化学镀法制备铜镍/银镍包覆的La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3复合体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2007年10月,瑞典皇家科学院颁发的诺贝尔奖揭晓,法国科学家阿尔贝·费尔(Albert Fert)和德国科学家彼得·格林贝格尔(Peter Grünberg)由于分别独立发现了巨磁电阻(GMR)效应共同获得了本届诺贝尔物理学奖。这是到目前为止,科学界对磁电阻效应及其应用的最大认可。在多年的磁电阻研究应用中,人们发现在钙钛矿型锰氧化物中有超大磁电阻效应,我们一般称它为庞磁电阻(CMR)效应。经过多年的研究发现,要使这类庞磁电阻化合物达到最大的磁电阻效应,绝大多数都需要加上一个很强的磁场,并且只有在转变温度附近一个很窄的温度范围内才有一个较大的磁电阻效应,由于此类化合物的转变温度一般远低于室温,所以大大的限制了它在实际生活生产中的应用。为了改变这种现状,研究者们研究发现,在锰基钙钛矿结构的氧化物中存在一种非本征磁电阻效应,此类效应可以通过一种“磁性金属/非磁性金属/磁性金属”的三明治夹层结构达到,通过这种方式使材料可以在一个接近室温的环境下得到一个较大的磁电阻效应。本论文中以La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3颗粒作为磁性金属相,用化学镀的方式在其表面镀上铜或者银作为非磁性金属相当中间层,再做其表面镀上一层镍作为磁性金属相,从而形成上述的三明治夹层结构并对其进行磁电阻效应的研究。
     本论文主要包括以下几个方面的内容:
     (1)对磁电阻效应的发现和发展做简要介绍,并对锰基钙钛矿类氧化物的电子结构、本征磁电阻效应、非本征磁电阻效应等相关理论做简单介绍。并在此基础上提出本论文的选题目的和研究内容。
     (2)介绍了通过固相反应法制备La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3样品基体的方法,并对制备出来的样品基体性能进行测试和分析。
     (3)介绍了化学镀技术的发展概况,着重介绍了化学镀铜、银、镍的方法,并对在La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3样品基体粉体上做不同的化学镀要注意到的事项和粉体的前后处理做重点说明和分析。
     (4)将制备出来的La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3-Cu-Ni和La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3-Ag-Ni复合体系进行性能测试和分析。
     (5)结论总结部分。
October 2007, the Nobel Prize,which is presented by Royal Swedish Academy ,have been announced, Albert Fert , who is from France, and Peter Grünberg, who is from Germany, share the Nobel Prize in Physics this time, because they found the giant magnetoresistance (GMR) effect as independent. This is the most recognized of the scientific community on the magnetoresistance effect and its application by far。fter years of research and application of magneto-resistance, it has been found in perovskite-type manganese oxides have very large magnetoresistance effect, we generally call it Colossal Magnetoresistance (CMR) effect. After years of study found that, for such compounds Colossal Magnetoresistance maximum magnetoresistance effect, the vast majority will need to add a strong magnetic field, and only near the transition temperature in a very narrow temperature range only a larger magnetoresistance effect, due to the transition temperature of these compounds generally much lower than room temperature, so greatly limited its production in real life applications. In order to change this situation, the researchers found that in the Mn-based perovskite oxides that exist in a non-intrinsic magnetoresistance, such effects may be through a "magnetic metal / non-magnetic metal / magnetic metals "sandwich sandwiches achieved in this way so that material can be at room temperature in an environment close to a large magnetoresistance effect. In this paper as the magnetic metal particles La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3, by chemical plating in the plating on the surface of copper or silver as a fairly non-magnetic metal intermediate layer, another layer of its surface plated with nickel as the magnetic metals phase, forming the sandwich structure and researchs magnetoresistance .
     In this paper, include the following main aspects:
     (1) Have a brief introduction on the discovery and development of the magnetoresistance effect, introduce the perovskite-type manganese oxide-based electronic structure, intrinsic magnetoresistance, non-intrinsic magnetoresistance on the theory briefly. And, in this based on the purpose of this thesis and research content.
     (2) Introduced the preparation La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3 samples by solid-state reaction method, analysis and test the capability of the sample.
     (3) Introduced the electroless plating technology development, focused on the chemical copper, silver, nickel, methods, and sample matrix in La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3 powder electroless plating different matters and should be noted that powder before and after the processing and analysis focusing on it.
     (4)Test and analysis the La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3-Cu-Ni and La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3-Ag-Ni composite system which have been prepared .
     (5) The conclusion.
引文
[1]李宁.《化学镀实用技术》.实用电镀技术丛书.化学工业出版社,2003年
    [2]白拴堂化学镀镍合金在电子工业中的应用[J].电镀与环保,Vol.19,No.5,1999:7-9
    [3]蔡积庆.化学镀Ni-P-Mo合金[J].电镀与环保,Vo.19,No.4,1999:16~19
    [4]温廷琏、吕之弈等,无机材料学报10 (1995),473
    [5]胡文彬、刘磊、仵亚婷编.《难镀基材的化学镀镍技术》. 2003年
    [6]陈天玉.《镀镍工艺基础》2006年
    [7]翟金坤、黄子勋编译《化学镀镍》1987年
    [8]徐红娣、邹群编著《电镀溶液分析技术》2003年
    [9]李宁、袁国伟、黎德育编著《化学镀镍基合金理论与技术》2000年
    [10]赵中云李建青王旭[J]低温物理学报127 23(2003)
    [11]王克峰刘俊明[J]物理学进展192 23 2003
    [12] S. Jin et al., Colossal magnetoresistance in the mangnites, Science, 264, 413 (1994).
    [13] Don Baudrandand JonBengston. Electroless Plat-ingProcess [J]. Metal finishing, Sept. 1995:55~57
    [14] Yuan G L, Liu J M, Zhang S T, Appl. Phys. Lett. 81 4073 (2002 )
    [15] C. Zener, Large low-field magnetoresistance observed in heterostructure La0.7Ca0.3MnO3/Gd0.7Ca0.3MnO3 superlattices ,Phys. Rev., 82, 403 (1951).
    [16] Yi.Ge,WangLingling,OuyangYifangetal..Preparation of Iron Tungsten Boron Alloy Depositby Electroless Plating[J]. Metal finishing,Nov.1996:31-35
    [17] H. Y. Hwang et al., Magnetotransport properties of nanometric La2/3Sr1/3MnO3 granular perovskites ,Phys. Rev. Lett., 77, 2041 (1996).
    [18] E. Pollert et al., Low-field magnetoresistance in oxygen-deficient La0.5Sr0.5MnO3thin films as approached by spin-polarized tunneling model ,J. Phys. Chem. Solids., 43,1137 (1982).
    [19] G. Zhao et al., Colossal magnetoresistance without the Jahn-Teller effect, Nature, 381,676 (1996).
    [20] Bao-xin Huang, Yi-hua Liu, Ru-zhen Zhang, Xiaobo-Yuan, Cheng-jian Wang and Liang-mo Mei J. Phys. D: Appl. Phys. 36 (2003)1923–1927
    [21] P.E.Schiffer et al.,Phys.Rev.75 (1995):3336
    [22] H. L. Ju, C. Kwon, et al., Appl. Phys. Lett. 65, 2108 (1994).
    [23] G. C. Xiong, Q. Li, et al., Appl. Phys. Lett. 66, 1689 (1995).
    [24] C. S. Xiong, Y. H. Xiong, W. Yi, G. N. Meng, Z. C. Xia, X. G. Li and S. L. Yuan, J. Phys: Condens. Matter. 14, 4309 (2002 )
    [25] A. Asamitsu et al., Nature, 373, 407 (1995)
    [26] Ll. Balcells, A. E. Carrillo, B. Mart?′nez et al., Appllied Physics Letters 74, (1999) 4014
    [27] S. A. Ko¨ster,a) V. Moshnyaga, and K. Samwer Appllied Physics Letters 81, (2002)1648
    [28] R. B. Gangineni, K. D?rr, N. Kozlova, K. Nenkov, K.-H. Müller J. Appl. Phys. 99 053904 (2006)
    [29] A.de. Andres, M. Garcia-Hernandez, J.L. Martinez. Phys. Rev. B. 60 (1999) 7328.
    [30] S L Yuan, M. H. Liu , Z.Y.Li, G.Peng, Solid State Commun 121 291 (2002)
    [31] C. W. Searle, S. T. Wang, Can,Magnetic and Superconducting Properties of CMR/HTS Multilayers for Spin Injection Devices, J. Phys, 47, 2023(1996).
    [32] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz and K. Samwer Phys. Rev. Lett. 71(1993) 2331
    [33] A. Asamitsu et al., Nature, 373, 407 (1995).
    [34] K.X. Jin, C.L. Chen, S.L. Wang, S.G. Zhao, Y.C. Wang and Z.M. Song 2005 Materials Science and Engineering B, 119 2 206-209
    [35] Ll. Balcells, A. E. Carrillo, B. Mart?′nez et al., Appllied Physics Letters 74, (1999) 4014
    [36] D. Das, P. Chowdhury, R.N. Das et al., Journal of Magnetism and Magnetic Materials 238 (2002) 178–184
    [37] D Das, CMSrivastava, D Bahadur et al., J. Phys.: Condens. Matter 16 (2004) 4089–4102
    [38] D.Schiffer et al ,Phys.Rev.Lett.75 (1995),3336.
    [39] A. J. Millis et al., Phys. Rev. Lett, 74, 5144 (1995).
    [40] S. Jin et al., Colossal magnetoresistance in the mangnites ,Science, 264, 413(1994).
    [41] T.A.Tyson,J.Mustre de Leon et al .Phys.Rev.B 53 ( 996)13985.
    [42] R.Mahendiran et al ,Phys.Rev.B 53 (1996),3348.
    [43] W .E .Pickett and D .J. Singh,Phys.Rev.B 53 (1996)1146.
    [44] G .V. Brown,J. Appl.Phys.,47 (1976),3673
    [45] Li H, Sun J R and Wong H K , Appl.Phys.Lett. 80 628 (2002 )
    [46] P. Kameli H. Salamati M. Eshraghi, J. Appl. Phys. 98 043908 (2005 )
    [47] C. L. Dennis, R. P. Borges, L. D. Buda, et al. J. Phys.: Condens. Matter, 2002, 14: R1175- R1262
    [48] L . W. Lei , Z. Y. Fu , J. Y. Zhang , Marer .Scien .Engineering B 128 70 (2006)
    [49] M. Ziese, Rep. Prog. Phys. 65, 143 (2002)
    [50] Xiao-Bo Yuan, Yi-Hua Liu1, Cheng-JianWang and Liang-MoMei. J. Phys. D: Appl. Phys., 2005, 38,3360-3365
    [51] E. O. Wollan, W. C. Koehler, Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x) La, xCa] MnO3, Phys. Rev. 1955, 100 : 545-563.
    [52] A. J. Millis, P. B. Littlewood, B. I. Shraiman, Double Exchange Alone Does Not Explain the Resistivity of La1-xSrxMnO3, Phys. Rev. Lett., 1995, 74 : 5144–5147.
    [53] Schiffer P, Ramirez A P, Bao W et al. Low-temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3, Phys.Rev.Lett.,1995,75: 3336-3339
    [54] K. Kubo, N. Ohata, Intraluminal signal intensity of iliac artery stents investigated by contrast-enhanced three-dimensional MR angiography, J. Phys. Soc. Jpn, 33, 21(1972)
    [55] R. M. Kusters et al., Absolute metabolite quantification by in vivo NMR spectroscopy: I. introduction, objectives and activities of a concerted action in biomedical research, Physic B, 155, 362(1989)
    [56] F. Tu, Z. C. xia et al.: Effect of high resistivity phase on low-field magnetoresistance in La2/3Ca1/3MnO3, Rare Metal Mat.Eng. (2002)
    [57] Guo-Qiang Gong, Chadwick Canedy and Gang Xiao, Colossal magnetoresistance of 1000000 fold magnitude achieved in the antiferromagnetic phase of La1-xCaxMnO3, Appl. Phys. Lett., 1995, 67:1783-1785
    [58] R. D. Sanchez, J. Rivas, C. Vazquez-Vazquez, et al., Giant magnetoresistance in fine particle of La2/3Ca1/3MnO3 Synthesized at low temperature, Appl. Phys. Lett., 1996, 68:134
    [59] A. Gupta, G. Q. Gong, G. Xiao G et al.,Grain-boundary effects on the magnetoresistance properties od pervoskite manganite films, Phys. Rev. B ,1996 54: R15629-R15632
    [60] Buitenweg J R, Rutten W L C, Marani E. Modeled channel distributions explain extracellular recordings from cultured neurons sealed to microelectrodes [ J ] .IEEE Transactions on Biomedical Engineering , 2002 ,49 (11) : 1580-1590

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700