1α在兔VX2肝癌模型TACE术后的表达及其临床意义.介入放射学杂志,2007,16(5):334-338
    27 Fukumura, D, Xu L, Chen Y, et al. Hypoxia and Acidosis Indepen- dently Up-Regulate Vascular Endothelial Growth Factor Transcription in Brain Tumors in Vivo. Cancer Res,2001, 61(16): 6020-6024
    1 Phongkitkarun S, Kobayashi S, Kan ZX, et al. Quantification of angiogenesis by functional computed tomography in a matrigel model in rats. Acad Radiol, 2004, 11(5):573-582.
    2 Provenzale JM. Imaging of Angiogenesis: Clinical Techniques and Novel Imaging Methods. Am J Roentgenol. 2007, 188(1): 11-23
    3 Miles KA. Perfusion CT for the assessment of tumour vascularity: which protocol? Br J Radiol, 2003, 76(SI):S36-42.
    4 Lee TY, Purdie TG, Stewart E. CT imaging of angiogenesis. Q J Nucl Med, 2003,47(3):171-187.
    5 袁智勇,高黎,罗德红,等.鼻咽癌多层螺旋CT动态灌注扫描预测放射敏感性初步研究.中华放射肿瘤学杂志,2004,13(2):163-167.
    6 周华,张敏鸣,肖圣祥,等.动态增强CT功能成像评价肺癌肿瘤血管生成的研究.中华放射学杂志,2006,40(2):171-175
    7 Goh V, Halligan S, Daley F, et al. Colorectal tumor vascularity: quantitative assessment with multidetector CT-do tumor perfusion measurements reflect angiogenesis?Radiology, 2008, 249(2):510-517
    8 Kan ZX, Phongkitkarun S, Kobayashi S, et al. Functional CT for Quantifying Tumor Perfusion in Antiangiogenic Therapy in a Rat Model. Radiology, 2005, 237(1):151-158.
    9 金观桥,苏丹柯,朱小东,等.鼻咽癌多层螺旋CT灌注成像的初步研究.实用放射学杂志,2005,21(10):1036-1040
    10 潘爱珍,卫光宇,甘毅,等.鼻咽癌、炎症、瘢痕组织的CT灌注研究.临床放射学杂志,2005,24(9):972-976
    11 Kapanen MK, Halavaara JT, H(a|¨)kkinen AM, et al. Assessment of vascular physiology of tumorous livers: comparison of two different methods. Acad Radiol, 2003,10(9):1021-1029.
    12 Hoeffner EG, Case I, Jain R, et al. Cerebral perfusion CT: technique and clinical applications. Radiology, 2004, 231(1): 632-644
    13 赵心明,周纯武,吴宁,等.胰腺多层螺旋CT灌注研究.中华放射学杂志,2004,37(9):845-849.
    14 文利,丁仕义,牟伟,等.肝细胞癌CT灌注参数与微血管密度的相关性研究.中华放射学杂志,2005,39(3):280-284.
    15 Sahani DV, Kalva SP, Hamberg LM, et al. Assessing tumor perfusion and treatment response in rectal cancer with Multisection CT: initial observations. Radiology, 2005,234(3): 785-792.
    16 Roychowdhury DF, Tseng A J, Fu KK, et al. New prognostic factors in nasopharyngeal carcinoma. Tumor angiogenesis and C-erbB2 expression. Cancer, 1996, 77(8):1419-1426
    17 隋军,吴金鹏,李晓江,等.缺氧诱导因子-1α与微血管密度在人鼻咽癌中的表达及相关性研究.临床耳鼻咽喉头颈外科杂志,2008,22(6):269-272
    18 Wakisaka N, Wen QH, Yoshizaki T, et al. Association of vascular endothelial growth factor expression with angiogenesis and lymph node metastasis in nasopharyngeal carcinoma. Laryngoscope, 1999, 109:810-814
    19 黄国森,涂青松,卫光宇,等.鼻咽癌的血管生成及其临床意义.中国耳鼻咽喉颅底外科杂志,2004,10(1):25-27.
    20 刘宜敏,梁碧玲,卢泰祥,等.鼻咽癌血管内皮生长因子及微血管与放射敏感性.中山大学学报(医学科学版),2003,24:161-164.
    21 Anderson SA, Glod J, Arbab AS, et al. Noninvasive MRI of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood, 2005, 105(1):420-425
    22 Collingridge DR, Carroll VA, Glaser M, et al. The development of [~(124)I]iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Res, 2002; 62(20):5912-5919
    23 Maehara N. Experimental microcomputed tomography study of the 3D micro-angio architect-ture of tumors. Eur Radiol, 2003, 13(7):1559-1565
    24 Achilefu S, Bloch S, Markiewicz MA, et al. Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression. Proc Natl Acad Sci, 2005,102(12): 7976-7981
    1. Lee BL, Kim WH, Jung J, et al. A hypoxia-independent up-regulation of hypoxia-inducible factor-1 by AKT contributes to angiogenesis in human gastric cancer. Carcinogenesis, 2008, 29(1):44-51
    2. Fukumura D, Xu L, Chen Y, et al. Hypoxia and Acidosis Independently Up-Regulate Vascular Endothelial Growth Factor Transcription in Brain Tumors in Vivo. Cancer Res,2001, 61(16): 6020-6024
    3. Dordevic G, Matusan-Llijas K, Babarovic E, et al. Hypoxia inducible factor-1 alpha correlates with vascular endothelial growth factor A and C indicating worse prognosis in clear cell renal cell carcinoma. J Exp Clin Cancer Res, 2009, 28(1):40-46
    4. Ke QD, Costa M. Hypoxia-inducible Factor-1 (HIF-1). Mol Pharmacol, 2006, 70(11):1469-1480
    5. Tsuzuki Y, Fukumura D, Oosthuyse B, et al. Vascular endothelial growth factor(VEGF) modulation by targeting hypoxia-inducible factor-lalpha-->hypoxia response element-->VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res,2000,60(22):6248-6252
    6. Mohamed KM, Le A, Duong H, et al. Correlation between VEGF and HIF-1alpha expression in human oral squamous cell carcinoma. Exp Mol Pathol, 2004, 76(2):143-152.
    7. Rapisarda A, Melillo G. HIF-1 Inhibitors: Novel Opportunities for Cancer Therapy.Asco Educational Book 2008. 2008: 543-547
    8. Yeo EJ, Chun YS, Cho YS, et al. YC1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst, 2003, 95(7):516-525.
    9. Zeng L, Ou G, Itasaka S, et al. TS-1 enhances the effect of radiotherapy by suppressing radiation-induced hypoxia-inducible factor-1 activation and inducing endothelial cell apoptosis. Cancer SCI, 2008, 99(11):2327-35.
    10. Harada H, Itasaka S, Zhu Y, et al. Treatment regimen determines whether an HIF-1 inhibitor enhances or inhibits the effect of radiation therapy. Br J Cancer, 2009,100(5):747-757
    11. Isa AY, Ward TH, West CML, et al. Hypoxia in head and neck cancer. Br J Radiol,2006, 79(946): 791-798
    12. Krohn KA, Link JM, Mason RP. Molecular Imaging of Hypoxia. J Nucl Med, 2008,49(6):129-148
    13. Horsman MR. Measurement of tumor oxygenation. Int J Radiat Oncol Biol Phys, 1998,42(4): 701-704
    14.隋军,吴金鹏,李晓江,等.缺氧诱导因子-1α与微血管密度在人鼻咽癌中的表达及相关性研究.临床耳鼻咽喉头颈外科杂志,2008,22(6):269-272
    15. Horr(?)e N, van Diest PJ, van der Groep P, et al. Hypoxia and angiogenesis in endometrioid endometrial carcinogenesis. Cell Oncol, 2007, 29(3):219-227
    16.郑延波,徐克.缺氧诱导因子-1α在兔VX2肝癌模型TACE术后的表达及其临床意义.介入放射学杂志,2007,16(5):334-338
    17. Zhong H, Demarzo AM, Laughner E, et al..Overexpression of hypoxia-inducible factor1alpha in common human cancers and their metastases. Cancer Res,1999,59(22):5830-5835
    18. Arsham AM, Plas DR, Thompson CB, et al. Akt and Hypoxia-Inducible Factor-1 Independently Enhance Tumor Growth and Angiogenesis. Cancer Res, 2004, 64(10):3500-3507
    19. Mizukami Y, Li J, Zhang X, et al. Hypoxia-Inducible Factor-1-Independent Regulation of Vascular Endothelial Growth Factor by Hypoxia in Colon Cancer. Cancer Res, 2004,64(5): 1765-1772
    20. Mizukami Y, Kohgo Y, Chung DC, et al. Hypoxia Inducible Factor-1 Independent Pathways in Tumor Angiogenesis. Clin Cancer Res, 2007, 13(10): 5670-5674
    21. Barthel H, Wilson H, Collingridge DR, et al. In vivo evaluation of [~(18)F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography. Br J Cancer, 2004,90(11):2232-2242
    22. Matsumoto K, Szajek L, Krishna MC, et al. The influence of tumor oxygenation on hypoxia imaging in murine squamous cell carcinoma using [~(64)Cu]Cu-ATSM or [~(18)F]fluoromisonidazole positron emission tomography. Int J Oncol, 2007, 30(4):873-881
    23. Grigsby PW, Malyapa RS, Higashikubo R, et al. Comparison of molecular markers of hypoxia and imaging with ~(60)Cu-ATSM in cancer of the uterine cervix. Mol Imaging Biol, 2007, 9(5):278-283
    24. Achilefu S, Bloch S, Markiewicz MA, et al. Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression. Proc Natl Acad SCI,2005, 102(22):7976-7981
    1 Matsubara A, Teishima J, Mirkhat S, et al. Restoration of FGF receptor type 2 enhances radiosensitivity of hormone-refractory human prostate carcinoma PC-3 cells.Anticancer Res, 2008, 28(4B):2141-2146
    2 蒋昌斌,刘秀芳,贺玉香,等.DNA-PKcs反义寡核苷酸对不同p53功能状态的鼻咽癌细胞株辐射抗性的影响.癌症,2008,27(2):139-143
    3 韩露,李光,张晓萌.PCNA、Ki-67、p53与鼻咽癌颈淋巴结转移灶放射敏感性的相关关系.中华放射肿瘤学杂志,2002,11(1):32-33
    4 Sutherland RM. Tumor Hypoxia and Gene Expression: Implications for Malignant Progression and Therapy. Acta Oncologica, 1998,37(6):567-574
    5 Matsumoto KI, Szajek L, Krishna MC, et al. The influence of tumor oxygenation on hypoxia imaging in murine squamous cell carcinoma using [~(64)Cu]Cu-ATSM or [~(18)F]fluoromisonidazole positron emission tomography. Int J Oncol, 2007,30(4):873-881.
    6 Grigsby PW, Malyapa RS, Higashikubo R, et al. Comparison of molecular markers of hypoxia and imaging with 60Cu-ATSM in cancer of the uterine cervix. Mol Imaging Biol, 2007,9(5):278-283
    7 Krohn KA, Link JM, Mason RP. Molecular Imaging of Hypoxia. J Nucl Med, 2008,49(6):129-148
    8 Miles KA. Tumor angiogenesis and its relation to contrast enhancement on computed tomography: a review. EJR, 1999, 30 (3):198-205
    9 Cuenod CA, Fournier L, Balvay D, et a.l Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging, 2006,31(2): 188-193.
    10 黄飚,梁长虹,张云亭,等.星形细胞肿瘤CT灌注成像与肿瘤微血管相关性的研究.实用放射学杂志,2005,21(5):463-467
    11 Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer, 2009, 45(2):228-247
    12 Brizel DM, Sibley GS, Prosmitz LR, et al. Tumor. hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys, 1997, 38(2): 285-289.
    13 Hockel M, Schlenger K, Aral B, et al. Association between tumor.hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res, 1996,56(19): 4509-4515
    14 Chen CN, Cheng YM, Liang JT, et al. Color Doppler vasoularlty index can predict distant metastasis and survival in colon cancer patients. Cancer Res, 2000,60(11):2892-2897
    15 孙灿辉,孟悛非,李子平,等.结直肠癌微血管密度与螺旋CT灌注成像的相关性。中华放射学杂志,2006,40(1):77-80
    16 White JD, Hewett PW, Kosuge D, et a1. Vascular endothelial growth factor-D expression is an independent prognostic marker for survival in co1orectal carcinoma.Cancer Res, 2002, 62(6): 1669-1675
    17 Zeng L, Ou G; Itasaka S, et a1. TS-1 enhances the effect of radiotherapy by suppressing radiation-induced hypoxia-inducible factor-1 activation and inducing endothelial cell apoptosis. Cancer Sci, 2008, 99(11):2327-2335
    18 Han J, Yu M, Dai M, et al. Effect of artificial oxygen carrier with chemotherapy on tumor hypoxia and neovascularization. Artif Cells Blood Substit Immobil Biotechnol, 2008, 36(5):431-438.
    19 Harada H, Itasaka S, Zhu Y, et al. Treatment regimen determines whether an HIF-1 inhibitor enhances or inhibits the effect of radiation therapy. Br J Cancer, 2009,100(5):747-757
    20 Achilefu S, Bloch S, Markiewicz MA, et al. Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression. Proc Natl Acad Sci, 2005,102(22): 7976-7981
    21 Jayson GC, Zweit J, Jackson A, et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst, 2002, 94(19):1484-1493
    22 Morgan B, Thomas AL, Drevs J, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase Ⅰ studies. J Clin Oncol, 2003, 21(21):3955-3964
    23 Fujimoto K, Abe T, Miiller NL, et al. Small Peripheral Pulmonary Carcinomas Evaluated with Dynamic MR Imaging: Correlation with Tumor Vascularity and Prognosis. Radiology, 2003, 227(1): 786-793
    24 Pollard RE, Garcia TC, Stieger SM, et al. Quantitative evaluation of perfusion and permeability of peripheral tumors using contrast-enhanced CT. Invest Radiol, 2004,39(6):340-349
    25 Kan Z, Phongkitkarun S, Kobayashi S, et al. Functional CT for quantifying tumor perfusion in anti-angiogenic therapy in a rat model. Radiology, 2005, 237(1):151-158.
    26 黄飚,梁长虹,张云亭,等.兔VX2肿瘤CT灌注与肿瘤微血管密度相关性研究.临床放射学杂志,2005,24(8):734-737
    27 张俊,苏丹柯,金观桥,等.兔鼻咽部VX2肿瘤模型与人类鼻咽CT灌注和病理学对照研究.实用放射学杂志2008,24(2):253-256
    28 Bellomi M, Petralia G, Sonzogni A, et al. CT perfusion for the monitoring of neoadjuvant chemotherapy and radiation therapy in rectal carcinoma: initial experience.Radiology, 2007, 244(2): 486-493
    1 Folkman J. Tumor angiogenesis: therapeutic implication. N Engl J Med, 1971, 285(21):1182-1186
    2 Stephen BF, Gotter KC, Haarris AI. Tumor angiogenesis. J Pathol, 1996,179(3):232-237
    3 Markovic O, Marisavljevic D, Cemerikic V, et al. Expression of VEGF and microvessel density in patients with multiple myeloma: clinical and prognostic significance. Med Oncol. 2008;25(4):451-457
    4 Provenzale JM. Imaging of Angiogenesis: Clinical Techniques and Novel Imaging Methods. Am J Roentgenol. 2007, 188(1): 11-23
    5 赵新永,殷莲华,金惠铭,等.血管内皮生长因:子与肿瘤.中国微循环,2000,4(4):253-255
    6 Dordevic G, Matusan-Llijas K, Babarovic E, et al. ttypoxia inducible factor-1 alpha correlates with vascular endothelial growth factor A and C indicating worse prognosis in clear cell renal cell carcinoma. J Exp Clin Cancer Res. 2009, 28(1):40-46
    7 Bottaro DP, Liotta LA. Cancer: Out of air is not out of action. Nature, 2003,423(6940):593-595
    8 Liang X, Yang D, Hu J, et al. Hypoxia inducible factor-alpha expression correlates with vascular endothelial growth factor-C expression and lymphangiogenesis/angiogenesis in oral squamous cell carcinoma. Anticancer Res. 2008, 28(3A): 1659-1666
    9 Mazeron R, Bourhis J, Deutsch E. Angiogenesis inhibitors and radiation therapy:concept and preliminary results. Bull Cancer. 2009, 96(3):299-310
    10 Wheatley-Price P, Shepherd FA. Epidermal growth factor receptor inhibitors in the treatment of lung cancer: reality and hopes. Curr Opin Oncol. 2008,20(2):162-175
    11 Ninomiya S, Inomata M, Tajima M, et al. Effect of Bevacizumab, a Humanized Monoclonal Antibody to Vascular Endothelial Growth Factor, on Peritoneal Metastasis of MNK-45P Human Gastric Cancer in Mice. J Surg Res. 2008,9, Epub ahead of print
    12 Sculier JP, Meert AP, Paesmans M. Bevacizumab for non-small-cell lung cancer. N Engl J Med. 2007, 356(13):1373-1374
    13 Tol J, Koopman M, Cats A, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med. 2009, 360(6):563-572
    14 Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004, 350(21):2129-2139
    15 Bellomi M, Petralia G, Sonzogni A, et al. CT perfusion for the monitoring of neoadjuvant chemotherapy and radiation therapy in rectal carcinoma: initial experience.Radiology. 2007, 244(2):486-493
    16 Zhang CF, Jugold M, Woenne, et al. Specific Targeting of Tumor Angiogenesis by RGD-Conjugated Ultrasmall Superparamagnetic Iron Oxide Particles Using a Clinical 1.5-T Magnetic Resonance Scanner. Cancer Res, 2007 67(2): 1555-1562
    17 Miles KA, Kelley BB. CT measurements of capillary permeability within nodal masses:a potential technique for assessing the activity of lymphoma. Br J Radio, 1997, 70(829):74-79
    18 Haubner R, Wester HJ, Mang C, et al. Non-invasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Research, 2001, 61(5): 1781-1785
    19 McDonald DM, Foss AJ. Endothelial cells of tumor vessels: abnormal but not absent.Cancer Metastasis Rev, 2000,19(1-2): 109-120
    20 Morikawa S, Baluk P, KaldohT, et al. Abnormalities in Pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol, 2002, 160(3): 985-1000
    21 Egeblad M, Werb Z. New functions for the matrix metalloprotein ases in cancer progression. Nat Rev Cancer, 2002, 2(3): 161-174
    22 Folberg R, Hendrix MJ, Maniotis AJ, et al. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol, 2000,156(2):361-381.
    23 Chang YS, di Tomaso E, McDonald DM, et al. Mosaic blood vessels in tumors:frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA, 2000,97(26): 14608-14613
    24 Hendrix MJ, Seftor EA, Hess AR, et al. Vasculogenic mimicry and tumor-cell plasticity:lessons from melanoma. Nat Rev Cancer, 2003, 3(6): 411-421
    25 Xia P, Aiello L, Ishii H, et al. Characterization of vascular endothelial growth factor s effect on the activation of protein kinase C, its isoforrn, and endothelial cell growth. J clin invest. 1996, 98(9):2018-2026
    26 Risan W. Mechanisms of angiogenesis. Nature, 1997,386(6626): 671-674
    27 Marc G, Michael J, Eola K, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (flk-1) and VEGF receptor 3 (flt-4).Proc Natl Acad Sci USA. 1998, 95(2):548-553
    28 Masood R, Cai J, Zheng T, et al. Vascular endothelial growth factor vascular permeability factor is an autocrine growth factor for AIDS2 Kaposi sarcoma. Proc Natl Acad Sci USA, 1997,94(3): 979-984
    29 Asano M, Yukita A, Suzuki H. Wide spectrum of anti-tumor activity of a neutralizing monoclonal antibody to human vascular endothelial growth factor. Jpn J Cancer Res,1999, 90(1):93-100
    30 Witte L, Hicklin DJ, Zhu Z, et al. Monoclonal antibodies targeting the VEGF receptor2(Flk1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev,1998,17(2): 155-159
    31 Poncelet C, Fauvet R, Feldmann G, et al. Prognostic value of von Willebrand factor,CD34, CD31, and vascular endothelial growth factor expression in women with uterine leiomyosarcomas. J Surg Oncol, 2004, 86(2):84-90
    32 Martin L, Holcombe C, Renshaw C, et al. Standardising the counting technique of neovascularization in invasive breast cancer[J].Breast Cancer Res &Treat, 1996, 37S:34
    33 Weidner N. Tumor vascularity and proliferation: clear evidence of a close relationship. J Pathol, 1999,189 (3): 297-299
    34 Beresford MJ, Harris AL, Ah-See M, et al. The relationship of the neo-angiogenic marker, endoglin, with response to neoadjuvant chemotherapy in breast cancer. Br J Cancer, 2006, 95(12):1683-1688
    35 Korkolopoulou P, Perdiki M, Thymara I, et al. Expression of hypoxia-related tissue factors in astrocytic gliomas. Amultivariate survival study with emphasis upon carbonic anhydrase IX. Hum Pathol, 2007, 38(4):629-38
    36 Phongkitkarun S, Kobayashi S, Kan ZX, et al. Quantification of angiogenesis by functional computed tomography in a matrigel model in rats. Acad Radiol, 2004, 11:573-582
    37 Sutherland RM. Tumor hypoxia and gene expression: Implications for Malignant Progression and Therapy. Acta Oncol, 1998, 37(6): 567-574
    38 隋军,吴金鹏,李晓江,等.缺氧诱导因子-1α与微血管密度在人鼻咽癌中的表达及相关性研究.临床耳鼻咽喉头颈外科杂志,2008,22(6):269-272
    39 Reynolds TY, Rockwell S, Glazer PM. Genetic instability induced by the tumor micro-environment. Cancer Res, 1996, 56(18): 5754-5757.
    40 郭芮伶,吴国明,戢福云.缺氧对人小细胞肺癌H446细胞DNA错配修复基因MLH1、MSH2表达的影响及其机制探讨.中国癌症杂志,2008,18(1):26-29
    41 Mohamed KM, Le A, Duong H, et al. Correlation between VEGF and HIF-1alpha expression in human oral squamous cell carcinoma. Exp Mol Pathol, 2004, 76(2):143-152.
    42 Ozbudak IH, Karaveli S, Simsek T, et al. Neoangiogenesis and expression of hypoxia-inducible factor 1alpha, vascular endothelial growth factor, and glucose transporter-1 in endometrioid type endometrium adenocarcinomas. Gynecol Oncol.2008, 108(3):603-608
    43 Harada H, Itasaka S, Zhu Y, et al. Treatment regimen determines whether an HIF-1 inhibitor enhances or inhibits the effect of radiation therapy. Br J Cancer, 2009,100(5):747-757
    44 Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary andmetastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nature Med, 2002,8(4):125-135
    45 Mayer A, Hockel M, Vaupel P. Endogenous hypoxia markers in locally advanced cancers of the uterine cervix: reality or wishful thinking. Strahlenther Onkol, 2006,182(9):501-510
    46 Jankovic B, Aquino-Parsons C, Raleigh JA, et al. Comparison between pimonidazole binding, oxygen electrode measurements and expression of endogenous hypoxia markers in cancer of the uterine cervix[J]. Cytometry B Clin Cytom, 2006, 70(2):45-55.
    47 Mayer A, H(o|¨)ckel M, Vaupel P. Endogenous hypoxia markers: case not proven! Adv Exp Med Biol, 2008, 614:127-136
    48 Airley RE, Loncaster J, Raleigh JA, et al. GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Int J Cancer,2003, 104:85-91
    49 Horr(?)e N, van Diest PJ, van der Groep P, et al. Hypoxia and angiogenesis in endometrioid endometrial carcinogenesis. Cell Oncol, 2007, 29(3):219-227
    50 Su MY, Cheuny YC, Fruehauf JP, et al. Correlation of dynamic contrast-enhanced MRI parameters with microvessel density and VEGF for assessment of angiogenesis in breast cancer. J Magn Resort Imaging, 2003, 18(4):467-477
    51 Goh V, Halligan S, Daley F, et aI. Colorectal tumor vascularity: quantitative assessment with multidetector CT-do tumor perfusion measurements reflect angiogenesis?Radiology, 2008, 249(2):510-517
    52 Goh V, Halligan S, Bartram CI. Quantitative tumor perfusion assessment with multidetector CT: are measurements from two commercial software packages interchangeable? Radiology, 2007, 242(3):777-782.
    53 Sheiman RG, Sitek A. Feasibility of Measurement of Pancreatic Perfusion Parameters with Single-Compartment Kinetic Model Applied to Dynamic Contrast-enhanced CT Images. Radiology, 2008, 249(3): 878-882
    54 Miles KA, Griffiths MR. Perfusion CT: a worthwhile enhancement? Br J Radiol, 2003,76 (904) :220-231
    55 Goh V, Halligan S, Gharpuray A, et al. Quantitative Assessment of Colorectal Cancer Tumor Vascular Parameters by Using Perfusion CT: Influence of Tumor Region of Interest Radiology, 2008, 247(6): 726-732
    56 Goh V, Liaw J, Bartram CI, et al. Effect of Temporal Interval Between Scan Acquisitions on Quantitative Vascular Parameters in Colorectal Cancer: Implications for Helical Volumetric Perfusion CT Techniques. Am J Roentgenol, 2008, 191(2): 288-292
    57 Wang JH, Min PQ, Wang PJ, et al. Dynamic CT evaluation of tumor vascularity in renal cell carcinoma. AJR Am J Roentgenol, 2006, 186(6):1423-1430.
    58 周华,张敏鸣,肖圣祥,等.动态增强CT功能成像评价肺癌肿瘤血管生成的研究.中华放射学杂志,2006,40(2):171-175
    59 刘玉林,陈宪,陈军,等.鼻咽癌CT灌注成像及其生物学相关性研究.中华放射学杂志,2007,41(9):907-912
    60 Meijerink MR, van Cruijsen H, Hoekman K, et al. The use of perfusion CT for the evaluation of therapy combining AZD2171 with gefinitib in cancer patients. Eur Radiol,2007, 17(7):1700-1713.
    61 Schlemmer HP, Merkle J, Grobholz R, et al. Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? Eur Radiol, 2004, 14(2):309-317
    62 Weissleder R. Molecular imaging: exploring the next frontier. Radiology, 1999, 212(3):609-614
    63 Cook GJ. Oncological molecular imaging: nuclear medicine techniques. Br J Radiol,2003, 76(SI):S152-S158
    64 Kang HW, Josephson L, Petrovsky A, et al. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug Chem, 2002, 13(1):122-127
    65 Chen X, Park R, Tohme M, et al. Micro-PET and Autoradiographic Imaging of Breast Cancer alpha(v)-Integrin Expression Using (18)F-and (64)Cu-Labeled RGD Peptide.Bioconjug Chem, 2004, 15(1):41-49
    66 Oostendorp M, Douma K, Hackeng TM, et al. Quantitative Molecular Magnetic Resonance Imaging of Tumor Angiogenesis Using cNGR-Labeled Paramagnetic Quantum Dots. Cancer Res, 2008, 68(18): 7676-7683
    67 Bredow S, Lewin M, Hofmann B, et al. Imaging of tumour neovasculature by targeting the TGF-beta binding receptor endoglin. Eur J Cancer, 2000, 36(5): 675-681
    68 Winter PM, Caruthers SD, Kassner A, et al. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(v)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res, 2003, 63:5838-5843
    69 Jayson GC, Zweit J, Jackson A, et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst, 2002, 94(19): 1484-1493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700