华北平原农田水热、CO_2通量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆地生态系统碳、水循环的研究是当前全球变化研究领域的核心问题。将大量的、多尺度的
    生态系统-大气问物质与能最交换的试验和观测与描述这一过程的各种模型相结合是碳、水循环
    研究所普遍采用的方法。以涡度相关技术为主要的观测手段的全球通量观测网络(FluxNet)可
    对生态系统与大气间的CO_2、水分和能最交换过程进行长期的、连续的微气象观测,为进一步研
    究生态系统物质与能量传输的机理和过程以及碳源/汇时空格局等的提供重要的数据信息.同时
    为各种碳、水循环模型的参数确定、模拟效果检验提供检验标准。
     20世纪90年代以来,国际上在对生态系统碳、水循环的关键过程及其对各种环境因素的响
    应、生态系统能量与通量的模型模拟等方面己取得了较大的进展,但研究对象多集中于自然生态
    系统(如森林、草地、湿地等),农田作为一种受人类活动直接影响的生态系统在FluxNet的研
    究中并不具有代表性。我国的通量观测与研究启动较晚,通量观测积累的数据有限,需要在继续
    进行连续通量观测的同时,分析典型生态系统CO_2和水热通量以及相关生态环境要素时空变化
    特征及其动力学机制,并在不断修正和完善现有模型的基础上,探索新的方法或手段,寻找和构
    建使用便捷灵活、模拟效果良好且实用性强的通量模拟模型。
     中科院禹城农业综合实验站是目前中国陆地生态系统通量观测研究网络(ChinaFlux)唯一的
    针对农田系统碳、水循环研究的通量观测站点。本研究以该站的涡度相关观测数据为基础,对
    2002年11月至2003年10月期间农田(冬小麦与夏玉米轮作)与近地层大气间的能量和物质交
    换特征进行了详细分析,并采用多种模拟技术对CO_2和水汽通量进行了模拟和对比,在以下几
    方面取得了新进展:
    1)应用涡度相关的实测数据,对基于过程的综合性模型RZ-SHAW模型模拟作物逐时水、热通
    量和逐日蒸散量的功能进行了验证;2)采用小波变换方法对农田生态系统的CO_2和水汽交换通
    量的多尺度特征进行了分析:3)提出了应用神经网络技术进行通量模拟的思路,并在对农田生态
    系统的CO_2和水汽交换通量模拟巾取得了较好的效果:4)将支持向量机技术引入农田生态系统
    的CO_2和水汽交换通量模拟中,并证明其模拟效果优于神经网络:5)将Bayesian证据框架的自
    相关确定方法应用于神经网络建模过程中,将小同的环境因素按其对CO_2和水汽通量影响进行
    了排序.
     本研究在对该站农田生态系统水热、CO_2通量特征分析及模拟的过程中,得出了以下几点结
    论:
During recent decades, carbon and water cycles of terrestrial ecosystems has been the focus in the study of global change. Central to this research is the combination of observations of ecosystem-atmosphere mass and energy exchange with the associated models, which has been adopted commonly as a useful method by the sites worldwide. Long-term, continuous micrometeorological measurements with the eddy covariance technique provide the information for the investigation of ecosystem mass and energy transfer processes and the regulating mechanisms as well as the spatial and temporal pattern of carbon source/sink. Moreover, it allows for direct fluxes measurements at the time and spatial scales required to evaluating or parameterizing land-surface properties of a process-based ecosystem exchange models and the model validation.A better understanding of critical processes in water and carbon cycles and how CO_2, water and energy fluxes may respond to biotic and abiotic factors and a progress on their simulation have been achieved since 1990s when the Worldwide CO_2 flux measurements network (FluxNet) was formed. The majority of the studies focus on natural ecosystems (e.g. forest, grassland and wetlands) while studies on agricultural and other human manipulated systems are currently under represented in the FluxNet community. China terrestrial ecosystems fluxes research (ChinaFlux) was formed until 2002, monitors of CO_2, water and energy fluxes need to be carried continuously for the exploring the biophysical controls on typical ecosystems and their roles in the global carbon and water balance, great strength have to be made at the same time not only in the revise and perfectness of the original fluxes model, bout also in the establishment of the models more applicable, flexible and convenient for the success simulation of fluxes.Yucheng Comprehensive Experiment Station in the North China Plain, the only agricultural ecosystem station of ChinaFlux operated CO_2, water and energy fluxes measurements with the eddy covariance technique above a winter wheat and summer maize rotation field. Data sets obtained from November 1, 2002 [day of year (DOY) 305]] to October 20,2003 (DOY293) were used to characterize the variability of CO_2 flux and surface energy balance components and to examine how they response to modulations of environmental variables in this study, then several strategies were used to simulate carbon and water fluxes and their prosperities and modeling abilities for different circumstances were
    compared too. In doing this, some new ideas emerged as follows:1) Validated the ability of a process-based model termed RZ-SHAW to estimate ET and energy fluxes for summer maize field with the eddy covariance measurements; 2) Oscillation features of the cropland biosphere-atmosphere carbon and water vapor fluxes profiles over a wide range of time scales were probed with the wavelet transform technique; 3) Three-layer back-propagation neural networks were developed and applied to explore their capability in modeling water vapor and carbon dioxide fluxes exchange between the surface of a summer maize field and atmosphere; 4) The least squares support vector machines (LS-SVMs) method was introduced to simulate the water and carbon fluxes. The result was compared with the neural networks operated on the same data set in addition; 5) An automatic relevance determination (ARD) integrated with the Bayesian framework was used to assess the relative importance of the input environment variables, which were believed to have constraints on the dynamics of water and carbon exchange. The major issues presented in this study include:1) During the whole study period, net radiation captured by the cropland was consumed in the form of soil heat flux (G), latent (LE) and sensible heat fluxes (Hs). Among them, the largest part of energy was routed to surface water vapor exchange and the smallest part went to the heating of soil. Crop leaf area index and soil moisture influenced the pattern of the energy dissipation was strongly in two aspects. Firstly, the switch of energy partitioning was associated with leaf emergence (from Hs to LE dominated) and senescence (from LE back to Hs dominated); Secondly, the proportion of latent heat flux to the available energy (Ra) increased from 48.6% in the winter wheat growth period to 62.6% in the summer maize period owing to the frequent precipitation and more sufficient soil water content with the onset of the summer monsoon;2) The results of wavelet transform on the data sets of water vapor and carbon dioxide (Fc)fluxes obtained during the summer maize growth period revealed that both Fc and LE were characterized by high wavelet coefficients intermitted by low values alternatively during the time scale of 60-1 lOd; Peak level wavelet coefficients for Fc and LE occurred contemporary around September 26 [day after sowing (DAS 105)]; For 64d and HOd scales, carbon flux signal showed almost the same pattern of "U" with a hollow ranged from DAS37-DAS85 and two peaks on both ends, while water vapor flux signal during the same time scale with an inverted "U"; The evolution of leaf area index (LAI) of the summer maize had coherences with the patterns of wavelet coefficients for carbon and water fluxes in 1 lOd under the influences of environmental variables(Meteoro!ogical factors and soil water content);3) Daily evapotranspiration (ET) of the summer maize predicted by RZ-SHAW had a good agreement with that measured by eddy covariance that the square of the linear regression coefficient is 0.83, total water vapor flux estimated was 396.2 mm, about 2.73% greater than the measured value. Besides. RZ-SHAW model had a good performance in modeling hourly energy budget components. For
    instance, indices of agreement (IA)for hourly LE simulated and measured were above 0.75, root mean square error (RMSE) were no more than 1.0;4) Three-layer back-propagation neural networks (BPNN) could be an interesting and viable alternative method for modeling surface-biosphere fluxes exchange without using detailed physiological information or specific parameters of the plant. However, being based on experienced learning theory, they have a few drawbacks such as non-convex training with multiple local minima, dependence on quantity and quality of training data set, the choice of the number of hidden units.An improved SVMs model termed least squares support vector machines (LS-SVMs), which developed on the basis of statistical learning theory, could be used to model surface fluxes exchange without restrictive assumptions. Compared with the results of the artificial neural networks, it has stronger learning ability, better generalization ability and is less dependent on the size of training dataset.5) Mechanistic models such as RZ-SHAW in this study provided detailed information on the biophysical, eco-physiological and biochemical processes for the simulation of mass and energy exchange between ecosystem and atmosphere. Long-term experiments should be carried for calibration and specification of the parameters in the model, which makes fluxes estimation complex and carbon or water budget construction relatively inconvenient. Artificial neural networks (ANNs) and SVMs are interesting and viable alternative routines for modeling fluxes because they could extract underlying relationships between system inputs and outputs that are often very difficult to model with a mechanistic approach. However, the use of them should not diminish the role of mechanistic models, since these two methods are generally only superior in situations where the underlying system fundamentals are poorly understood or the parameters are difficult to obtain.6) The ARD results demonstrated that among several input variables for the neural network, vapor pressure deficient (VPD) and soil water content (W) had most influential effects on surface water vapor flux exchange while photosynthetically active radiation (PAR) and air temperature (T) were the key physical driving factors for carbon flux among several input variables. PAR, VPD, T and LAI were primary factors regulating both water vapor and carbon dioxide fluxes.Multi-years measurements of CO2, water and energy fluxes above the agri-ecosystem will be stuck and integrated carbon and water cycles simulation models will be developed for the purpose of a good knowledge of mass and energy transfer processes and their feedback mechanistic, and for an accurate estimation of the size of regional carbon source/pool in average from cropland and an efficient usage and regulation of water resources by upscaling of these site-based models. Impacts of land tillage, management measures and the crop species on both annual carbon fixation/release and water consumption will be evaluated in addition in future study.
引文
Adeli, H., Hung, S.-L., 1995. Machine Learning - Neural Networks, Genetic Algorithms, and Fuzzy System, John Wiley, New York.
    Adeli, H., Park, H.S., 1998. Neuro Computing in Design Automation. In: FL.D.E, James L.(Eds.). CRC Press, Boca Raton, McClel Land and the PDP Research Group Al-Rasby, S.N., 1991. Solution techniques in nonlinear structural analysis. Computer and Structures, 40(4): 985-993.
    Aiken,R.M., Flerchinger, G.N., Johnsen, K.A., 1997a.Simulating surface soil and residue temperatures with incomplete cover. Agron. J., 89(3): 405-416.
    Anthoni, P.M., B.E. Law and M.H. Unsworth. 1999. Carbon and water vapor exchange of an open canopied ponderosa pine ecosystem. Agriculture and Forest Meteorology, 95:151-168.
    Anthoni, P.M., Unworthy, M.H., Law, B.E., Irvine, J., Baldocchi, D.D., Tuyl, S.V., Moore, D., 2002. Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems Agricultural and Forest Meteorology, 111:203-222.
    Anthoni, P. M., Freibauer, A., Kolle, O., Schulze, E. D., 2004. Winter wheat carbon exchange in Thuringia, Germany. Agricultural and Forest Meteorology, 121 : 55-67.
    Arora, V. K., 2003. Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models. Agricultural and Forest Meteorology, 118: 21-47.
    Aubinet, M., A. Grelle, and A. Ibrom. 1999. Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology. Adv. Ecol. Res., 30:113-175.
    Aubinet, M., Grelle, A., lbrom, A., Rannik, U., Moncrieff, J., Foken, T., Kowalski. A.S., Martin. P.H., Berbigier, P.,Bemhofer, Ch., Clement, R., Elbers, J., Granier, A., Grunwald,T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W.,Valentini, R., Vesala, T., 2000. Estimates of the annual netcarbon and water exchange of European forests: the EUROFLUX methodology. Adv. Ecol. Res., 30:113-173.
    Baesens, B.,Viaene, S., Van den Poel,D. et al., 2002.Bayesian neural network learning for repeat purchase modeling in direct marketing. European Journal of Operation Research. 138:191-211
    Bald, B. L., Rosenberg, N.J., 1974.Lysimeteric calibration of the Bowen ratio-energy balance method for evapotranspiration estimation in the central Great Plains, J. Appl. Meteorol., 13:227-235.
    Baldocchi, D.D., Verma, S.B., Rosenberg, N.J., 1981. Mass and energy exchanges of a soybean canopy under various environmental regimes. Agron. J. 78: 706-710.
    Baldocchi, D.D., Verma, S.B., Rosenberg, N.J., Blad, B.L., Garay, A., Specht, J., 1983. Influence of water stress on the diurnal exchange of mass and energy between the atmosphere and a soybean canopy. Agron. J. 75:543-548.
    Baldocchi, D. D., B. B. Hicks, and T. P. Meyers. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69:1331-1340.
    Baldocchi, D. D. 1994. A comparative study of mass and energy exchange over a closed C_3 (wheat) and an open C_4 (corn) canopy: Ⅰ. The partitioning of available energy into latent and sensible heat exchange. Agricultural and Forest Meteorology, 67:191-220, 191
    Baldocchi, D.D., 1997. Measuring and modeling carbon dioxide and water vapor exchange over a temperate broadleaved forest during the 1995 summer drought. Plant Cell and Environ., 20:1108-1122.
    Baldocchi, D.D., Voget, C.A., Hall, B., 1997. Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest. Agric. Forest Meteorol. 83:147-170.
    Baldocchi, D.D., 1997. Flux footprints within and over forest canopies. Boundary-Layer Meteorol. 85: 273-292.
    Baldocchi, D.D., Finnigan, J., Wilson, K., Paw, U.K.T., Falge, E., 2000a. On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary Layer Meteorol., 96:257-291.
    Baldocchi, D.D., Wilson, K. B., 2001.Modelling CO2 and water vapor exchange of a temperate broadleaved forest
    across hourly to decadal time scales. Ecological Modelling, 142: 155-184.
    Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running.S., Anthoni, P., Bernhofer, C, Davis, K., Evans, R., Fuentes, J.,Goldstein, A., Katul, G, Law, B., Lee, X., Malhi, Y., Meyers.T., Munger, W., Oechel, W., U. K.T.P., Pilegaard, K., Schmid,H.P., Valentini, R., Verma, S., Vesala. T., Wilson, K., Wofsy, S., 2001. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bull. Am. Meteorol. Soc. 82( 11): 2415-2434.
    Baldocchi, D., FaIge,E., Wilson,K, 2001.A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. Agricultural and Forest Meteorology, 107: 1-27.
    Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins, I. (Ed.), Progress in Photosynthesis Research. Martinus Nijhoff Publishers, The Netherlands, pp. 221-224.
    Beale, R., and T. Jackson. 1991. Neural Computing: An Introduction. Adam Hilger, Techno House, Bristol.
    Batchelor, W.D., Yang, X.B., Tschanz, A.T., 1997. Development of a neural network for soybean rust epidemics. Trans.ASAE, 40:247-252.
    Biscoe.P.V., Monteith, J.L., 1975.Barley and its environment. J. Appl. Ecology.12: 227-247
    Billalobos, F.J.,1997. Correction of eddy covariance water vapor flux using additional measurements of temperature . Agricultural and Forest Meteorology, 88:77~83
    Bolte, J.P., 1989. Application of neural networks in agriculture.ASAE Paper No. 89-7591. American Society of AgriculturalEngineers, St. Joseph, MI.
    Bonan, GB., 1995. Land-atmosphere interactions for climate change system models: coupling biophysical, biogeochemical and ecosystem dynamical processes. Remote Sens. Environ.,51:57-73.
    Bosveld, F.C., Bouten, W., 2001.Evaluation of transpiration models with observations over a Douglas-fir forest. Agricultural and Forest Meteorology, 108: 247-264.
    Brown, K.W., Rosenberg, N.J., 1971. Energy and CO2 balance of an irrigated sugar beet (Beta vulgaris) field in the Great Plains. Agron. J. 63:207-213.
    Buntine.M.L., Weigend.A.S., 1991,Bayesian back-propagation, Complex System,5:603-604
    Buyanovsky, G.A., Wagner, G.H., 1998. Carbon cycling in cultivated land and its global significance. Global Change Biol.4: 131-141.
    Campbell, GS. Soil Physics with BASIC: Transport models for soil-plant systems. Elsevier, Amsterdam, 1985, pp. 150.
    Carrara, A., A. S. Kowalski, J. Neirynck, I. A. Janssens, J. Curiel, Y. J. Curiel, and R. Ceulemans. 2003. Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agricultural and Forest Meteorology, 119: 209 - 227
    Cattan, J., Mohammadi, J., 1997. Analysis of bridge condition rating using neural networks. Computer-Aided Civil and Infrastructure Engineering, 12:419-429.
    Changmin Liu and Wang Huixiao.1999.The interface processes of water movement in the soil-atmosphere system and water-saving regulation, pp.7-9, Science Press. BeiJing. China.
    Chao, K., Anderson, R., 1994. Neural-fuzzy interface system for daily growth of single stem roses. ASAE Paper No. 94-4015, St. Joseph, MI.
    Colasanti, R.L., 1991. Discussions of the possible use of neural network algorithms in ecological modelling. Binary, 3:13-15.
    Collatz, GJ., Ball, J.T., Crivet, C, Berry, J.A., 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric. Forest Meteorol., 54:107-136.
    Collins, H.P., Blevins, R.L., Bundy. L.G., Christenson, D.R., Dick, W.A., Huggins, D.R., Paul, E.A., 1999. Soil carbon dynamics in corn-based agroecosystems: results from C-13 natural abundance. Soil Sci. Soc. Am. J. 63:584-591.
    Cook, D.F., Wolfe, M.L., 1991. A back-propagation neural network to predict average air temperature. AI Appl, 5:40-46
    Cowan, I.R., 1968. Mass, heat, and momentum exchange between stands of plants and their atmospheric environment. Q. J. R. Meteorol. Soc, 94: 523-544.
    CristianinJ N., Shawe-Taylor, J., An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge U.K.: Cambridge University Press, 2000, pp187
    Denmead, O.T. and Mcllroy, I.C., 1970. Measurements of non-potential evaporation from wheat. Agric. Meteorol., 7: 297-303.
    Denmead, O.T., Dunin, F.X., Wong, S.C., Greenwood, E.A.N.,1993. Measuring water use efficiency of Eucalypt trees with chambers and micrometeorological techniques. J. Hydrol. 150: 649-664.
    Daubechies, I., 1994. Ten lectures on wavelets CBMS. SIAM, 61:194-202.De Pury, D.GG, Farquhar, GD., 1997. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ., 20: 537-557.
    Dekker, S. C. Bouten, W., Schaap, M. G, 2001. Analysing forest transpiration model errors with artificial neural networks. Journal of Hydrology, 246: 197-208
    Demuth, H., Beale, M., 1994. Neural Network Toolbox For Use with MATLAB. Natick,The Math Works, Inc.
    Deo, M.C., Chaudhari, G, 1998. Tide prediction using neural networks. Computer-Aided Civil and Infrastructure Engineering, 13(2): 113-120.
    Dickinson, R.E., Henderson-Sellers A, Kennedy P J, et al. Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR CCM, NCAR/TN-275-STR. National Center for Atmosphere Research, Boulder, Colorado, 1986
    Dickinson, R.E., Henderson-Sellers, A., Kennedy.P.L., et al. 1996.Biosphere-atmosphere transfer scheme(BATS) for the NCAR Community Climate Model, Technical Notes TN 275 TSTR.NCAR, Boulder, CO.
    Duan, K., Keerthi, S., Poo, A., 2001.Evaluation of simple performance measures for tuning SVM hyperparameters (Tech. Rep. No. Control Division Technical Report CD-01-11). Department of Mechanical Engineering, National University of Singapore.
    Dugas, W. A., L. J. Fritschen , and L. W. Gay. 1991. Bowen ratio, eddy correlation, and portable chamber measurements of sensible and latent heat flux over irrigated spring wheat. Agric.For. Meteorol., 56: 1-20.
    Dyer, A.J., Hicks, B.B., 1970. Flux-gradient relationships in the constant flux layer. Q. J. Roy. Meteorol. Soc. 96:715-721.
    Edwards, M., Morse, D.R., 1995. The potential for computer-aided identification in biodiversity research. Trends Ecol. Evol., 10: 153-158.
    Elizondo, D., Hoogenboom, G., MeClendon, R.W., 1994. Development of a neural network model to predict daily solar radiation. Agri.For. Meteorol., 71:115-132.
    Falge, E., D. Baldocchi, R. Olson , P. Anthoni, M. Aubinet, C.Bemhofer, G. Burba, R. Ceulemans, R. Clement, H.Dolman, A.Granier, P. Gross, T. Grunwald , D. Hollinger ,N.O. Jensen , G. Katul, P.Keronen , A. Kowalski.C. T. Lai, B. E. Law, T. Meyers, J. Moncrieff, E. Moors, J. William Munger, K. Pilegaard , U. Rannik, C. Rebmann, A. Suyker, J. Tenhunen, K. Tu, S. Verma, T. Vesala, K.Wilson , S. Wofsy. 2001a. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107: 43 - 69
    Falge, E., Baldocchi, D.D., Olson, R., Anthoni, P., Aubinet, M.,et al., 2001b. Gap-filling strategies for long-term energy flux data sets. Agric. Forest Meteorol., 107:71-77.
    Falge E., J. Tenhunen , D. Baldocchi, M. Aubinet, P.Bakwin, P. Berbigier, C. Bemhofer, J. M. Bonnefond, G. Burba ,R. Clement, K. Davis, J. A. Elbers, M. Falk, A. H. Goldstein , A. Grelle, A. Granier , T. Grunwald, J. Guemundsson, D. Hollinger, I. A. Janssens, P. Keronen, A. S. Kowalski, G. Katul, B. E. Law, Y. Malhi, T. Meyers, R. K. Monson, E. Moors, J. W. Munger, W. Oechel, K. T. Paw U, K. Pilegaard, 0. Rannik, C. Rebmann, A. Suyker, H. Thorgeirsson , G. Tirone , A. Turnipseed , K. Wilson , and S. Wofsy. 2002. Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 113: 75-95
    Farquhar, GD., von Caemmerer, S., 1982. Modeling photosynthetic response to environmental conditions. In: O.L. Lange, et al. (Eds.). Encyclopedia of Plant Physiology 12B. Springer.Berlin, pp. 549-587.
    Flerchinger, G.N., Pierson F.B., 1991. Modelling plant canopy effects on variability of soil temperature and water. Agric. and Forest Meteor, 56: 227-246.
    Flerchinger, GN., Cooley, K.R., Deng, Y, 1994.Impacts of spatially and temporally varying snowmelt on subsurface flow in a mountainous watershed Snowmelt simulation. Hydrol. Sci. J., 39:507-520.
    Flerchinger, GN., Hanson, C.L., Wight, J.R., 1996.Modeling of evapotranspiration and surface energy budgets across a watershed. Water Resour. Res., 32 (8): 2539-2548.
    Flerchinger, GN., Hanson, C.L., Wight, J.R.,1996b.Modeling of evapotranspiration and surface energy budgets across a watershed. Water Resour. Res., 32 (8): 2539-2548.
    Flerchinger, GN., Cooley, K.R., Hanson, C.L., Seyfried, M.S., 1998a, A uniform versus an aggregated water balance of a semi-arid watershed. Hydrol. Proc, 12: 331-342.
    Flerchinger, GN., Kustas, W.P., Weltz, M.A.,1998b.Simulatingsurface energy fluxes and radiometric surface temperatures for two arid vegetation communities using the SHAW model. J.Appl. Meteor, 37 (5): 449-460.
    Flerchinger, GN., Aiken, R.M., Rojas, K.W., Ahuja,L.R., 1999. Development of the root zone water quality model (R2WQM) for over-winter conditions. American society of Agricultural Engineers,43( 1 ):59-68
    Foken, Th., Wichura, B., 1996. Tools for quality assessment of surface-based flux measurements. Agric. For. Meteorol. 78:83-105.
    Foley, J.A., Prentice,I.,C, Ramankutty, N., et al., 1996.An integrated biosphere model of land surface process, terrestrial carbon balance and vegetation dynamics. Global biogeochemical cycles, 10(4): 603-628
    Francl, L.J., Panigrahi, S., 1997. Artificial neural network models of wheat leaf wetness. Agricultural and Forest Meteorology, 88:57-65.
    Franks, S.W., Beven, K.J., Quinn, P.F., Wright, I.R., 1997.0n the sensitivity of soil-vegetation-atmosphere transfer (SVAT) schemes: equifinality and the problem of robust calibration. Agric. Forest Meteor. 86: 63-75.
    Franks, S.W., Beven, K., 1999. Conditioning a multiple patch SVAT model using uncertain time-space estimates of latent heat fluxes as inferred from remotely sensed data. Water Resour. Res., 35: 2751-2761.
    Frank, A. B., and W. A. Dugas. 2001. Carbon dioxide fluxes over a northern, semiarid, mixed-grass prairie Agricultural and Forest Meteorology, 108: 317 - 326
    Fritshen, J.L., 1965. Accuracy of evapotranspiration determination by the Bowen ratio method. Bull. Intern. Assoc. Sci. Hydrol. 10: 38-48.
    Fritshen, J.L., Gay, L.W., Simpson, J.R., 1983. The effect of a moisture step change and advective conditions on the energy balance components of irrigated alfalfa. Extended Abstract, 16th Conference on Agriculture and Forest Meteorology. April 26-28, Fort Collins, CO, pp. 83-86.
    Fritschen, L.J., Qian, P., Kanemasu, E.T., Nie, D., Smith, E.A., Stewart, J.B., Verma, S.B., Wesely, M.L., 1992. Comparisons of surface flux measurement systems used in FIFE 1989. J.Geophys. Res., 97 (D17): 18697-18713.
    Fuchs, M., Tanner, C.B., 1970. Error analysis of Bowen ratios measured by differential psychrometry. Agric. Meteorol. 7:329-334.
    Gary, K., 2002.An open path H2O/CO2 gas analyzer for eddy correlation systems: theory and design. Spectrochimica Acta Part A. 58: 2373-2388
    Gash, J.H.C., Nobre, C.A., Roberts, J.M., Victoria, R.L.,1996. Amazonian Deforestation and Climate. Wiley and Sons, New York.
    Giske, J., Huse, G., Fiksen, O., 1998. Modelling spatial dynamics of fish. Rev. Fish. Biol. Fish, 8:57-91.
    Goldstein, A.H., Hultman, N.E., Fracheboud, J.M., Bauer, M.R., Panek, J.A., Xu, M., Qi, Y., Guenther, A.B., Baugh, W., 2000. Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA). Agricultural and Forest Meteorology, 101(2-3): 113-129.
    Goulden, M.L., J.W. Munger, S.M.Fran, B.C. Daube and S.C.Wofsy. 1996. Exchange of carbon dioxide by a deciduous forest-response to inter-annual climate variability. Science, 271: 1576-1578.
    Goulden, M.L., Daube, B.C., Fan, S.M., Sutton, D.J., Bazzaz, A., Unger, J.W., Wofsy, S.C., 1997. Physiological responses of a black spruce forest to weather. J. Geophys. Res., 102 (D24):28987-28996.
    Goutorbe, J.P., Lebel, T., Dolman, A.J., Gash, J., Kabat, P.,Kerr, Y.H., et al., 1997. An overview of HAPEX Sahel: a study in climate and desertification. J. Hydrol., 188-189: 4-12.
    Grace, J., Lloyd, J., Mclntyre, J., Miranda, A., Meir, P., Miranda, H., Moncrieff, J., Massheder, J., Wright, 1., Gash, J., 1995. Fluxes of carbon dioxide and water vapor over an undisturbed tropical forest in south-west Amazonia. Global Change Biol., 1: 1-13.
    Granier, A., Ceschia, E., Damesin, C, Dufrene, E., Epron, D., Gross, P., Lebaube, S., Le Dantec, V., Le Goff, N., Lemoine, D., Lucot, E., Ottorini, J.M., Pontailler, J.Y., Saugier, B., 2000a.The carbon balance of a young beech forest, Funct. Ecol.., 14: 312-325.
    Granier, A., Biron, P., Lemoine, D., 2000b. Water balance, transpiration and canopy conductance in two beech stands. Agric. Forest Meteor, 100: 291-308.
    Grant, R.F., Black, T.A., den Hartog, G, Berry, J.A., Neumann, H.H., Blanken, P.D., Yang, P.C., Russel, C, Nalder, I.A., 1999. Diurnal and annual exchanges of mass and energy between an aspen hazelnut forest and the atmosphere: testing the mathematical model ecosys with data from the BOREAS experiment. J. Geophys. Res., 104:27699-27717.
    Greco, S. and D.D. Baldocchi. 1996. Seasonal variation of CO_2 and water vapor exchange rates over a temperate deciduous forest. Global Change Biology, 2: 183-198.
    Grossman, A., Morlet, J., 1984. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math.Anal., 723-736.
    Halldin, S., Gryning, S.E., Gottschalk, L., Jochum, A., Lundin, L.C., van de Griend. A. A., 1999. Energy, water and carbon exchange in a boreal landscape: NOPEX experience.Agric. Forest Meteorol., (98-99): 5-29.
    Ham, J. M., and K. Alan. 1998. Fluxes of CO2, water vapor, and energy from a prairie ecosystem during the seasonal transition from carbon sink to carbon source Knapp. Agricultural and Forest Meteorology, 89: 1-14
    Hanan, N.P., Kabat, P., Dolman, A.J., Elbers, J.A., 1998. Photosynthesis and carbon balance of a Sahelian fallow savanna. Global Change Biol., 4: 523-538.
    Hecht-Nielsen, R., 1987. Counterpropagation networks. Applied Optics, 26:4979-4984.
    Heilman, J.L., Brittin, C.L., Neale, C.M.U., 1989. Fetch requirements for Bowen ratio measurements of latent and sensible heat fluxes. Agric. For. Meteorol. 44: 261-273.
    Held, A.A., Steduto, P., Orgaz, F., Matista, A., Hsiao, T.C., 1990.Bowen ratio energy-balance technique for estimating crop net CO assimilation and comparison with a canopy chamber. 2 Theor. Appl. Climatol. 42: 203-213.
    Hollinger, D.Y., F.M. Kelliher, E.D. Schulze, N.N. Vygodskaya, A. Varlargin, I. Milukova, J.N. Byers, A. Sogachov, J.E. Hunt, T.M. McSeveny, K.I. Kobak, G. Bauer and A. Ameth. 1995. Initial assessment of multi-scale measures of CO2 and H2O flux in Siberian taiga. Journal of Biogeography, 22: 425-431.
    Horst, T.W., Weil, J.C., 1992. Footprint estimation for scalar flux measurements in the atmospheric boundary layer. Boundary-Layer Meteorol. 59, 279-296
    Humphreys, E. R, T. A. Black, G. J. Ethier, G. B. Drewitt, D. L. Spittlehouse , E. M. Jork , Z. Nesic, and N. J. Livingston. 2003. Annual and seasonal variability of sensible and latent heat fluxes above a coastal Douglas-fir forest, British Columbia, Canada. Agricultural and Forest Meteorology, 115: 109-125.
    Hunt, J.E., Kelliher, F.M., McSeveny, T.M., Byers, J.N., 2002. Evaporation and carbon dioxide exchange between the atmosphere and tussock grassland during a summer drought. Agricultural and Forest Meteorology, 111:65-82.
    Huntingford, C, Cox, P.M., 1997. Use of statistical and neural network techniques to detect how stomatal conductance responds to changes in the local environment. Ecol. Model., 97: 217-246.
    Hurtalova, T, and F. Matejka. 1999. Surface characteristics and energy fluxes above different plant canopies. Agricultural and Forest Meteorology, (98-99): 491-500
    Jaakkola, T.S., Haussler, D., Exploiting generative models in discriminative classifiers, in: M.S. Kearns, S.A. Solla, D.A.Cohn (Eds.), Advances in Neural Information Processing Systems. MIT Press, Cambridge, 1998.
    Jarvis, P.G, 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philo. Trans. R. Soc. London, B 273, 593-610.
    Jarvis, P.G, 1985. Coupling of transpiration to the atmosphere in horticultural crops: the omega factor. Acta Hortic, 171:187-205
    Jarvis, P.G, 1985b. Transpiration and assimilation of tree and agricultural crops: The omega factor. In: Cannel, M.GR., Jackson, J.E. Eds., Attributes of Trees as Crop Plants. Institute of Terrestrial Ecology, England, pp. 460-480.
    Jarvis, P.G. and K.G.McNaughton. 1986. Stomatal control of transpiration: scaling up from leaf to region. Adv. Ecol. Res., 15: 1-49.
    Jarvis, P.G., 1995. Scaling processes and problems. Plant Cell Environ, 18:1079-1089.
    Jarvis, P.G., Massheder, J., Hale, D., Moncrieff, J., Rayment, M.,Scott, S., 1997. Seasonal variation of carbon dioxide, water vapor and energy exchanges of a boreal black spruce forest. J. Geophys. Res., 102: 28953-28967.
    Judd, M..J., Prendergast, P.T., McAneney, K.J.,1993. Carbon dioxide and latent heat flux measurements in a windbreak-sheltered orchard. Agricultural and Forest Meteorology, 66:193-210
    Jury, W., Gardner, W.R., Gardner, W.H., 1991. Soil Physics. Wiley, New York.
    Kaastra, I., & Boyd, M. 1996. Designing a neural network for forecasting financial and economic time series. Neurocomputing,10: 215 - 236.
    Katerji, N. , Perrier, A., 1983. Modelization de l'evapotranspiration reelle ETR d'une parcelle de luzerne: roled'un coefficient cultural. Agronomie, 3(6): 513-521 (in French).
    Katul, G., Lai, C.T., Schafer, K., Vidakovic, B., Albertson, J.,Ellsworth, D., Oren, R., 2001. Multiscale analysis of vegetation surface fluxes: from seconds to years. Adv. Water Resour., 24: 1119-1132.
    Kelliher, F. M., B. M. Kostner, and D. Y. Hollinger. 1992. Evaporation, xylem sap flow, and tree transpiration in a New Zealand broad-leaved forest. Agri. For. Meterorol., 62: 53-73
    Kelliher, F.M., Hollinger, D.Y., Schulze, E. D.. Vygodskaya. N.N., Byers, J.N., Hunt, J.E., McSeveny. T. M., Milukova, I., Sogachev, A.F., Varlagin, A.V., Ziegler, W., Ameth, A., Bauer, G.A., 1997.Evaporation from an eastern Siberian larch forest. Agric. Forest Meteor., 85: 135-147.
    Kimball, J.S., Running, S.W., Saatchi, S.S., 1999. Sensitivity of boreal forest regional water flux and net primary productivity simulations to sub grid scale land cover complexity. J. Geophys. Res., 104: 27789-27801.
    Koprov.B.M., Sokolov, D.Yu., 1973. Spatial correlation functions of velocity and temperature components in the surface layer of the atmosphere. Izv. Atmos. Oceanic Phys., 9:178-182
    Kosko, B., 1992. Neural Networks and Fuzzy Systems. A Dynamical Systems Approach to Machine Intelligence. New Jersey, Prentice-Hall, Inc, Englewood Cliffs, p.449.
    Kurpius, M. R., J. A. Panek, N. T. Nikolov, M. McKay, and A. H. Goldstein. 2003. Partitioning of water flux in a Sierra Nevada ponderosa pine plantation. Agricultural and Forest Meteorology. 117: 173 - 192
    Kustas, W.P., Prueger, J.R., Humes, K.S., Starks, P.J., 1999.Estimation of surface heat fluxes at field scale using surface layer versus mixed layer atmospheric variables with radiometric temperature observations. J. Appl. Meteorol., 38:224-238.
    Lal, R., Kimble, J.M., Follett, R.F., Cole, C.V., 1998. The Potential of U.S. Cropland to Sequester Carbon and Mitigate the Greenhouse Effect. Ann Arbor Press, Chelsea, Ml, pp.442.
    Lange, O.L., J.D. Tenhunen and M.Braun. 1982. Midday stomatal closure in Mediterranean-type scleropylls under simulated habitat conditions in an environmental chamber. I. Comparison of the behavior of various Mediterranean species. Flora, 172: 563-579.
    Lau, K.M., Weng, H., 1995. Climate signal detection using wavelet transform: how to make a time series sing. Bulletin of the American Meteorological Society, 76: 2391-2402.
    Laubach, J., Raschendorfer, M., Kreilein, H., Gravenhorst,G, 1994. Determination of heat and water vapour fluxes above a spruce forest by eddy correlation. Agric. For.Meteorol. 71: 373—401.
    Lavigne, M.B.,Ryan,M.G.,Anderson, D.E., et al., 1997.Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites.Journal of geophysical research 102(D24):28977-28985.
    Lee.X. 1998.On micrometeorological observation of surface air exchange over tall vegetation. Agric. For. Meteorol., 91:39-49.
    Lee, X. H., Q. Yu, X. M. Sun, J.D. Liu, Q.W. Min, Y. F. Liu, and X. Z. Zhang. 2004. Micrometeorological fluxes under the influence of regional and local advection: a revisit. Agricultural and Forest Meteorology, 122: 111-124
    Lek, S., Delacoste, M., Baran, P., Dimopoulos, L., Lauga, J., Stephane, A., 1996. Application of neural networks to modeling nonlinear relationships in ecology. Ecological Modeling, 90:39-52.
    Lek, S., Guegan, J.F., 1999. Artificial neural networks as a tool in ecological modeling: and introduction. Ecol Model, 120:65-73.
    Leuning, R., Kelliher, F.M., Depury, D., Schulze, E.D., 1995. Leaf nitrogen, photosynthesis, conductance and transpiration:scaling from leaves to canopies. Plant Cell Environ., 18:1183-1200.
    Leuning, R., 1990. Modelling stomatal behavior and photosynthesis of Eucalyptus grandis. Australian Journal of Plant Physiology, 17:159-175.
    Lloyd,C.R.,Shuttleworth, W.J.,Gash, J.H.C., Turner, M., 1984. A microprocessor system for eddy-correlation. Agric. For. Meteorol., 33:67-80.
    Long, S. P,.Humphries, S.,Falkowski, P. G, 1994.Photoinhibition of photosynthesis in nature.Annu.Rev.Plant Physiol.,Mol.Biol.,45:633-662.
    L6pez , G, Rubio , M.A., Mart'.nez , M., et al., 2001.Estimation of hourly global photosynthetically active radiation using artificial neural network models. Agricultural and Forest Meteorology, 107: 279-291
    Liu, C. M., and H. X. Wang. 1999. The interface processes of water movement in the soil-atmosphere system and water-saving regulation. Beijing, China: Science Press.
    Liukang Xu and Dennis D. Baldocchi. 2004.Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in Califomia.Ecosystem. .Agricultural and Forest Meteorology, 1232: 79-96
    MacKay, D. J. C, 1992. Bayesian interpolation. Neural Computation, 4(3): 415-447.
    MacKay, D. J. C, 1994. Hyperparameters: optimise or integrate out?. In G. Heidbreder (Ed.), Maximum entropy and Bayesian methods, Santa Barbara 1993, Dordrecht: Kluwer.
    MacKay, D. J. C, 1995. Bayesian non-linear modelling for the 1993 energy prediction competition. In G Heidbreder (Ed.), Maximum entropy and Bayesian methods, Santa Barbara 1993, Dordrecht:Kluwer.
    Mahrt, L, 1998. Flux sampling errors for aircraft and towers. J.Atmos. Ocean. Technol., 15: 416-429.
    Malek, E., Bingham, GE., 1993. Comparison of the Bovven ratio-energy balance and the water balance method for the measurement of evapotranspiration. J. Hydrol. 146:209-220.
    Malek, E., 1993. Comparison of the Bowen ratio-energy balance and stability-corrected aerodynamic methods for measurement of evapotranspiration. Theor. Appl. Climatol. 48: 167-178.
    Makela, A., F.Beminger and P.Hari. 1996. Optimal control of gas exchange during drought-theoretical analysis. Ann. Bot,.77 (5): 461-467.
    Marquardt, D.W., 1963. An algorithm for least-squares estimation of non-linear parameters. SIAM, Journal on Applied mathematics, 11(2): 431-441.
    Massman, W.J., Lee, X., 2002.Eddy covariance flux corrections and uncertainties in long-termstudies of carbon and energy exchanges. Agricultural and Forest Meteorology, 113: 121-144.
    McNaughton, K. G. 1976. Evaporation and advection II: evaporation downwind of a boundary separating regions having different surfaces resistances and available energies. Quart. J. R. Meteorol. Soc, 102: 193-202.
    McCaughey, J.H., Lafleur, P.M., Joiner, D.W., Bartlett, P.A.,Costello, A.M., Jelinski, D.E., Ryan, M.G., 1997. Magnitudes and seasonal patterns of energy, water, and carbon exchanges at a boreal young jack pine forest in the BOREAS northern study area. J. Geophys. Res., 102 (D24): 28997-29007.
    McGinn, S.M., King, K.M., 1990. Simultaneous measurements of heat, water vapour and CO2 fluxes above alfalfa and maize. Agric. For. Meteorol. 49: 331-349.
    McNaughton, K. G. 1976. Evaporation and advection II: evaporation downwind of a boundary separating regions having different surfaces resistances and available energies. Quart. J. R. Meteorol. Soc,102: 193-202.
    McNaughton, K.G, Jarvis, P.G, 1983. Predicting effects of vegetation changes on transpiration and evaporation. In: Kozlowski, T.T. (Ed.), Water Deficits and Plant Growth, vol.VII. Academic Press, pp. 1-47.
    Mizutani, K., Yamanoi, K., Ikeda, T., Waanabe, T., 1997.Applicability of the eddy correlation method to measure sensible heat transfer to forest under rainfall conditions, gricultural and Forest Meteorology, 86:193-302.
    Meyers, S.D., Kelly, B.G., O'Brien, J.J., 1993. An introduction to wavelet analysis in oceanography and meteorology with application to the dispersion of Yanai waves. Mon. Weather Rev., 121(10): 2858-2866
    Mo, X., Liu, S., 2001. Simulating evapotranspiration and photosynthesis of winter wheat over the growing season. Agric.Forest Meteorol., 109:203-222.
    Mo, X.G., S. X. Liu, and Z. H. Lin. 2002. Energy balance, water use efficiency and surface resistance in a maize field. Chinese Journal of Applied Ecology, 13(5): 551-554
    Mo, X.G, Beven, K., 2004. Multi-objective parameter conditioning of a three-source wheat canopy model. Agricultural and Forest Meteorology, 122:39-63
    Moncrief, J.B., Malhi, Y., Leuning, R., 1996. The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water. Global Change Biol., 2: 231-240.
    Moncrifee, J.B.,Massheder, J. M., De Bruin, H., et al.. 1997. A system to measure surface fluxes of moment, sensible heat,water vapor and carbon dioxide. Journal of Hydrology 188-189: 589-611.
    Monson, R.K., Tumipseed, A.A., Sparks, J.P., Harley, P.C., Scott-Denton, L.E., Sparks, K., Huxman, T.E., 2002. Carbon sequestration in a high-elevation, subalpine forest. Global Change Biol., 8: 459-478.
    Monteith, J.L., 1973. Principles of Environmental Physics. Edward Arnold, London, pp.241.
    Monteith, J.L., 1965. Evaporation and the environment. Symp. Soc.Expl. Biol., 19: 205-234.
    Monteith, J. L., and M. H. Unsworth. 1990. Principles of Environmental Physics. Edward Arnold, London, p. 291.
    Moisen, G.G., Frescino, T.S., 2002. Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157:209-225.
    Moisen, G.G., Frescino, T.S., 2002. Comparing five modelling techniques for predicting forest characteristics Ecological Modelling, 157:209-225.Jemwa, G.T., Aldrich, C, 2003. Identification of Chaotic Process Systems with Least Squares Support Vector Machines. Neural Networks. Proceedings of the International Joint Conference on Volume 3, p.20-24.
    Moore, C. J., 1986. Frequency response corrections for eddy correlation systems. Bound-Lay. Meteorol.,37:17-35
    Murase, H., Nishiura, Y., Honami, N., 1994. Textural Features/Neural Network for Plant Growth Monitoring. ASAE Paper No. 94-4016, St. Joseph, MI.
    Muttiah, R.S., Engel, B.A., 1991. Neural network methodology in agriculture and natural resources. ASAE Paper No. 91-7018.
    Neal, R.M., 1992.Bayesian training of back propagation networks by the hybrid Monte Carlo method. Technical Report CRG-TR-91-1, Department of Computer Science, University of Toronto,Canada
    Neal, R.M., 1996. Bayesian Learning for Neural Networks, Lecture Notes in Statistic, Vol. 118, Springer, New York.
    Nie, D., Kanemasu, E.T., Fritschen, L.J., Weaver, H.L., Smith, E.A., Verma, SB., Field, R.T., Kustas, W.P., Stewart, J.B.,1992. An intercomparison of surface energy flux measurement systems used during FIFE 1987. J. Geophys. Res., 97 (D17): 18715-18724.
    Owusu-Ababia, S., 1998. Effect of neural network topology on flexible pavement cracking prediction. Computer-Aided Civil and Infrastructure Engineering. 13(5): 349-355.
    Panofsky, H.A.; Tennekes, H.; Lenshow, D.H.; Wyngaard, J.C., 1977, The characteristics of turbulent velocity components in the surface layer under convective conditions. Boundary Layer Meteorol. pp. 355-361
    Panofsky, H. A., 1963.Determination of stress from wind and temperature measurements, Quart. J. Roy. Meteorol. Soc.89: 85-94.
    Paw U, K.T., Baldocchi, D.D., Meyers, T.P., Wilson, K.B., 2000.Corrections of eddy covariance measurements incorporating both advective effects and density fluxes. Bound.-Lay. Meteorol., 97: 487-511.
    Pelckmans, K., Suykens, J. A. K., Van Gestel, T., De Brabanter, J., Lukas, L., Hamers, B., Moor, B., Vandewalle, J., 2002. A Matlab/C toolbox for Least Squares Support Vector Machines, Leuven, Belgium: Internal Report 02-44, ESAT-SISTAand K.U. Leuven.
    Pereira, A. R.,2004.The Priestley-Taylor parameter and the decoupling factor for estimating reference evapotranspiration. Agricultural and Forest Meteorology, 125: 305-313
    Pilegaard, K., Hummelshoj, P., Jensen, N.O., Chen, Z., 2001. Two years of continuous CO2 eddy-flux measurements over a Danish beech forest. Agricultural and Forest Meteorology, 107:29-31.
    Price, D.T., Black, T.A., 1990. Effects of short-term variation in weather on diurnal canopy CO2 flux and evapotranspiration of ajuvenile Douglas-fir stand. Agric. For. Meteorol. 50: 139-158.
    Priestley, C. H. B., and R. J. Taylor. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev., 100: 81-92.
    Qiang Yu, Ren Baohua, Wang Tianduo and Sun shufen. 1998. A simulation of diurnal variations of photosynthesis of C3 plant leaves. Scientia Atmospherica Scinica, 6: 868-880.
    Recknagel, F., French, M., Harkonen, P., Yabunaka. K.I., 1997. Artificial neural network approach for modelling and prediction of algal blooms. Ecol. Model., 96:11-28.
    Runing,S.W., Hunt,E.R.Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for globe-scale models.In: Ehleringer J R, Field C, eds. Scaling process between leaf and landscape levels. Prlando: Academic press, 1993.141-158
    Ryan, M., Muller, C, Di, H. J., Cameron, K. C, 2004.The use of artificial neural networks (ANNs) to simulate N2O emissions from a temperate grassland ecosystem. Ecological Modelling, 175:189-194
    Scardi, M., 1996. Artificial neural networks as empirical models for estimating phytoplankton production. Marine Ecol.Progr., 139:289-299.
    Sadeghi, B.H.M., 2000. A BP-neural network predictor model for plastic injection molding process. Journal of Materials Processing Technology, 103:411-416.
    Sauer, T. J., T. J. Sauer, J. L. Hatfield, J. H. Prueger, and J. M. Norman. 1998. Surface energy balance of a com residue-covered field. Agricultural and Forest Meteorology, 89: 155-168
    Schelde, K., Kelliher, F.M., Massman, W.J., Jensen, K.H., 1997. Estimating sensible and latent heat fluxes from a temperate broad-leaved forest using the Simple Biosphere (SiB) model. Agricultural and Forest Meteorology, 84:285-295.
    Schmid, H.P.,Grimmond,C.,S.B.,Cropley,F.,et al., 2000.Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agricultural and Forest Meteorology, 103:357-374
    Schulz, H., Hauling, S., 2003.Vitality analysis of Scots pines using a multivariate approach. Forest Ecology and Management, 186: 73-846.
    Scott, R. L., Eric A. Edwards, W. J. Shuttleworth, T. E. Huxman, C. Watts, and D. C. Goodrich. 2004. Interannual and seasonal variation in fluxes of water and carbon dioxide from a riparian woodland ecosystem Agricultural and Forest Meteorology, 122: 65-84
    Scardi, M., 1996. Artificial neural networks as empirical models for estimating phytoplankton production. Marine Ecol.Progr., 139:289-299.
    Seginer, I., Boulard, T., Bailey, B.J., 1994. Neural network models of the greenhouse climate. J. Agric. Eng. Res., 59:203-216.
    Sellers, P.J., Randall, D.A., Collatz, G.J., et al., 1996.A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I : Model formulation. Journal of Climate, 9(4): 676-705
    Sellers, P.J., Mintz,Y, Sud, Y.C., et al.,1986.A simple biosphere model(SIB) for use within general circulation models. J.Atmos Sci., 43:505-531.
    Sellers, P.J., Hall, F.G, Kelly, R.D., Black, T.A., Baldocchi, D., Berry, J., et al., 1997b. Boreas in 1997: Scientific results, experimental overview and future directions. J.Geophys. Res., 102: 28731-28770.
    Seppo, K., and W. K. Yun. 1999. Short-term environmental controls of heat and water vapour fluxes above a boreal coniferous forest: model computations compared with measurements by eddy correlation. Ecological Modelling, 124: 145-173.
    Shuttleworth, W.J., Wallace, J.S., 1985. Evaporation from sparse crops - an energy combination theory. Quart. JR. Meteor. Soc.,111:839-855.
    Slater, R. O., and I. C. Mcllroy. 1961. Practical Micrometeorology With Special Reference to the Water Factor in Soil-Plant-Atmosphere Relations, UNESCO.
    Smarakoon D, A. Chen and P. Mcllean. 2000. Estimating daytime latent heat flux and evapotranspiration in Jamaica. Agriculture and Forest Meteorology, 102: 113-124.
    Smith, P., Powlson, D.S., Falloon, P., Coleman. K., 2002. Meeting Europe's climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biol. 6 (6): 525-539.
    Soegaard.H., Jensen, N. O., Boegh, E., et al., 2003.Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modeling. Agricultural and Forest Meteorology 114:153-173
    Sogachov, A., J. E. Hunt, T. M. McSeveny, K. I. Kobak, G. Bauer, and A. Ameth. 1995. Initial assessment of multi-scale measures of CO2 and H2O flux in Siberian taiga. J. Biogeogr.,22: 425-431.
    Spittlehouse, D.A., Black, T.A., 1980. Evaluation of the Bowen ratiorenergy balance method for determining forest evapotranspiration. Atmos. Oceans 18: 98-116.
    Stannard, D.I., Blanford, J.H., Kustas, W.P., Nichols, W.D., Amer, S.A., Schmugge, T.J., Weltz, M.A., 1994. Interpretation of surface flux measurements in heterogeneous terrain during the Monsoon'90 experiment.Water Resour. Res., 30 (5): 1227-1239.
    Steduto, P., T. C. Hsiao. 1998. Maize canopies under two soil water regimes I. Diurnal patterns of energy balance, carbon dioxide flux, and canopy conductance. Agricultural and Forest Meteorology, 89: 169-184
    Steduto, P., Hsiao, T.C., 1998b. Maize canopies under two soil water regimes: II. Seasonal trends of evapotranspiration, carbon dioxide assimilation and canopy conductance, and as related to leaf area index. Agric. For. Meteorol. 89: 189-203.
    Steduto, P., T. C. Hsiao. 1998. Maize canopies under two soil water regimes III. Variation in coupling with the atmosphere and the role of leaf area index. Agricultural and Forest Meteorology, 89: 201-213
    Steduto, P., Hsiao, T.C., 1998c. Maize canopies under two soil water regimes: IV. Validity of the Bowen ratio-energy balance technique for measuring water vapor and carbon dioxide fluxes at 5-min intervals. Agric. For. Meteorol. 89:219-232.
    Stewart, J.B., 1977. Evaporation from the wet canopy of a pine forest. Water Resour. Res., 13 (6): 915-921.
    Stewart, J.B., 1988. Modelling surface conductance of pine forest. Agric. For. Meteorol., 43: 19-35.
    Suykens, J. A. K., 2001. Nonlinear Modelling and Support Vector Machines. Budapest, Hungary: IEEE Instruments and Measurement Technology Conference Tang, D.Y., and X. Q. Xie. 1990. Water and energy research in cropland. Beijing, China: Science Press.
    Suyker, A.E., Verma, S.B., Burba, G.G. et at., 2004.Hubbard. Growing season carbon dioxide exchange in irrigated and rainfed maize. Agricultural and Forest Meteorology 124: 1-13.
    Swinbank, W.C. 1951. The measurement of vertical transfer of heat, water vapor and momentum in the lower atmosphere with some results. J. Metetorol 8: 135-145
    Tang, D.Y., and X. Q. Xie. 1990. Water and energy research in cropland. Beijing, China: Science Press.
    Tanner, C.B., Pelton, W.L., 1960. Potential evapotranspiration estimates by the approximate energy balance of Penman. J. Geophys. Res., 65:3391-3413.
    Tay, FEH, Cao L J., 2001.Application of support vector machines in financial time series forecasting. Omega, 29: 309-317.
    Thai, C.N., Shewfelt, R.L., 1991. Modelling sensory color quality of tomato and peach: neural networks and statistical regression. Trans. ASAE., 34:950-955.
    Thirumalaiah, K., Deo, M.C., 1998. Real time flow forecasting using neural networks. Computer-Aided Civil and Infrastructure Engineering, 13(2): 101-111.
    Thissen, U., van Brake!, R., de Weijer, A.P., Meissen, W.J., Buydens, L.M.C., 2003. Using support vector machines for time series prediction. Chemometrics and Intelligent Laboratory Systems, 69: 35- 49
    Thorn, A.S., 1972. Momentum, mass and heat exchange of vegetation.Q. J. R. Meteorol. Soc, 98:124-134.
    Tjoelker, M.G., Reich, P.B., Oleksyn, J., 1999. Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant Cell Environ., 22 (7): 767-778.
    Todorovic, M, 1997. A model to estimate hourly and daily evapotranspiration using variable canopy resistance. PhD Thesis, University of Sassari, Italy, pp 204.
    Todorovic, M., 1999. Single-layer evapotranspiration model with variable canopy resistance. J. Irrig. Drain. Eng.,125 (5):235-245.
    Twine, T.E., Kustas, W.P., Norman, J.M., Cook, D.R., Houser, P.R., Meyers, T.P., Prueger, J.H., Starks. P.J., Wesely, M.L.,2000. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol.. 103: 279-300.
    Ullar Rannik, Nuria Altimir, Jukka Raittila, Tanja Suni, Anca Gaman, Tareq Hussein, Teemu Holtta, Hannu Lassila, Maria Latokartano, Antti Lauri, Anas Natsheh, Tuukka Petaja, Riikka Sorjamaa, Hanna Yla-Mella, Petri Keronen, Frank Berninger, Timo Vesala, Pertti Hari, Markku Kulmala.2002. Fluxes of carbon dioxide and water vapor over Scots pine forest and clearing. Agricultural and Forest Meteorology, 111: 187-202.
    Unland, H.E., Houser, P.R., Shuttleworth, W.J., Yang, Z.L., 1996. Surface flux measurement and modelling at a semi-arid Sonoran Desert site. Agricultural and Forest Meteorology, 82: 119-153.
    USDA-ARS. Root zone water quality model.RZWQM98. GPSR Technical Report No. 3. USDA-ARS Great Plains Systems Research Unit, Ft. Collins, CO. 1998.
    Villalobos, F. J. 1997. Correction of eddy covariance water vapor flux using additional measurements of temperature. Agricultural and Forest Meteorology, 88: 77-83
    Valentini, R., P. Deangelis, G. Matteucci, R. Monaco, S. Dore, G.E.S. Mugnozza. 1996. Seasonal net carbon dioxide exchange of a beech forest with the atmosphere. Global Change Biology, 2: 199-208.
    Van Wijk, M.T., Bouten. W., 1999.Water and carbon fluxes above European coniferous forests modeled with artificial neural networks. Ecological Modelling, 20: 181-197.
    Van Wijk , M.T., Bouten, W., Verstraten, J.M.,2002.Comparison of different modelling strategies for simulating gas exchange of a Douglas-fir forest.Ecological Modelling, 158: 63-81
    Vapnik, V., 1995. The Nature of Statistical Learning Theory.. Sringer-Verlag, New York, p.311.
    Vapnik, V., 1998. Statistical learning theory. New York, John Wiley and Sons.
    Vapnik, V., 1999.The nature of statistical learning theory (2nd ed). Springer-Verlag, New York.
    Verhoef, A., Allen, S.J., 2000. A SVAT scheme describing energy and CO2 fluxes for multi-component vegetation: calibration and test for a Sahelian savannah. Ecol.Model., 127: 245-267.
    Villemoes, L. F, 1994.Wavelet analysis of refinement equations. SIAM J.Math. Anal., 25(5): 1433-1460.
    Vleeshouwers, L.M., Verhagen, A., 2002. Carbon emission and sequestration by agricultural land use: a model study for Europe.Global Change Biol. 8: 519-530.
    Wang, Y.-P., Leuning, R., 1998. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. I. Model description and comparison with a multi-layered model. Agric. Forest Meteorol., 91:89-111.
    Warhaft, Z., 1976. Heat and moisture flux in the boundary layer. Quart. J. Roy. Meterorol. Soc.102: 703-704.
    Webb, E.K., 1965. Aerial microclimate. Agriculture meteorology, meteorological monographs. Am. Meteorol. Soc. 6(28):27-58.
    Webb,E.K., 1970.Profile relationships: the log-linear ranges and extension to strong stability, Quart. J. Roy. Meteorol. Soc. 96:67-90.
    Webb, E.K.,Pearman, G.I. Leuning, R., 1980. Correction of flux measurements foe density effects due to heat and water vapor transfer.Quarterly Journal of the Royal Meteorological Society, 106:85-100
    Werner, H., Obachb, M., 2001. New neural network types estimating the accuracy of response for ecological modeling. Ecological Modelling, 146:289-298.
    Wever, L. A., L. B. Flanagan, and P. J. Carlson. 2002. Seasonal and interannuai variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agric. For. Meteorol., 112: 31—49.
    Williams, M., Rastetter, E.B., Femandes, D.N., Goulden, M.L., Wofsy, S.C., Shaver, GR., et al., 1996. Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant Cell Environ., 19: 911-927.
    Williams, M., Malhi, Y., Nobre, A., Rastetter, E.B., Grace, J., Pereira, M.GP., 1998. Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: a modelling analysis. Plant Cell Environ., 21:953-968.
    Wilson, K. B., D. D. Baldocchi. 2000. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agricultural and Forest Meteorology, 100:1-18
    Wilson, K. B., Hanson, P. J., Baldocchi, D.D., 2000.Factors controlling evaporation and energy partitioning beneath a deciduous forest over an annual cycle. Agricultural and Forest Meteorology, 102:83-103
    Wilson, K.B., Baldocchi, D.D., 2001. Comparing independent estimates of carbon dioxide exchange over 5 years at a deciduous forest in the southeastern United States. J. Geophys. Res., 106 (D24): 34167-34178.
    Wilson, K. B., A. Goldstein, E. Falge, M. Aubinet, D. Baldocchi, P. Berbigier, C. Bernhofer, R. Ceulemans, H. Dolman, C. Field, A. Grelle, A. Ibrom, B. E. Law, A. Kowalski, T. Meyers, J. Moncrieff, R. Monson, W. Oechel, J. Tenhunen, R. Valentini ,and S. Verma. 2002. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113:223-243
    Wilson, K. B., Baldocchi, D. D., Aubinet, M., et al., 2002.Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites.Water Resources Reseach, 38(12):Ⅰ-11
    Xuhui Lee, Yu Qiang, Sun Xiaomin, Liu Jiandong, Min Qingwen, Liu Yunfen and Zhang Xianzhou. 2004. Micrometeorological fluxes under the influence of regional and local advection: a revisit. Agricultural and Forest Meteorology, 122:111-124.
    Yeh, G.T., Brutsaert, W.H., 1971. A solution for simultaneous turbulent heat and water vapor transfer between a water surface and the atmosphere. Boundary-Layer Meteorol. 2:64-82.
    Yu, Q., Wang, T.D., 1998. Simulation of the physiological responses of C3 plant leaves to environmental factors by a model which combines stomatal conductance, photosynthesis and transpiration. Acta Bot. Sin. 40, 551-566.
    Zhan, X., Kustas, W.P., 2001. A coupled model of land surface CO2 and energy fluxes using remote sensing data. Agric. Forest Meteorol., 107:131-152.
    Zhuang, X., Engel, B.A., 1990. Neural networks for applications in agriculture. ASAE Paper No. 90-7024. American Society of Agricultural Engineers, St. Joseph, MI
    Zhang Xuegong, 2000, Intoduction to tatistical Learning Theory and Support Vector Machines. Acta Automation Sinica, 26(1): 32-41.
    曹明奎,于贵瑞,刘纪远,李克让.陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟.中国科学(D辑),2004,34(增刊Ⅱ):1-14
    程彦杰,卞林根,逯昌贵,丁国安.长江三角洲典型稻作区近地层二氧化碳等湍流通量的观测研究.地球物理学报,2003,46(6):751-759.
    陈发祖.微气象学研究的若干进展-兼评涡旋相关技术的作用.中国农业气象研究会农业小气候专业委员会编.北京:气象出版社.1992,18-24.
    冯利华.基于ANN的土壤侵蚀研究.土壤侵蚀与水土保持学报.1999,5(6):105-109
    洪伟,吴承祯.闽东南土壤流失人工神经网络预报研究.土壤侵蚀与水土保持学报,1997,3(3):52-57.
    黄妙芬.地表通量研究进展.干旱区地理,2003,26(2):159-165.
    姜朝阳,王天铎,于强.孙晓敏.玉米冠层内外风速变化周期特征的研究.中国生态农业学报.2003,11(4):63-65
    姜朝阳,于强,王天铎,孙晓敏.中国农业气象,2004,25(1):62-65
    刘昌明,于沪宁.SPAC界面水热传输与生态过程的水分耗散.土壤—作物—大气系统水分运动实验研究.北京:气象出版社.1997,pp1-17,
    刘强,刘嘉麟,贺怀宇.全球变化研究温室气体浓度变化及其源与汇研究进展.地球科学进展,2000,15(4):453—460
    刘允芬 宋霞 孙晓敏,等.千烟洲人工针叶林CO2通量季节变化及其环境影响因子的影响.中国科学(D辑),2004,34(增刊Ⅱ):109-117.
    刘树华等.林网化地区动量、感热和潜热量的观测研究.北京大学学报,1991,27:79-88.
    刘振凯,贵忠华.基于人工神经网络的知识扶取方法.计算机应用研究,1999,5:7-9
    李正泉,于贵瑞,温学发,等.中国通量观测网络(ChinaFLUX)能量平衡闭状况的评价.中国科学(D辑),2004,34(增刊Ⅱ):46-56
    李少昆.作物光合作用研究方法.石河子大学学报(自然科学版),2004,4:321-330
    莫兴国,林忠辉,刘苏峡.用GSVAT模型研究地表/大气界面传输.生态学报,1999,19(6):780-786
    乔平林,张继贤,林宗坚.基于神经网络的土地荒漠化信息提取方法研究.测绘学报,2004,33(1):58-62
    任传友,于贵瑞,王秋凤,等.冠层尺度的生态系统光合-蒸腾耦合模型研究.中国科学(D辑),2004,34(增刊Ⅱ):141-151
    宋霞,刘允芬,徐小锋.箱法和涡度相关法测碳通量的比较研究.江西科学,2003,21(3):206-210.
    孙睿,刘昌明.地表水热通量研究进展.应用生态学报,2003,14(3):434-438
    王秋凤,牛栋,于贵瑞,等.长白山森林生态系统CO2和水热通量的模拟研究.中国科学(D辑),2004,34(增刊Ⅱ):131-140
    王绍强,周成虎,刘纪远.李克让,杨晓梅.东北地区陆地碳循环平衡模拟分析.地理学报.2001,56(4):390-400
    王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨.地理科学进展,1999,18(3):238-244.
    汪业勖,赵士洞.陆地碳循环研究中的模型方法.1998,9(6):658-664.
    魏风英.现代气候统计诊断预测技术.北京:气象出版社.1999,106-113.
    邬红娟.林了扬.郭生练.人工神经网络方法在资源与环境预测方面的应用.长江流域资源与环境.2000,9(2):237-241
    吴家兵,关德新,孙晓敏,等.长白山阔叶红松CO2交换的涡动通量修正.中国科学(D辑),2004,34(增刊Ⅱ):95-102
    温学发,于贵瑞,孙晓敏.基于涡度相关技术估算植被/大气间净CO2交换量中的不确定性.地球科学进展,2004,19(4):658-663
    谢贤群.一个改进的计算麦田总蒸发量的能量平衡-空气动力学阻抗模式.气象学报.1988.46(1).
    于海青,丁国安.刘晶淼,条件采样法测量大气垂直通量,气象科技,2002,30(4):237-240
    于贵瑞,张雷明,孙晓敏,李正泉,伏玉玲.亚洲区域陆地生态系统碳通量观测研究进展.中国科学(D辑),2004,34(增刊Ⅱ):15-29
    于强,谢贤群,孙菽芬,等.植物光合生产力与冠层蒸散模拟研究进展.生态学报,1999,19(5):744-753
    张,You,农业生态研究.太行山脉土壤含水量和节水农业.1996.4(2):63-68
    张永强,刘昌明,于沪宁,等.农田冠层与大气水汽通量耦合分析.河北农业大学学报,2002,25(3):28-36.
    张永强,于强,刘昌明,王靖.植被光合、冠层导度和蒸散的耦合模型.中国科学(D辑),2004,34(增刊Ⅱ):152-160
    朱治林,孙晓敏,袁国富,等.非平坦下垫面涡度相关通量的校正方法及其在ChinaFLUX中的应用.中国科学(D辑),2004,34(增刊Ⅱ):37-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700