小麦和土壤中苯磺隆与氯氟吡氧乙酸残留分析方法及消解动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究建立了小麦植株、籽粒和土壤中苯磺隆与氯氟吡氧乙酸的残留分析方法,评价了方法的准确度、灵敏度和精密度,进行了苯磺隆与氯氟吡氧乙酸在小麦植株和土壤中残留田间消解动态和最终残留试验,为该两种除草剂在小麦地的合理使用提供了科学依据。主要研究结果如下:
     1.小麦植株、籽粒和土壤中苯磺隆残留分析方法的建立
     土壤样品以磷酸盐缓冲液-甲醇混合提取,机械振荡提取2次,合并滤液,以SPE柱净化;小麦植株样品以甲醇为提取液,经石油醚液-液分配后再采用SPE柱净化;小麦籽粒样品采用二氯甲烷提取后直接进样分析。采用配有紫外检测器的高效液相色谱仪检测。
     检测条件:Agilent 1200高效液相色谱仪,具紫外检测器;色谱柱:Agilent ZORBAX-ODS(250mm×4.6mm)色谱柱;检测波长:240nm;流动相:乙腈/0.5%冰乙酸(45/55,v/v);流速:1.0mL/min;柱温:30℃;进样量:20μL。该检测条件下,苯磺隆的保留时间为10.4min,仪器对苯磺隆的最小检出量为1.0×10-9 g。
     提取体系:比较了机械振荡法和超声波振荡法不同提取时间的提取效率,确定了机械振荡30 min + 15 min为苯磺隆优化后的提取方法;比较了二氯甲烷、甲醇﹑乙腈、0.2 mol/L磷酸盐缓冲液-甲醇(8:2,v/v)等4种提取溶剂对苯磺隆的提取效率,确定了甲醇、二氯甲烷和0.2mol/L磷酸盐缓冲液-甲醇(8:2,v/v)分别为苯磺隆在小麦植株、籽粒和土壤中的提取溶剂。
     净化方法:采用SPE小柱进行样品的净化处理,比较了土壤样品SPE小柱淋洗液的种类以及配比对净化效果和添加回收率的影响,最终确定先用4mL乙腈pH6.0的0.2mol/L磷酸缓冲液3/7(v/v,85%磷酸调节pH值至6.0左右)将杂质洗脱,再用3mL乙腈- pH7.8的0.2mol/L磷酸缓冲液(1/1,v/v)淋洗,收集淋出液检测。植株样品在基础上,先分别用石油醚和二氯甲烷液液分配萃取后,再经SPE小柱净化。
     优化后方法的添加回收试验结果表明:在0.01mg/kg~0.80mg/kg添加浓度范围内,小麦植株中苯磺隆的平均回收率为73.1~85.3%,变异系数为5.88~8.53%;土壤中苯磺隆平均回收率为80.1~95.2 % ,变异系数为3.41~7.90% ;在0.025mg/kg~0.80mg/kg添加浓度范围内,籽粒中苯磺隆的平均回收率为73.3~87.5%,变异系数为3.21~6.49%。该残留分析方法的准确性、精确性均达到农药残留分析的要求。
     2.小麦植株、籽粒和土壤中氯氟吡氧乙酸残留分析方法的建立
     样品以碱性甲醇混合提取液机械振荡提取后,液液分配净化,采用浓硫酸做为催化剂,甲醇做为衍生化试剂,反应后经石油醚提取,GC-ECD法检测。
     检测条件的确立:Agilent 6890气相色谱仪具ECD检测器;色谱柱:HP-5毛细管柱(30.0m×250um×0.25um);检测温度:柱温起始温度,70℃,保持1min,以20℃/min至240℃,保持6min;进样口温度250℃,检测器温度300℃;载气:高纯氮气(99.999%),载气流速为1mL/min;进样方式:不分流方式;进样量为2uL。在此条件下氯氟吡氧乙酸的保留时间为10.5 min左右,仪器对氯氟吡氧乙酸的最小检出量为1.0×10-11 g。
     提取体系:比较了机械振荡法和超声波振荡法两种提取方式不同提取时间的提取效率,确定了机械振荡30min为氯氟吡氧乙酸优化后的提取方法;比较了乙腈、乙酸乙酯、碱性甲醇等3种提取溶剂对氯氟吡氧乙酸提取效率,确定碱性甲醇为氯氟吡氧乙酸在小麦植株、籽粒、土壤中的提取溶剂。
     衍生化方法:比较了不同甲醇用量、酯化时间和酯化温度等因素对衍生化结果的影响,结果表明,甲醇用量为2 mL,浓H2SO4 1.5 mL,93~98℃水浴条件下酯化时间10 min,较好。
     优化后方法的添加回收试验结果表明:在0.01mg/kg~0.80mg/kg的添加浓度范围内,小麦植株中氯氟吡氧乙酸的平均回收率为72.3~86.7%,变异系数为3.02~8.59%;籽粒中氯氟吡氧乙酸的平均回收率为77.7~87.3%,变异系数为2.75~7.61%;土壤中的氯氟吡氧乙酸平均回收率为83.6~95.8%,变异系数为2.87~8.46%。该残留分析方法的准确性、精确性均达到农药残留分析的要求。
     3.小麦植株和土壤中苯磺隆残留消解动态
     2008年在安徽、山东两地的田间残留试验结果表明,苯磺隆的消解动态符合一级反应动力学方程。在合肥试验点,小麦植株上苯磺隆的田间消解动态方程为C = 0.0593e-0.1393t,半衰期为4.97d;土壤中苯磺隆消解动态方程为C= 0.0434e-0.1250t,半衰期为5.54d。在青岛试验点,小麦植株上苯磺隆的田间消解动态方程为C = 0.0826e-0.1659t,半衰期为4.18d;土壤中苯磺隆消解动态方程为C = 0.0572e-0.1306t,半衰期为5.31d。在合肥和青岛两地最终残留试验的小麦籽粒和土壤样品中均未有苯磺隆检出。
     4.小麦植株和土壤中氯氟吡氧乙酸残留消解动态
     2008年在安徽、山东两地的田间残留试验结果表明,氯氟吡氧乙酸的消解动态符合一级反应动力学方程。在合肥试验点,小麦植株上氯氟吡氧乙酸田间消解动态方程为C= 0.1226e-0.1171t,半衰期为5.92d;土壤中氯氟吡氧乙酸田间消解动态方程为C = 0.0861e-0.0828t,半衰期为8.37d。在青岛试验点,小麦植株上氯氟吡氧乙酸田间消解动态方程为C= 0.2149e-0.1368t,半衰期为5.07 d;土壤中氯氟吡氧乙酸田间消解动态方程为C = 0.1478e-0.0893t,半衰期为7.76d。在合肥和青岛两地最终残留试验的小麦籽粒和土壤样品中均未有氯氟吡氧乙酸检出。
The analytical methods and dynamics of tribenuron-methyl and fluroxypyr residues in wheat and soil were studied in this dissertation. The sensitivity, accuracy and precision of the methods were investigated. The study provides theoretical reference for using tribenuron-methyl and fluroxypyr properly in wheat field. The main results were summarized as following:
     1. The analytical methods for tribenuron-methyl residues in wheat plant, wheat seed and soil
     Soil samples were extracted by mechanical oscillation with mixture of phosphate- buffer and methanol for 2 times, and cleaned up with SPE column; wheat samples extract in methanol, petroleum by liquid-liquid and purification using SPE column; wheat grain samples extracte using dichloromethane. Tribenuron-methyl in samples was determinated by HPLC with UV detector.
     Determination conditions: Agilent 1200 high performance liquid chromatography equipped with UV, Column: 250mm×4.6mm Agilent ZORBAX-ODS, detector wavelength: 240nm, mobile phases: acetonitrile and 0.5% acetic acid (45:55, v/v), flow velocity: 1mL/min, Oven temperature: 30℃. The retention time of tribenuron-methyl was about 10.4min. The limit of instrumental detection was1.0×10-9 g. Extraction system: Comparing the residue analysis results of tribenuron-methyl with mechanical oscillation and ultrasonic oscillation, we selected mechanical oscillation for 30minutes + 15minutes as the optimized extract method; Comparing the residue analysis results of tribenuron-methyl with dichloromethane,methanol,acetonitrile and 0.2 mol / L phosphate-buffer and methanol (8:2, v / v), we selected methanol ,dichloromethane and0.2 mol / L phosphate-buffer and methanol as the optimized extract solvent respectively in wheat plant、seed and soil.
     Clean-up system: Identifing SPE column to Clean up in soil ,comparing the purifying effect of elue of the ratio of 1 / 9, 2 / 8, 3 / 7, 1 / 1 (v / v) acetonitrile and pH7.8- 0.2mol / L phosphate-buffer in four of and the recovery rate of Collection of different amounts of acetonitrile and pH7.8 -0.2mol / L phosphate-buffer (1 / 1, v / v), we selected 4mL acetonitrile and pH7.8- 0.2mol / L phosphate-buffer as the optimized elute solvent and collected 3mL acetonitrile and pH7.8 -0.2mol / L phosphate-buffer (1 / 1, v / v). Clean-up of wheat plant on the basis of soil firstly use of 40mL, 30mL petroleum ether to extract and clean up, except for a large number of pigment.
     The experiments of fortified samples: Four different concentrations of 0.01mg/kg,0.04 mg/kg,0.40mg/kg,0.80mg/kg were fortified respectively in wheat plant and soil,and 0.025mg/kg,0.04mg/kg,0.40mg/kg,0.80mg/kg were fortified in wheat seed. The recoveries of tribenuron-methyl in wheat plant were ranged between 73.1~85.3% , and the CV ranged between 5.88%~8.53%. The recoveries and the CV in soil were ranged between 80.1%~95.2%and 3.41%~7.90%. The recoveries and the CV in seed were ranged between 73.3%~87.5% and 3.21 %~6.49%. This results showed that the method accorded with demands of pesticide residue analysis.
     2.The analytical methods for fluroxypyr in wheat plant,wheat seed and soil Samples was estracted by mechanical oscillation with alkaline methanol, and cleaned up by liquid-liquid method ,with concentrated sulfuric acid as a catalyst and methanol as the derivatization reagent, after the reaction, the petroleum extracted fluroxypyr .Fluroxypyr in samples was determinated by GC with ECD detector. Determination conditions: Agilent 6890 Gas Chromatography equipped with ECD, Column: 30.0m×250um×0.25um Capillary column, detector temperature was 300℃,injector temperature was 250℃,column program: 70℃for 1min;70℃to 240℃at 20℃/min,240℃for 6min.Carrier gas was Nitrogen at 1 mL/min. The retention time of fluroxypyr was about10.5 min min.The limit of instrumental detection was1.0×10-11 g. Extraction system: Comparing the residue analysis results of fluroxypyr with mechanical oscillation and ultrasonic oscillation, we selected mechanical oscillation for 30 minutes as the optimized extract method. Comparing the residue analysis results of fluroxypyr by different extract solvents of acetonitrile, ethyl acetate and alkaline methanol we selected alkaline methanol as the optimized extract solvent.
     Clean-up system: Comparing liquid-liquid extraction and solid-phase extraction method , we selected liquid-liquid extraction to clean up. In the alkaline methanol , fluroxypyr salt and dissolve in water, some organic substance retained in organic solvents to abandon in order to achieve the purpose of purification.
     The experiments of fortified samples: Four different concentrations of 0.01mg/kg,0.04mg/kg,0.40mg/kg,0.80mg/kg were fortified respectively in wheat plant,seed and soil. The recoveries of fluroxypyr in wheat plant were ranged between 72.3%~86.7% , and the CV ranged between 3.02%~8.59%. The recoveries and the CV in seed were ranged between 77.7%~87.3% and 2.75%~7.61%. The recoveries and the CV in soil were ranged between 83.6%~95.8% and 2.87%~8.46%. This results showed that the method accorded with demands of pesticide residue analysis.
     3.Dynamics of tribenuron-methyl residues in wheat plant and soil
     The degradation of tribenuron-methyl in wheat and soil were studied in Hefei and Qingdao. The degradation procedure of tribenuron-methyl and fluroxypyr was correspond to the mathematic pattern. In the wheat plant, the dynamic equation in Hefei was C=0.0593e-0.1393t and half-life was 4.97 d, and the dynamic equation in Qingdao was C= 0.0826e-0.1659t and half-life was 4.18d. In soil, the dynamic equation in Hefei was C= 0.0434e-0.1250t and half-life was 5.54d,and the dynamic equation in Qingdao was C= 0.0572e-0.1306t and half-life was 5.31d. All the final sample was not detected with tribenuron-methyl in Hefei and Qingdao.
     4.Dynamics of fluroxypyr residues in wheat plant and soil
     The degradation of fluroxypyr in wheat and soil were studied in Hefei and Qingdao. The degradation procedure of tribenuron-methyl and fluroxypyr was correspond to the mathematic pattern. In the wheat plant, the dynamic equation in Hefei was C= 0.1226e-0.1171t and half-life was 5.92 d, and the dynamic equation in Qingdao was C= 0.2149e-0.1368t and half-life was 5.07d. In soil, the dynamic equation in Hefei was C= 0.0861e-0.0828t and half-life was 8.37d,and the dynamic equation in Qingdao was C= 0.1478e-0.0893t and half-life was 7.76d. All the final sample was not detected with fluroxypyr in Hefei and Qingdao.
引文
[1] http://www.wuhanagri.gov.cn/market/wenzhang.asp?NewsID=14932
    [2]林玉锁,龚瑞忠,朱忠林编著.农药与生态环境保护.北京:化学工业出版社,1976:7~9
    [2] http://www.ocn.com.cn/free/200801/huagongrihua074.htm
    [3] http://www.ic98.com/info/nongye/249/2009424/40624.Html
    [4]刘刚.2008年我国农药原药产量同比增长12%.农药市场信息,2009,4:8
    [5] http://www.jgny.net/ny/content.asp?newsid=2352
    [6] http://www.southcn.com/news/china/zgkx/200309151090.htm
    [7] http://www.agri.gov.cn/gndt/t20031124_139825.htm
    [8]蔡道基.农药与环境.北京:中国环境科学出版社.2000
    [9]周春梅.入世与中国农产品农药残留的应对措施.农业与技术,2001,21(6):7~10
    [10]陈宗懋.欧盟茶叶农残标准新变化和应对措施.中国茶叶,2003,3:6~7
    [11]庄无忌.各国食品和饲料中农药兽药残留限量大全.中国对外经贸出版社.1995
    [12] Commission Directive 2000/24/EC of 22 June 2000 amending the Annexes to Council Directives 86/362/EEC, 86/363/EEC and 90/642/EEC on the fixing of maximum levels for pesticide residues in and on cereals, foodstuffs of animal origin and certain products of plant origin, including fruit and vegetables respectively(Test with EEA relevance). Official Journal L158, 30/06/2000 p.0051~0075
    [13]孙桂兰,许志强,姚希来.我国农药残留标准存在问题与对策.农业与技术,2001,21(6):7~10
    [14]吕朝霞,颜成霞,宋林.欧盟茶叶农药残留限量新规定及我国对策.世界标准化与质量管理,2003,4:31~33
    [15]岳永德.农药残留分析.北京:中国农业出版社,2004
    [16]樊德方.农药残留量分析与检测,上海:上海科学技术出版社,1982
    [17] Gevao B., Semple K.T. and Jones K.C..Bound pesticide residues in soils: a review.Environmental Pollution.2000,108:3~14
    [18] Wan H.B. & M.K.Wong.Review: Minimization of solvent consumption in pesticide residue analysis.J. of Chromatography A.1996,754:43~57
    [19] Lino C.M., Silveira M. N.Extraction and clean-up methods for the determination of organochlorine pesticide residues in medicinal plants.J. of Chromatography A.1997,789:275~283
    [20] Da browska H., Da browski L., Biziuk M., et al..Solid-phase extraction clean-up of soil and sediment extracts for the determination of various types of pollutants in a single run.J. of Chromatography A.2003,1003:29~42
    [21] Niessner G.,Buchberger W. and Eckerstorfer R.Multiresidue screening methods for the determination of pesticides in plant materials .J.of Chromatography A, 1999, 846:341~348
    [22] Sabik H., Jeannot R. and Rondeau B.Multiresidue methods using solid-phase extraction techniques for monitoring priority pesticides, including triazines and degradation products, in ground and surface waters.J. of Chromatography A.2000,885:217~236
    [23] Lopez-Blanco M.C.,Reboreda-Rodr?guez B.,Cancho-Grande B., et al..Optimization of solid-phase extraction and solid-phase microextraction for the determination of a- and b-endosulfan in water by gas chromatography–electron-capture detection.J. of Chromatography A.2002,976:293~299
    [24] Malone R.W.,Warner R.W.,1 Byers M.E., et al..Extraction of Metribuzin from Soil Using supercritical C02 (SFE) .Bull.Environ. Contam. Toxicol. 1997, 58:46~52
    [25] Van der Velde E.C.,Ramlal M.R.,Van Beuzekom A.C., et al.Effects of parameters on supercritical fluid extraction of triazines from soil by use of multiple linear regressin.J Chromatogr A.1994,683:125~139
    [26] Robertson A.M,Lester J.N.Supercritical fluid extraction of s-triazines and phenylurea herbicides from sediment.Environ Sci Technol.1994,28:346~351
    [27] De Leenheer A.Modern Chromatographic Analysis of the Vitamins.Journal of Chromatography A.1985,216.
    [28]何丽一.平面色谱方法及应用.北京:化学工业出版社,2000,2~4.
    [29] Dubhashi S.S,P.R Vavia.HPTLC method to study skin permeation of acylovir.Journal of Pharmaceutical and Biomedical Analysis.2000,23:1017~1022.
    [30]岳永德.高效薄层析进行农药吸附态光解的研究.环境科学,1995,4:16~18.
    [31]王立,汪正范,牟世芬,等.色谱分析样品处理.北京:化学工业出版社,2000,9~45.
    [32]汪正范.色谱定性与定量.北京:化学工业出版社,2000,127~178.
    [33]刘曙照,钱传范.九十年代农药残留新技术,农药,1998,37(6):11~15
    [34] Siegel U,M.Schitt,H.Jork.HPTLC spectroscopic determination of eight phenoxycarboxylic acid herbicides.J.Planar Chromatogr-Mod.TLC,1989,2,304~309
    [35] Mastovska Katerina,Steven J.Lehotay, Jana Hajslova.Optimization and evaluation of low pressure gas chromatography-mass spectrometry for the fast analysis of multiple pesticide residues in a food commodity.Journal of Chromatography A.2001,926:287~296.
    [36]杨大进,张莹,方从容.大米中有机磷和氨基甲酸酯农药残留毛细管气相色谱测定法.卫生研究,1994,23(2):97~100.
    [37] Rossi S,A.P.Dalpero,S.Ghini,R.Colombo,A.G.Sabatini,S.Girotti.Multiresidual method for the gas chromatographic analysis of pesticides in honeybees cleaned by gel per permeation chromatography.Journal of Chromatography A.2001,905:223~232.
    [38] Zrostlikova Jitka,Jana Hajslova,Michal Godula,Kaerina Mastovska.Performance of programmed temperature vaporizer, pulse splitless and on-column injection techniques in analysis of pesticide residues in plant matrices.Journal ofChromatography A.2001,937:73~86.
    [39] Kocourek Vladimir,Jana Hajslova,Katerina Holadova,Jan Poustka,Stability Of pesticides in plant extracts used as calibrants in the gas Chromatographic analysis of residues . Journal of Chromatography A.1998,800:297~304.
    [40] Moffatt F., P.A. Cooper,K.M.Jessop.Comparison of capillary electro chromatograthy with high-performance liquid chromatography for the analysis of pirimicarb and related compounds.Journal of Chromatography A.1999,855:215~226.
    [41] Mijeong Lee Jeong, David J.Chesney.Determination of N-methylcarbamate pesticides from spiked matrices using supercritical fluid exraction.Analytica Chimica Acta.1999,389:53~57.
    [42]刘丹,钱传范.有机磷和有机氯杀虫剂在谷物籽粒中多残留分析方法的研究.农药学学报.2000,2(2):77~82
    [43] M.C.Bowman et al.GLC retention time of pesticides and metabolites Containing phosphorus and sulfuron four thermally stable colums.AOAC.1970,53(3):499.
    [44] Krijgsmanw.Determination of OP pesticide residues by GC with Capillary column and flame photometric detector.J chromatog.1976,117(1):201.
    [45]李聪.多种有机磷残留量的毛细管柱气相色谱分析.色谱,1989,(1):30
    [46]楼小华.25种残留水平的有机磷和有机氮农药的毛细管柱气相色谱分析.农业环境保护,1989,2(2):31.
    [47]庄无忌.毛细管气相色谱法测定果蔬中20种有机磷农药残留量.色谱,1994,12(3):202.
    [48]刘忠.茶叶中多种拟除虫菊酯农药残留的测定.中国卫生检验杂志,2001,11(6):684.
    [49]庞国芳,曹彦忠,范春林,等.毛细管气相色谱法测定农产品中多种拟除虫菊酯农药残留量的研究.现代商检科技,1998,8(1):1~2.
    [50]刘忠,谢克锦,陈启祥,等.气相色谱法测定茶叶中7种拟除虫菊酯农药残留.分析试验室,2002,21(6):42.
    [51]丁慧瑛,鲍晓霞,郑自强.茶叶中7种拟除虫菊酯农药残留量的检测方法.分析测试学报.2000,19(6):31
    [52]李萍.氨基甲酸酯农药残留分析方法.国外医学卫生学分册.1999,26(6):368.
    [53]郭立,张清敏.氨基甲酸酯类农药残留分析方法的研究进展.天津农学院学报,2001,8(4):16.
    [54] Mattern GC,Singer GM,Louis J,et al.Determination of several pesticides with a chemical ionization ion trap detector.J Agricultural Food Chemistry. 1990,38:402~407.
    [55]刘瑜,庄无忌,邱月明.苹果中5种氨基甲酸酯类农药的超临界流体萃取及其气相色谱法定.色谱,1996,14(6):457.
    [56]杨大进,方从容,张莹.蔬菜中有机磷和氨基甲酸酯农药多残留的测定.中国食品卫生杂志,1997 ,9(5):9~11.
    [57]李莉,周永新.SFE结合GC-FID和GC-MS分析血浆中氨基甲酸酯类杀虫剂.药物分析杂志,2000,20(3):154~157.
    [58]赵云峰,陈建民,王绪卿.GC-M分析法在人参有机氯农药残留检测中的应用.卫生研究.1999,28(1):53.
    [59]赵云峰.有机氯农药多残留GC-MS分析方法的研究.卫生研究,1998, 27 (6) :425~428.
    [60]全国农药残留试验研究协作组.农药残留量实用检测方法手册.北京:化学工业出版社,2001:212.
    [61]姚建仁,郑永权,焦淑贞,等.蔬菜中有机硫杀菌剂残留量气相色谱检测方法.中国农业科学,1989,22(5):76.
    [62]胡继业,范志金,刘丰茂,等.磺酰脲类除草剂残留的化学分析方法.莱阳农学院学报,1999,16(1):54.
    [63]姚东瑞,陈杰,宋小玲,等.磺酰脲类除草剂残留与降解研究进展.农药,1997,36(7):36~37.
    [64] Ahamd Ljaz,George Crawford.Trace residue analysis of the herbicide chlorsulfuron in soil by gas chromatography-electron capture detection.J Agriculture and Food Chemistry.1990,38:138~141.
    [65] Klaffenbach.P.P.T Holland,D.R.Lauren.Analysis of sulfonylurea herbicide by gas-liquid chromatography 1.Formation of thermo stable derivatives of chlorsulfuron and metsulfuron-methyl.J Agricultural and Food Chemistry.1993a,41:388~395.
    [66] Klaffenbach.P.P.T Holland.Analysis of sulfonylurea herbicide by gas—liquid chromatography 1.Determination of chlorsulfuron and metsulfuron-methyl in soil and water samples.J Agricultural and Food Chemistry.1993b,41:396~401.
    [67] Lehotay SJ.Development of a method of analysis for 46 pesticides in fruits and vegetables by supercritical fluid extraction and gas chromatography-ion trap mass spectrometry.J .AOAC Int.1995,78(3):821~830.
    [68] Pylypiw HM.Rapid gas chromatographic method for the multiresidue screening of fruits and vegetables for organochlorine and organphosphate pesticides.J AOAC Int.1993,76(6):1369~1373.
    [69] Fillion J . Multiresidue Determination of pesticides in Fruits and Vegetables by Gas chromatography-Mass-selective Detection and Liquid chromatograph with Fluorescence Detection. J AOAC Int.1995,78(5):1252~1266.
    [70] Miyahara M et al.Multiresidue procedures for the Determination of Pesticides in food using capillary gas chromatographic,flame photometric and mass spectrometric techniques . J Agricultural and Food Chemistry.1994,42(12):396~401.
    [71]安捷伦科技有限公司.气相色谱-质谱联用技术同时分析蔬菜或水果中189种农药残留化合物.环境化学,2001,20(5):517~520
    [72] JamesV.Chemistry of sulfonylurea Herbicides[J].Pesticide Sci2ence.1990,29:247~254
    [73]苏群,纪德成,战福顺.磺酰脲类除草剂在造林地上的应用前景.林业科技,1 9 9 9年,24(2):28~29
    [74] Battacharjee AK , Dmueja P . Light-induced transformation of tribenuron-methyl [J].Chemosphere.1999 ,38 (4):741~749
    [75] Li L Y T, Campbell D A, Bennett P K, et al.Acceptance criteria for ultra trace HPLC– tandem mass spectrometry-quantitative and qualitative determination sulfonyluren herbicides in soil[J].Anal. Chem.1996,68, 3397~3404.
    [76] Powley CR, de Bernard PA..Screening Method for Nine Sulfonylurea Herbicides in Soil and Water by Liquid Chromatography with Ultraviolet Detection.J Agric Food Chem[J].1998,,46(2):514~519.
    [77]冯溶.苯磺隆的反相液相色谱分析.农药,2002,41(37):23.
    [78]王天斌,柳梅.苯磺隆的高效液相色谱分析.化工标准·计量·质量,2005, 2.
    [79]徐德隆.苯黄隆反相高效液相色谱分析.江苏农药,1996, (1): 17~18.
    [80]渠桂荣,乔占超,姜聚慧.50.8%苯·二甲可湿性粉剂有效成分的高效液相色谱定量分析.精细石油化工,2005,(2): 51~53.
    [81]秦曙,乔雄梧,朱九生,庞金梅,李捷,王静.土壤中残留苯磺隆的高效液相分析[J].环境化学,1997,16(2):119~121
    [82]何成艳,黎源倩,王和兴.固相萃取-高效液相色谱测定水中5种磺酰脲类除草剂[J]..现代预防医学,2008,35(3):538~54
    [83] Food and environment protection act,1985,partⅢ,First evaluation of tribenuron-methyl,1992
    [84]仇宏伟,胡继业,周革菲.磺酰脲类除草剂在土壤及植物中行为综述[J].莱阳农学院学报,2000,17(2):132~138
    [85] Blair A M,Martin T D.A review of the activity ,fate and mode of action of Sulfonylurea herbicides[J].Pestic Sci.1988,22:195~219.
    [86] Bhattacharjee AK,Dureja P.Light-induced transformation of tribenuron-methyl on glass ,soil ,and plant surface [J].J Environ Sci Health B.2002,37(2):131~140.
    [87] Advisory committee on pesticides. Food and environment protection act,1985,partⅢ,Evaluation on tribenuron methyl,1992,29~34
    [88] Andersen SM,Hertz PB,Holst T, et al.Mineralisation studies of 14C- labelled metsulfuron- methyl,tribenuronmethyl,chlorsulfuron and thifensulfuron one Danish soil and groundwater sediment profile [J].Chesphere.2001,45:775~782.
    [89]张蓉,岳永德,花日茂,等.磺酰脲类除草剂在环境中的转归和影响[J].安徽农业科学,2003,31( 6) : 1 007~1009
    [90]李淑娟,李建中,安娟,等.液相色谱-电喷雾串联四极杆质谱法测定植物源性食品中氟草烟的残留量[J].分析化学,2008,36(3):420
    [91] Muhamad HB,Ai TY,Sahid IB.Determination of the herbicide fluroxypyr in oil matrices[J].J Environ Sci Health B.2008,43 (2) : 134~40
    [92]白翎,王玫,宫静宏.毛细管气相色谱法测定农产品中氟草烟残留量[J].色谱2003,21(3):288~290
    [93]刘华琳,黄化成,裘立群,王方宪,胡国栋,谢瑞峰.高效液相色谱法测定氟草烟在大蒜、玉米中的残留[J].色谱,2004,22(1):92
    [94]高炎炎,刘永波,贾立华.氟草烟残留的GC-MS法测定研究[J].分析试验室,2005,24(6):20~23.
    [95]高文惠,春海,王凤池,罗敏,栗春艳.固相萃取/气相色谱-质谱分析大米中氟草烟残留[J] .分析测试学报,2007,26(3):279~281
    [96] Tomlin, C.D.S. (ed.).The Pesticide Manual - World Compendium.10th ed. Surrey,UK: The British Crop Protection Council.1994,507
    [97] Lehmann RG,Lickly LS,Lardie T S,Miller JH ,Baldwin WS.Fate of fluroxypyr in soil : III. Significance of metabolites to plants [J].Weed Res.1991,31(6):347~55
    [98] http://www.cababstractsplus.org/abstracts/Abstract.aspx?AcNo=19942302613
    [99] Lehmann RG,Miller JR,Laskowski DA.Fate of fluroxypyr in soil : II. Desorption as a function of incubation time.Weed Res.1990,30(6):383~388
    [100] Lehmann RG,Miller JR,Cleveland C B. Fate of fluroxypyr in water.Weed Res.1993,33(3)::197~204
    [101]张志恒主编.农药合理使用规范和最高残留限量标准.北京:化学工业出版社,2007,9 ~291
    [102]潘灿平主编.最新农药残留限量标准手册.中国计量出版社,2006,1 ~51
    [103] http://eur-lex.europa.eu/LexUriServ/site/en/oj/2007/l_063/l_06320070301en00260037.pdf
    [104]杨阳,张友才,葛玉林,等.乙草胺、异丙隆与绿麦隆混配防除麦田杂草试验[ J ].杂草科学,2003 ( 4) :29 ~301
    [105]路兴涛,蒋仁棠,郑星,马士仲,谈文瑾,李明.19%苯磺隆·氟草烟WP防除冬小麦田阔叶杂草试验.山东农业科学,2006,(3):68~69.
    [106]陈德胜,张帮林,王玉平.35 %苯磺隆·氯氟吡氧WP防除冬小麦田阔叶杂草药效试验.安徽农业科学,2006,34(13):3118~3157.
    [107]陈克付,龚国斌,章昆仑,苏朝辉.35%苯磺隆·使它隆可湿性粉剂小麦田间药效及安全性试验.农药科学与管理.2006,25(10):34~36.
    [108] NY/T 788-2004中华人民共和国农业行业标准农药残留试验准则.
    [109] Lehmann R G,Miller J R.Development of a high-performance liquid chromatographic method for fluroxypyr heerbicide and metabolites using computer simulation with drylab software.Journal of Chromatography A.1989,485:581~584
    [110]刘长令.世界农药大全:除草剂卷[M].北京:化工出版社, 2002.15~75.
    [111]欧晓明.磺酰脲类除草剂残留检测分析研究新进展[J].精细化工中间体,2006,36(1):1~5
    [112]王中义译.磺酰脲类在农业上的应用及其在环境中的归趋.农药译丛,1990,12(4):8~11
    [113] http://www.hnnfzb.com/shop/products.asp?id=701

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700