高压补燃液氧煤油发动机故障检测与诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以我国高压补燃液氧煤油发动机为研究对象,针对其健康监控所涉及的故障仿真、传感器配置优化、传感器故障检测与数据恢复、实时故障检测与诊断、系统集成设计与实现验证,以及发动机飞行前、飞行中和飞行后健康监测等关键技术开展了全面深入的分析、设计、实现等研究工作。研究结果不仅为研制工程实用的一次性使用发动机健康监控系统奠定了坚实的理论和技术应用基础,而且对提高我国未来可重复使用液体火箭发动机的可靠性、安全性具有重要的参考价值。
     针对发动机工作条件的极致性、故障发生发展的快速性、影响后果的严重性、故障模式的可复制性差,从而导致发动机故障模式特征、诊断知识和样本数据难以获取等问题,基于结构层次化分解的思想,建立了模块化的发动机故障仿真模型,开发实现了发动机可视化故障仿真软件系统,对发动机氧化剂泵汽蚀、燃烧室喉部烧蚀等主要故障进行了故障仿真及效应分析。仿真计算结果与发动机实际试车数据吻合较好,可以为故障检测与诊断方法提供重要的发动机故障样本数据。
     针对液体火箭发动机故障检测与诊断在缺乏先验知识、缺少充分样本数据条件下的不确定性信息决策问题,基于有机结合随机性和模糊性的云理论,深入开展了检测参数选择与传感器优化配置、传感器故障检测和数据恢复、发动机工作过程实时故障检测、故障诊断的不确定性推理方法研究。
     在保证对发动机故障模式分类能力不变的情况下,研究发展了发动机故障检测参数选取方法,同时将故障检测与诊断性能指标作为约束条件,建立了发动机基于云理论的传感器配置优化数学模型,并结合粒子群算法研究了发动机传感器配置优化问题。发展了基于云-神经网络的发动机传感器故障检测与数据恢复方法,结合某型液氧煤油发动机试车数据进行了实例分析与验证。结果表明,该方法可行有效,可以为发动机的故障检测与诊断提高可靠的信号数据源。
     针对液体火箭发动机实时故障检测在准确性、及时性和实时性的要求,并结合云理论和神经网络强大的数据处理能力,提出了液体火箭发动机故障检测的一种云-神经网络原理结构,发展了云-神经网络的前向传播计算和反向传播学习算法,实现了液体火箭发动机工作全过程基于云-神经网络的实时故障检测方法。针对某型液氧煤油发动机起动过程、额定工况到高工况过程、高工况到高工况高混合比过程、高工况高混合比到高工况过程等瞬变过程,以及额定工况、高工况和高工况高混合比等稳态过程的实际试车数据,对该方法进行了验证。验证结果表明,该方法可以对发动机工作状况进行及时的判断,没有误报警和漏报警,且相比RS、IATA、ACA、RBF等故障检测算法能更早地检测出故障。
     综合云理论和Petri网在描述分析发动机动态行为与状态变迁过程方面的能力和特点,建立了液体火箭发动机故障诊断的云-Petri网模型,发展了基于规则的云-Petri网建模方法,实现了液体火箭发动机基于云-Petri网的故障诊断方法,并利用某型液氧煤油发动机试车数据对诊断方法进行了实例分析和验证。结果表明,该方法可以对发动机氧涡轮泵前管路堵塞、氧涡轮泵汽蚀等典型故障进行隔离与诊断。
     针对当前液体火箭发动机健康监控系统设计开发过程中普遍存在的系统结构和功能模块紧耦合、重用性和互操作性差、难于快速响应系统后期的需求变化和维护等诸多缺陷,在深入分析液体火箭发动机健康监控系统功能与需求的基础上,将发动机健康监控所面临的共性问题进行提炼、抽象,分析设计了基于数据-模型-控制-视图的分层、开放和可复用的发动机健康监控系统框架。同时,针对我国某型液氧煤油火箭发动机,结合相关研究成果,设计实现了其工作过程的实时故障检测系统,并开展了该系统基于发动机试车数据和地面功能试车的考核与验证。结果表明,所设计的系统完全满足工程实用的需要,具备实时在线运行能力,不仅能实现参数的准确采集,而且算法没有出现误报警和漏报警。
     针对发动机重复使用过程中对健康监控技术提出的更高要求,开展了发动机飞行前综合性能测试、飞行过程实时状态记录和飞行后结构检测等健康监测技术的原理性分析与初步概要设计。分析设计了发动机飞行前地面综合性能自动测试系统和发动机智能机内测试系统原理结构;结合光纤光栅等先进测量传感技术,分析设计了由辅助功能、系统控制、数据采集与存储、回收分析等功能模块组成的发动机飞行参数记录仪原理结构;分析设计了发动机飞行后关键构件基于内窥图像获取和结构损伤检测与识别的内窥检测系统原理结构。结果对研制和开发我国未来可重复使用液体火箭发动机飞行前、飞行中和飞行后等阶段的健康监测技术与工程实用系统,具有重要的参考价值。
Some key technologies involved in the health monitoring for a certain high pressurestaged combustion LOX/Kerosene rocket engine have been comprehensively studied,analyzed and designed in the thesis. These include the configuration, optimization, faultdetection and data accommodation of sensors, the fault simulation, real-time fault detectionand diagnosis methods for the engine, the integrated design, implementation and validationof the system, and the health inspection technique in the preflight, inflight and postflightphases of reusable engines. Results of the research can not only provide solid theoreticaland application foundation in the development of health monitoring system for expendablerocket engines, but also they can provide important reference in the improvement ofreliability and safety for future reusable liquid-propellant rocket engines.
     Firstly, due to the extreme operating condition, rapid occurrence and severe effect offaults, and the bad repetition of fault modes, it is difficult to obtain the feature of faultmodes, the diagnostic knowledge and the sample data of engines. So modularizedsimulation models of faults are founded and a visual fault simulation software system isdeveloped based on the hierarchical decomposition of the engine’s structure. Then faultsimulation and effect analysis are carried out for the principal faults such as the cavitationin the oxidant pump, the ablation of the combustion chamber throat, and so on.Comparison results show that the simulation results are in good agreement with the realtest data of the engine. It can provide important fault sample data in the research of faultdetection and diagnosis methods for the engine.
     Secondly, due to the intrinsical uncertainty existed in the fault detection and diagnosis,especially in the absence of prerequisite knowledge and sufficient sample data, uncertainreasoning and decision methods are proposed and studied. The methods are all based onthe cloud theory, which is effective in the integrated description and manipulation of therandomness and fuzziness. They include the following three aspects such as the parameterselection, configuration, fault detection and data accommodation for sensors, the real-timefault detection method and the uncertain diagnosis reasoning method for the engine.
     In the first aspect, a parameter selection method for fault detection with unchangeableability in the classification of the engine’s faults is developed. Then a mathematical modelof configuration and optimization for sensors is built based on the cloud theory to satisfythe performance index constraint of fault detection and diagnosis. A computation method isalso proposed based on the particle swarm optimization. In addition, a fault detection anddata accommodation method for sensors is developed based on the cloud neural networkand verified with test data of the LOX/Kerosene rocket engine. Results show that themethod is effective. By this way, reliable data for the fault detection and diagnosis of theengine can be obtained.
     In the next aspect, a real-time fault detection method for LRE is proposed based onthe cloud neural network to meet the accurate, in-time and real-time requirements. For themethod, a framework and structure of the cloud neural network are designed, and theforward propagation based computation and the backward propagation based learningalgorithms are developed. Then the method is verified and validated with test data of theLOX/Kerosene rocket engine in both of its steady processes and transient processes. Thesetransient processes include a starting process, a process from the rated condition to the highoperating condition, a process from one high operating condition to another high operatingcondition with high mixing ratio, a process from one high operating condition with highmixing ratio to one high operating condition. These steady processes include a process ofrated condition, a process of high operating condition, and a process of high operatingcondition with high mixing ratio. Results show that the developed method can not onlyproduce right and timely estimations for operating condition of the engine with no falsealarm and missing alarm, and also it can detect the fault earlier than other fault detectionalgorithms such as the RS, IATA, ACA and RBF.
     In the last aspect, the cloud Petri net model of fault diagnosis and its modeling methodbased on the productive rules are proposed. The model is used to describe and analyze theengine’s behavior and the change between states effectively. Then an uncertain reasoningmethod for the fault diagnosis and discrimination of its reasoning results is proposed anddeveloped for the engine based on the constructed cloud Petri net model. The method isverified and validated with test data of the LOX/Kerosene rocket engine. Results showthat the method is able to isolate and diagnose the typical faults of the engine such as theblock of pipeline before oxidizer turbopump, the cavitation of oxidizer turbinepump, andso on.
     Thirdly, the function and requirements of HMS for LRE are analyzed thoroughly, andthe common problems are also abstracted due to the many deficiencies existed in thecurrent HMS such as tight coupling of system structure and function modules, poorreusability and interoperability, the slow response for the demand change and maintenance.Then a layered, open and reusable framework of HMS is analyzed and designed based onthe Data-Model-View-Control hierarchy. Moreover, based on the combination of theprevious research results, a real-time fault detection system for the LOX/Kerosene rocketengine is designed and realized. The system is verified and validated with test data andground tests of the engine. Results show that the system can meet all the requirements inthe engineering application and is able to work in a high real-time and on-line way. It cannot only acquire the parameters accurately, and also produce no false alarm and missingalarm. So it is another important breakthrough in the research of health monitoring forLRE in China.
     Fourthly, in order to meet the higher requirement of health monitoring for reusable engines, key health inspection technologies are analyzed on principle and designedsummarily such as the preflight integrated performance test, real-time flight data recordingand postflight structure detection. The principle structure of automatic test systems for theon-ground integrated performance test and intelligent Built-in Test in preflight phases ofengines are analyzed and designed. Then the principle structure of real-time flight datarecorder is analyzed and designed which is combined with fiber gratings and otheradvanced sensor technology. It is composed of auxiliary function module, system controlmodule, data acquisition and storage module and recall-bach module. Moreover, theprinciple structure of borescopic inspection detection system is also analyzed and designedbased on image acquisition and detection and identification of structural damage. Theseresults will provide significantly important reference in the research of health inspectiontechnology and development of engineering application systems for the preflight, inflightand postflight phases of future reusable LRE.
引文
[1]杜含藻.液体火箭发动机推进系统检漏技术的发展[R]. HQ-96025,1996
    [2] Michael W. Hawman. Health Monitoring System for the SSME-programoverview[R]. AIAA90-1987,1990
    [3] Boris I. Katorgin, Felix J. Chelkis et al. The RD-170, a different approach tolaunch vehicle propulsion[C]. Monterey, CA:1993.
    [4] Matijevic Z. A Pattern-recognition based Expert System: a Prototype for FaultDiagnosis in a Liquid Propellant Rocket Engine[R]. IAF92-0676,1992
    [5] Kanenori Kato, Akio Kanmuri et al. Data Analysis for Rocket Engine HealthMonitoring System[C]. San Diego, CA:1995.
    [6] Bonnal C. Future Reusable Launch Vehicles in Europe-The FLTP(FutureLaunchers Technologies Programme)[R]. A99-44825,1999
    [7]陈启智.液体火箭发动机故障检测与诊断研究的若干进展[J].宇航学报.2003,24(1):1~10.
    [8] Rolf Isermann. Fault Diagnosis Systems-An Introduction from Fault Detection toFault Tolerance[M]. Germany: Springer-Verlag Berlin Heidelberg,2006.
    [9] Jozef Korbicz and Jan M. Koscielny. Fault Diagnosis-Models, ArtificialIntelligence, Applications[M]. Germany: Springer-Verlag Berlin Heidelberg,2004.
    [10] Vasile Palade, Lakhmi Jain et al. Computational Intelligence in FaultDiagnosis[M]. London, UK: Springer-Verlag,2006.
    [11] Norman F. Knight Jr., Charles C. Rankin et al. Controlling ProgressiveFailure Analyses Using Artificial Viscous Damping[R]. AIAA2001-1181,2011
    [12] T. Krishnamurthy and Adam M. Gallegos. Damage Characterization Usingthe Extended Finite Element Method for Structural Health Management [R]. AIAA2011-1701,2011
    [13] Jiann-Shiun Lew. Effects of Model Uncertainty on Structural DamageDetection Using Passive Controllers[R]. AIAA2001-1445,2011
    [14]田武刚.航空发动机关键构件内窥涡流集成化原位无损检测技术研究[D].长沙:国防科技大学博士学位论文,2009.
    [15]焦恩雷.内窥镜式探测器的结构设计及其控制[D].大连:大连理工大学硕士学位论文,2010.
    [16]苏剑彬.内窥涡流集成化无损检测系统研究与实现[D].长沙:国防科技大学硕士学位论文,2008.
    [17]丁莉芬.机器视觉在航空发动机内窥检测中的应用研究[D].天津:中国民用航空学院硕士学位论文,2005.
    [18]孟娇茹.航空发动机内窥损伤识别系统研究[D].天津:中国民用航空学院硕士学位论文,2006.
    [19] Anon. Video Borescoping Helps Keep Gas Turbines Healthy[J].Turbomachinery International.1998,46~48.
    [20]张勇.航空发动机故障诊断中孔探图像特征提取技术应用研究[D].长沙:国防科技大学硕士学位论文,2006.
    [21]王为.光纤光栅在船舶结构健康监测中的关键技术研究[D].天津:天津大学博士学位论文,2010.
    [22] Maaskant R, Alavie et al. Fiber optic Bragg grating sensor for bridgemonitoring [J]. Cement&Concrete Composites.1997,19(1):21~33.
    [23] Gebremichael Y M, Li W et al. Integration and Assessment of fibre Bragggrating sensors in an all-fiber reinforced polymer composite road bridge[J]. SensorsActuators A.2005,11878~85.
    [24] Chan T H T, Yu L et al. Fiber bragg grating sensors for structural healthmonitoring of Tsing Ma bridge: background and experimental obserbation[J]. EngineeringStructure.2006,28648~659.
    [25]田德报,张大煦等.光纤布拉格光栅应变测量在天津奥体中心工程中的应用[J].施工技术.2008,37(11):64~66.
    [26]赵星光,邱海淘.光纤Bragg光栅传感技术在隧道监测中的应用[J].岩石力学与工程学报.2007,26(3):257~593.
    [27] Tam H, Liu S et al. Fiber Bragg grating sensors for structural and railwayapplications[C].2004.
    [28] Hwa-Yaw Tam. Application of fiber Bragg grating sensors in railways[C].2008.
    [29] Li Sun, Hong-Nan Li et al. Dynamic response measurement of offshoreplatform model by FBG sensors [J]. Sensors Actuators A.2007,136572~579.
    [30] Ecke W, Latka I et al. Optical fiber Grating strain sensor network for X-38Spacecraft health monitoring[C].2000.
    [31] Takeda S, Aoki Y et al. Structural health monitoring of composite wingstructure during durability test [J]. Composite Structures.2007,(79):133~139.
    [32]孙汝蛟.光纤光栅传感技术在桥梁健康监测中的应用研究[D].天津:天津大学博士学位论文,2007.
    [33]郭东歌.基于LPFGs氢敏探测器的研究[D].郑州:郑州大学硕士学位论文,2010.
    [34]任亮.光纤光栅传感技术在结构健康监测中的应用[D].大连:大连理工大学博士学位论文,2008.
    [35] Gopal D. Tejwani, David B.Van Dyke et al. Approach to SSME healthmonitoring III. Exhaust plume emission spectroscopy: Recent results and detailedanalysis[R]. AIAA93-2513,1993
    [36] Felix E. Bircher, Gopal D. Tejwani et al. Engine Diagnostic console-Recentdevelopment and test results with SSME data[R]. AIAA95-2785,1995
    [37] Gopal D. Tejwani, David B. Van Dyke et al. SSME exhaust plume emissionspectroscopy at SSC-Recent analytical development and test results[R]. AIAA95-2786,1995
    [38] Satyajit Verma, Gopal D. Tejwani et al. Calculation of Free-Atom Fractionsin Hydrocarbon-Fueled Rocket Engine Plumes for Engine Health Monitoring[R]. AIAA2007-4409,2007
    [39]赵永学,张育林等.羽流UV-VIS辐射在液体火箭发动机故障诊断中的应用技术研究[J].宇航学报.2002,23(1):34~39.
    [40]李麦亮.激光光谱诊断技术及其在发动机燃烧研究中的应用[D].长沙:国防科学技术大学博士学位论文,2004.
    [41] R. L. Bickford, J. L. Gould et al. X-33On-board Hydrogen DetectionSystem[R]. AIAA99-2132,1999
    [42] Alex A. Kazemi, John W. Goepp et al. Fiber optic microsensor hydrogen leakdetection system on Aerospike X-33[R]. Proc. of SPIE6758,2007
    [43]马永成,陈青松.基于超声的气体泄漏检测与定位技术在载人航天器中的应用[J].仪表技术与传感器.2009,增刊341~343.
    [44]王建波.液体火箭发动机泄漏故障机理及检测方法的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2000.
    [45]刘冰.液体火箭发动机故障诊断中的特征提取[J].推进技术.1997,18(6):1~4.
    [46]任海峰,胡小平等.用于独立分量分析提取液体火箭发动机的故障特征[J].推进技术.2004,25(6):481~483.
    [47]杨尔辅,徐用懋等.液体火箭发动机动态数据处理的小波分析方法[J].推进技术.2001,22(2):104~107.
    [48] S. Tulpule and W. S. Galinaitis. Health Monitoring System for theSSME-Fault Detection Algorithms[R]. AIAA90-1988,1990
    [49] Norman. A. M and Merrill W. Rocketdyne Safety Algorithm-Space ShuttleMain Engine Fault Detection[R]. N95-10147,1995
    [50] T. Fiorucci, D. Lakin R et al. Advanced Engine Health ManagementApplications of the SSME Real-time Vibration Monitoring System[C]. Huntsville,Alabama:2000.
    [51] Matt Davidson and John Stephens. Advanced Health Management System forthe Space Shuttle Main Engine[R]. AIAA-2004-3912,2004
    [52] Dyuyar A, Eldem V et al. Fault Detection and Diagnosis in PropulsionSystems: a Fault Parameter Estimation Approach [J]. Journal of Guidance, Control, andDynamics.1994,17(1):104~108.
    [53]朱恒伟.液体推进剂火箭发动机地面试车故障检测与诊断研究[D].长沙:国防科学技术大学研究生院博士学位论文,1997.
    [54]黄敏超.液体火箭发动机故障的神经网络诊断研究[D].长沙:国防科技大学博士学位论文,1998.
    [55] Koutsoukos X, Kurien J et al. Estimation of Distributed Hybrid Systems usingParticle Filtering Methds[C]. New York, USA:2000.
    [56]符文星.参数估计法在运载火箭动力系统故障诊断中的应用[J].弹箭与制导学报.2007,27(1):181~183.
    [57] John P. Butas, Claudia M. Meyer et al. Rocket Engine Health MonitoringUsing a Model-Based Approach[R]. AIAA2001-3764,2001
    [58]张纯良,张振鹏等.利用改进时序模型提取空间推进系统特征参数[J].推进技术.2002,23(6):457~459.
    [59] William A. Maul. Multi-sensor analysis techniques for SSME safetymonitoring[R]. AIAA90-1990,1990
    [60]刘开第,庞彦军等.基于遗传策略的一种故障诊断方法[J].吉林大学学报(工业版).2004,(7):230~233.
    [61] Modesitt K L. Inductive Knowledge Acquisition Experience withCommercial Tools for Space Shuttle Main Engine Testing[R]. N90-27326,1990
    [62] Perry S G. An Expert System Approach to Turbopump Health Monitoring[R].A88-48308,1988
    [63] Engle J, Bogart D et al. Prelaunch Expert System for Space ShuttlePropulsion System Health Monitoring[R]. AIAA90-1888,1990
    [64] Ali M and Cupta U.K. An Expert System for Fault Diagnosis in a SpaceShuttle Main Engine[R]. AIAA90-1890,1990
    [65] Zakrajsek J F. The Development of a Post-test Diagnostic system for RocketEngines[R]. AIAA91-2528,1991
    [66] Bickmore and R. L Bickford. Areojet's Titan Health Assessment ExpertSystem[R]. AIAA92-3330,1992
    [67] Guo T H. An SSME Pressure Oxidizer Turbopump Diagnostic System usingG2TM Real-time Expert System[R]. N92-13717,1992
    [68] Martin O H. Enhancements to the Engine Data Interpretation System(EDIS)[R]. NASA CR-193363,1993
    [69] Pooley J. Embedded Expert System for Space Shuttle Main Enginemaintenance[R]. N90-16382,1990
    [70]刘冰.液体火箭发动机智能化故障诊断与健康评估系统研究[D].长沙:国防科技大学博士学位论文,1999.
    [71]张纯良.空间推进系统故障检测与诊断技术研究[D].北京:北京航空航天大学博士学位论文,2002.
    [72]吴建军.液体火箭发动机故障检测与诊断研究[D].长沙:国防科技大学博士学位论文,1995.
    [73]杨尔辅,张振鹏等.应用BP-ART混合神经网络的推进系统状态监控系统[J].推进技术.1999,20(6):10~15.
    [74]杨尔辅,徐用懋等.一种火箭推进系统非线性动态神经网络模型[J].推进技术.2001,22(1):50~53.
    [75]张炜,张玉祥等.基于神经网络的涡轮泵多故障诊断[J].推进技术.2003,117~20.
    [76]王志武.基于神经网络的液体火箭发动机泄漏检测方法[J].火箭推进.2005,31(1):55~58.
    [77]邱忠.涡轮泵试车数据分析及健康状态判别方法研究[D].长沙:国防科学技术大学硕士学位论文,2005.
    [78]梁循.数据挖掘算法与应用[M].北京:北京大学出版社,2006.
    [79]谭松林,张宝琨.运载火箭液体发动机故障监控系统中的若干问题[J].宇航学报.1998,19(3):110~114.
    [80]李艳军.液体火箭发动机基于模糊模型的实时故障检测与诊断方法研究
    [D].长沙:国防科学技术大学硕士学位论文,2008.
    [81]胡志坤,桂卫华等.基于粗糙集的故障诊断规则增量更新方法[J].计算机工程与应用.2008,44(7):213~216.
    [82]王艳梅,胡小平等.基于粗糙集理论的液体火箭发动机故障诊断[J].导弹与航天运载技术.2006,282(2):50~54.
    [83]张东亮.模糊规则库的生成与优化[M].北京:燕山大学出版社,2006.
    [84]胡金海,谢寿生等.基于粗糙核Fisher鉴别分析的特征提取及其在发动机故障诊断中的应用[J].航空动力学报.2008,23(7):1346~1342.
    [85]饶泓,夏叶娟等.基于粗糙集决策网络的故障诊断规则提取方法[J].计算机工程与应用.2009,45(24):246~248.
    [86]杨海龙,孙健国.粒子群优化的粗糙集-神经网络在航空发动机故障诊断中的应用[J].航空动力学报.2009,24(2):458~464.
    [87]马敏,黄建国等.基于自适应模糊Petri网的雷达故障诊断方法研究[J].仪器仪表学报.2008,29(2):261~265.
    [88]李厦.基于Petri网的故障诊断技术研究及其在液压系统中的应用[D].上海:同济大学博士学位论文,2006.
    [89]徐宗本,樊忠泽.基于云神经网络的空间推进系统故障检测与诊断[J].兵工学报.2009,6727-732.
    [90]孔莉芬,张虹.基于ANFIS的汽车发动机振动参数故障诊断云模型[J].制造业自动化.2010,32(10):20~24.
    [91]王嘉家,彭敏放.基于云和数据场的模拟电路故障传播特性分析[J].微计算机信息.2010,26(11):62~64.
    [92]谢庆,彭澎等.基于云物元分析原理的电力变压器故障诊断方法研究[J].高压电器.2009,45(6):74~77.
    [93]范大鹏,王雪丹.云模型方法在选煤厂跳汰系统中的故障检测与诊断[J].黑龙江科技学院学报.2011,21(4):289~292.
    [94]陈启智.液体火箭推进系统健康监控技术的演变[J].推进技术.1997,18(1):1~7.
    [95] Katherine P. Van Hooser and Douglas P. Bradley. Space Shuttle Main Engine(SSME)–Relentless Pursuit of Improvement[R]. AIAA2011-7159,2011
    [96] G. Reeling Brouwer, A. Pfiffer et al. Development and deployment ofdiagnostic prognostic tactical solid rocket motor demonstrator[R]. AIAA2011-5957,2011
    [97] Venneri S. Space Launch Initiative[C].2002.
    [98] Mohammad Azam, Moises Soto et al. Facilitation of Designing andEmbedding Complex Tests for Real-time Health Management [R]. AIAA2011-1615,2011
    [99] C. D. Pettit, S. Barkhoudarian et al. Reusable Rocket Engine AdvancedHealth Management System: Architecture and Technology Evaluation Summary[R]. AIAA99-2527,1999
    [100] Michal W. Hawman, William S. Galinaitis et al. Framework for a SpaceShuttle Main Engine Health Monitoring System[R]. NASA CR-185224,1990
    [101] Nemeth E. Health Management System for Rocket Engines[R]. NASACR-185223,1990
    [102] D. O'reilly. System for Anamaly and Failure Detection (SAFD) SystemDevelopment (Final Report)[R]. NASA CP-193907,1993
    [103] Thomas J. Erickson and Joel J. Sue. Post-test diagnostic system featureextraction applied to Martin Marietta Atlas/Centaur data[R]. AIAA94-3224,1994
    [104]谢廷峰.液体火箭发动机健康监控关键技术研究[D].长沙:国防科技大学博士学位论文,2008.
    [105]杨尔辅,张振鹏等. YF-75发动机状态监控与故障诊断工程应用系统的研制[J].推进技术.1997,18(1):65~72.
    [106]于潇,廖明夫等.液体火箭发动机涡轮泵状态监测与故障诊断系统研究[J].导弹与航天运载技术.2002,(4):54~58.
    [107]王慧,王桁等.液体火箭发动机涡轮泵转子系统干摩擦故障特征分析[J].导弹与航天运载技术.2001,(5):10~14.
    [108]蔡益飞.某液体火箭发动机故障仿真分析[J].上海航天.2004,21(5):34~38.
    [109]王珉,胡茑庆等.基于故障仿真的故障知识库应用研究[J].宇航学报.2010,31(4):1253~1258.
    [110]李斌,谭永华.液氧/煤油富氧补燃发动机[J].火箭推进.2003,29(2):1~6.
    [111]张贵田.高压补燃液氧煤油发动机[M].北京:国防工业出版社,2005.
    [112] Charles A M. Reusable Rocket Engine Maintenance Study[R].1982
    [113]吴宏斌.国外液体火箭发动机故障模式分析[R].航天情报研究报告HQ-B91043,1991
    [114]杨尔辅.液体火箭推进系统状态监控和故障诊断正反问题与算法研究[D].北京:北京航空航天大学博士学位论文,1999.
    [115]杨尔辅,徐用懋等.液体火箭推进系统故障过程建模与仿真研究[J].清华大学学报(自然科学版).2001,41(3):104~108.
    [116]卜乃岚.基于经验数据发动机故障检测方法[J].推进技术.1997,18(1):53~57.
    [117]殷谦,张金容.液体火箭发动机故障模式及分析[J].推进技术.1997,18(1):22~25.
    [118]杨尔辅,张振鹏等.液发推力室和涡轮泵故障监测与诊断技术研究[J].北京航空航天大学学报.1999,25(5):619~622.
    [119]刘红军.补燃循环发动机静态特性与动态响应特性研究[D].西安:航天工业总公司第十一研究所博士学位论文,1998.
    [120]魏鹏飞.可重复使用液体火箭发动机智能减损控制方法研究[D].长沙:国防科学技术大学研究生院博士学位论文,2005.
    [121]程玉强.可重复使用液体火箭发动机关键部件损伤动力学与减损控制方法研究[D].长沙:国防科学技术大学研究生院博士学位论文,2009.
    [122]赵万明.液氧煤油发动机试车主要参数测量方法研究[J].火箭推进.2006,32(5):51~55.
    [123]张育林.动态系统故障诊断理论基础[M].长沙:国防科学技术大学出版社,1996.
    [124]刘冰,张育林.液体火箭发动机故障诊断中的特征选择[J].推进技术.1998,19(2):5~8.
    [125]张育林,吴建军等.液体火箭发动机健康监控技术[M].长沙:国防科技大学出版社,1998.
    [126] L. Michael Santi and T. Shane Sowers. Optimal Sensor Selection for HealthMonitoring Systems[R]. AIAA2005-4485,2005
    [127]杨雪,张振鹏等.基于AHP的液体火箭发动机地面试验监测参数的选择方法研究[J].航空动力学报.2006,21(3):615~620.
    [128]谢廷峰,刘洪刚等.液体火箭发动机地面试车实时故障检测参数的选取[J].航天控制.2008,26(6):77~85.
    [129] Pawlak Z. Rough sets [J]. International Journal of Information and ComputerScience.1982,11(5):314~356.
    [130] Mohd Saberi Mohamad, Sigeru Omatu et al. Particle swarm optimization witha modified sigmoid function for gene selection from gene expression data [J]. Artif LifeRobotics.2010,(15):21~24.
    [131] Jamal Saeedi and Karim Faze. A new pan-sharpening method usingmultiobjective particle swarm optimization and the shiftable contourlet transform[J].ISPRS Journal of Photogrammetry and Remote Sensing.2011,(66):365~381.
    [132] Y. Wang and J. H. Liu. Chaotic particle swarm optimization for assemblysequence planning [J]. Robotics and Computer-Integrated Manufacturing.2010,(26):212~222.
    [133] Qi Wu and Rob Law. Complex system fault diagnosis based on a fuzzy robustwavelet support vector classifier and an adaptive Gaussian particle swarm optimization [J].Information Sciences.2010,(180):4514~4528.
    [134] R. L Bickford. Real-time Flight Data Validation for Rocket Engines[R].AIAA96-2827,1996
    [135] R. L Bickford. Real-time Sensor Data Validation for Autonomous FlightControl[R]. AIAA97-2901,1997
    [136]耿卫国,徐涛等.基于MSPCA的液体火箭发动机试车台氢供应系统传感器故障诊断方法[J].宇航学报.2006,27(6):1142~1146.
    [137]杨雪,张振鹏.基于回归模型的液体火箭发动机试验数据的验证与重构[J].宇航学报.2006,26(2):33~38.
    [138]徐涛,王祁.基于小波包LVQ网络的传感器故障诊断[J].哈尔滨工业大学学报.2007,39(1):8~10.
    [139] Martin R A. Unsuprvised anomaly detection and diagnosis for liquid rocketengine propulsion[C]. Piscataway, NI, USA:2007.
    [140]王艳梅,胡小平等.利用关联规则检测液体火箭发动机启动关机过程的故障[J].火箭推进2006,32(1):19~23.
    [141]韩庆田,杨兴根等.神经网络在发动机状态监控与故障诊断种的应用综述[J].导弹与航天运载技术.2004,(5):23~28.
    [142]徐启华,师军.神经网络集成在发动机故障诊断中的应用研究[J].航空动力学报.2005,20(5):847-852.
    [143]田永青.基于云模型的数据挖掘算法的研究与应用[D].上海:上海交通大学博士学位论文,2003.
    [144]闻新,周露等. Matlab神经网络应用设计[M].北京:科学出版社,2000.
    [145]黄强.液体火箭发动机神经网络实时在线故障检测算法研究[D].长沙:国防科学技术大学硕士学位论文,2006.
    [146]陈玉宝,夏继强等. Petri网模型在故障诊断领域的应用研究[J].中国机械工程.2000,11(12):1386~1389.
    [147]宗群,马宏波等.基于NNFPN模型的电梯故障诊断方法的研究[J].控制与决策.2005,20(3):341~344.
    [148]高梅梅,吴智铭.模糊推理Petri网及其在故障诊断中的应用[J].自动化学报.2000,26(5):677~680.
    [149]刘心.基于Petri网的FMS建模及故障诊断方法研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2009.
    [150]孙静,秦世引等.一种基于Petri网和概率信息的电力系统故障诊断方法[J].电力系统自动化.2003,27(13):10~14.
    [151]韩光臣,孙树栋等.基于FPPNS的复杂系统故障诊断研究[J].中国机械工程.2005,16(13):1138~1141.
    [152]严体华,王宝树.基于有色Petri网的Web服务协商[J].系统工程与电子技术.2008,30(3):561~564.
    [153]郭亚中,左洪福等.基于CRPN模型的复杂系统故障诊断[J].华南理工大学学报(自然科学版).2007,35(1):24~27.
    [154] Carl G. Looney. Fuzzy Petri nets for rule-based decisionmaking[J]. IEEETransactions on Systems, Man and Cybernetics.1988,18(1):178~183.
    [155]张延松,赵英凯.基于粗糙集的变电站故障诊断规则提取方法研究[J].计算机工程与设计.2010,2010(14):3277~3279.
    [156]李毅.基于SOA的设备状态监测与故障诊断系统的研究[D].上海:上海交通大学硕士学位论文,2008.
    [157]杜爱华. MVC模式在系统框架设计中的研究与应用[D].西安:西安建筑科技大学硕士学位论文,2005.
    [158]王新.基于MVC模式的通用Web软件系统开发框架设计与实现[D].成都:电子科技大学硕士学位论文,2007.
    [159]徐琼.基于MVC模式的Struts框架的研究与实现[D].武汉:武汉理工大学硕士学位论文,2006.
    [160] Jeffrey Palermo, Ben Scheirman等. ASP.NET MVC实战[M].北京:人民邮电出版社,2010.
    [161]王志刚,朱蕾. PHP5应用实例详解:使用Zend Framework&Smarty构筑真正的MVC模式应用[M].北京:电子工业出版社,2010.
    [162]马红宇,刘站国等.液氧煤油发动机地面试车故障监控系统研制[J].火箭推进.2008,34(1):45~48.
    [163]赵政社.液氧煤油发动机地面试验紧急关机系统的研制[D].西安:西北工业大学硕士学位论文,2005.
    [164]李伯全,潘海彬. DataSocket技术在远程监控系统中的应用[J].计算机应用.2003,23(2):229~230.
    [165]陈戈,江勇.基于PXI的试车台网络化同步数据采集系统[J].微计算机信息.2010,(16):85~87.
    [166]刘佳东,彭天好等.基于LabVIEW的变转速液压调速远程测控系统[J].液压与气动.2011,(4):28~30.
    [167]王琳,郑正奇.基于DataSocket的雷达测距数据传输系统设计[J].电子测量技术.2011,34(1):99~101.
    [168]周红标,张宇林.基于DataSocket的脉搏数据传输系统的设计[J].国外电子测量技术.2011,34(1):56~58.
    [169]谢龙.火箭发动机地面试验通用自动测试系统研究[D].长沙:国防科学技术大学硕士学位论文,2006.
    [170] Cynthis C. Calhoun. Identifying and Managing Risks for Automatic TestSystems [J]. IEEE AES Systems Magazine.2000,9~12.
    [171] Cathleen Kennedy. Sustainment of Legacy Automatic Test Systems: LessonsLearned on TPS Transportability [J]. IEEE A&E Systems Magazine.2005,18~22.
    [172] Z M Zhang, M J Ding et al. Integrated Automatic Test System for AirborneOptoelectronic Pods [J]. Journal of Physics: Conference Series.2006,(48):1301~1305.
    [173] Jim Deffler. Achieving Cost Effective Support Solutions for the NewMillenium through the DoD Automatic Test Systems Selection Process [J]. IEEE AESSystems Magazine.2000,21~24.
    [174] Michael Malesich. Software Architecture Requirements for DoD AutomaticTest Systems [J]. IEEE AES Systems Magazine.2000,31~38.
    [175]吕克洪.基于时间应力分析的BIT降虚警与故障预测技术研究[D].长沙:国防科技大学博士学位论文,2008.
    [176]肖建德.飞行数据/话音记录器——黑匣子[M].北京:国防工业出版社,1993.
    [177]李学仁,杜军等.飞机舱音系统及其应用技术[M].北京:国防工业出版社,2010.
    [178]杨国锋.机电产品BIT设计中传感器选择与优化技术的研究[D].长沙:国防科技大学硕士学位论文,2003.
    [179]王新峰.机电系统BIT特征层降虚警技术研究[D].长沙:国防科技大学博士学位论文,2005.
    [180] Mark Schwabacher, Jeff Samuel, Lee Brownston. The NASA IntegratedVehicle Health Management Technology Experiment for X-37[R]. NASA Ames ResearchCenter, MS269-3, Moffett Field, CA,94035,2002
    [181] Kevin J.Melcher, T.Shane Sovers, William A.Maul. Meeting the Challengesof Exploration Systems: Health Management Technologies for Aerospace Systems withEmphasis on Propulsion [R]. NASA/TM-2005-214026,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700