超声液位检测频率选择的理论计算和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非介入式超声液位检测是超声波技术的一项重要应用,目前在石油、化工的生产和储运过程中都有广泛的应用,对生产过程的监控和安全有着十分重要的意义。它可以对易燃易爆、易挥发、有毒、强腐蚀性等液体的液位高度进行精确测量,特别是对密闭容器、大型压力容器等实施液位高度监测,以避免重大事故的发生。
     由于大多数易燃易爆、有剧毒的液体同时也具有很强的腐蚀性,所以需要在储罐内壁上添加防腐材料作为衬里;压力容器的器壁也有一定厚度,一般在几毫米到几十毫米不等,如固体火箭发动机中的燃料箱,各种耐酸、碱、盐液体储罐等。在对以上储罐进行非介入式超声液位检测时,探头发射声波在罐壁分界面处会发生反射和透射现象,储罐结构的复杂性使得声波在容器壁中发生多次反射和透射,最后能到达液体内部的有效声能量就很少;探头接收到的回波信号含有用信息的同时,可能还会夹杂各种因素产生的干扰噪声信号,有时回波信号甚至被噪声污染淹没,这会影响后期的信号识别和处理。
     声波在多层介质中传播时,由于在各界面上存在多次反射,透射到液体内部的声能量将有较大衰减。已有研究表明,声波通过周期性多层介质系统表现出明显的频率通带和禁带特性,即有些频率的声波能够完全通过,而有些频率的声波则较难通过。
     本论文针对全封闭高压反应器以及盛装危险液体或强腐蚀性、易挥发液体的密闭储罐,进行非介入式超声液位检测研究,采用传输矩阵方法计算了检测回波能量表达式,发现回波能量与声波的发射频率、检测材料的特性阻抗、中间层介质的厚度都有重要关系。文中重点研究了反射回波声强与入射声波频率之间的函数关系,计算了在待检测储罐结构一定时,探头发射声波的最佳入射频率,并进行了实验验证。研究表明:中间层介质对反射回波能量有着显著的影响,为得到较强的检测回波信号,发射频率的选择是非常必要的。超声检测系统(包括发射及放大电路、收发换能器、信号分析及处理模块等)确定后,针对不同结构、不同厚度的储罐,或者同厚度却盛装不同液体的储罐,需要选择合适的声波发射频率,方能达到较为理想的超声检测效果。实验结果与理论计算一致,由此为非介入式超声液位检测的频率选择提供了一条有效途径。
Non-invasive ultrasonic liquid level testing is an important ultrasonic technology. It has a wide range of applications in the petroleum industry and the chemical production, especially in the storage and transportation process. It is very important for the production process control and security. The liquid-Level such as the flammable, volatile, toxic and corrosive liquid can be highly accurately measured. For the airtight containers and the large pressure vessels, in order to avoid the occurrence of major accidents, the non-invasive ultrasonic liquid level testing is very important.
     Since the majority of flammable and toxic liquid also have a strong corrosive, it is necessary to add anti-corrosion material lining in the tank wall. And the pressure vessels wall also have a certain thickness, which is usually from the tens of millimeters to a few millimeters, such as the solid rocket motor fuel tanks, all kinds of acid, alkali and salt liquid storage tank. In the non-intervention ultrasonic liquid level detection, the reflection and transmission of acoustic wave happen in the tank wall at the each interface of the multilayered medium. Because of the complexity of the storage tank structure and the multilayered medium, the reflection and transmission of acoustic wave will be very complex. Finally the acoustic energy, which can reach the internal liquid, is very small. The echo signal contain useful information and various noise signal, and sometimes the useful information is polluted by the noise signal, especially be drowned. All of these things will affect the signal recognition and processing, and also increase the difficulty of study.
     The propagation of acoustic wave in the multilayer medium, due to the reflection and transmission at many different sectors surfaces, the internal acoustic attenuation energy is larger. Studies have shown that, through the periodic multi-media system, the sound waves show the pass frequency band and the band gap characteristics, that some of the acoustic waves can be fully adopted, and some are much more difficult to get through these periodic multilayered medium.
     The non-intervention ultrasonic liquid level detection, for the high-pressure reaction vessels and the tank containing strong corrosive, dangerous or volatile liquid, is studied in this paper. According to the transfer matrix method, the transmission expression of acoustic wave's energy across multilayered medium in the non-intrusive ultrasonic liquid level testing is investigated. It is found that the acoustic echo energy have an important relationship with the acoustic frequency, the characteristic impedance of the material and the thickness of the middle layer media. The function relationship between the acoustic echo energy and the sound frequency is studied, and the best acoustic frequency for the incidence is calculated in one storage structure. The result, which is validated by an experiment, shows that the reflex echo intensity is obviously influenced by both the frequency and the interlayer media. In order to obtaining the obvious reflection echo signal, the incidence frequency selection is indispensable. Ultrasonic testing system (including the transmitter and amplifier, transceiver transducers, signal analysis and processing module, etc.) is designed. For the different structure and thickness of the liquid storage tank, the selection of appropriate acoustic emission frequencies is essential to achieve better ultrasonic testing results. Experimental results are agreeing with the theoretical calculations. It provides an effective way in the frequency selection of non-intervention ultrasonic liquid level detection.
引文
[1]李冬梅.国内外液位计量仪表技术发展动向[J].仪器仪表用户.2002,9(3):4-7.
    [2]王鹏飞,李著信,方雪.几种常见油罐液位计的性能特点及选用[J].重庆工业高等专科学校学报.2004,19(1):31-32.
    [3]郑卫东.储罐液位仪表的应用及发展[J].甘肃科技.2005,21(5):46-47.
    [4]金莉.罐区测量仪表工程设计中的选型[J].石油化工自动化.2006(3):82-97.
    [5]齐国清,贾欣乐.高精度液位测量系统[J].电子测量与仪器学报.1999,13(2):56-60.
    [6]任开春,涂亚庆.20余种液位测量方法分析[J].工业仪表与自动化装置.2003(5):12-16.
    [7]任开春,涂亚庆.大罐液位仪的现状和发展趋势[J].自动化与仪器仪表.2002(4):4-7.
    [8]丁涛.储罐液位检测技术研究[D].合肥:合肥工业大学.2004.
    [9]安宗权,冷护基,林宗良.储罐液位检测技术的现状与展望[J].芜湖职业技术学院学报.2005,7(4):9-10.
    [10]孙成金.浅谈油田液位测量仪表[J].油气田地面工程.2005,24(4):39.
    [11]赵刚,唐得刚.几种常用的液位在线检测方法的比较[J].中国仪器仪表.2005(5):36-40.
    [12]刘艳艳.超声波液位计的研究[D].北京:北京化工大学.2007.
    [13]宋继红.超声波液位检测仪的设计[D].吉林:吉林大学.2007.
    [14]王海峰,唐得刚,高瑞泽.浅析大罐液位在线检测的几种方法[J].中国仪器仪表.2004(6):27-30.
    [15]何奇,唐得刚.浅析油罐液位检测的几种方法[J].计量与测试技术.2005,32(2):8-9.
    [16]孙汉旭,胡旭辉.超声波—电容液位检测装置的研制[J].机电产品开发与创新.2004,17(2):1-2.
    [17]张晓,史丽萍.基于电容感应元的多层液位传感器的研究[J].传感器世界.2003(6):17-21.
    [18]刘丽钧,冯海杰,常丽.电容法油罐多液位测量仪的研究[J].沈阳工业大学学报.2005,27(1):70-73.
    [19]招惠玲,周美娟,胡远忠.电容式液位测量系统的设计[J].传感器技术.2004,23(3).
    [20]王艳菊,刘静,康岳屹.基于电容式差动敏感元件的液位测量系统[J].传感器技术.2004,23(10):80-81.
    [21]杨朝虹,杨竞,李焕等.磁致伸缩液位传感器的应用与发展[J].矿冶.2004,13(4):83-86.
    [22]张清,李全安,文九巴等.超声波检测技术在工业测量中的应用[J].科技信息(学术研究).2007,(21):86-87.
    [23]郏东耀.利用超声波传感器测液位的方法[J].自动化与仪器仪表.2002,(5):51-53.
    [24]常凤筠,崔旭东.超声波液位测量仪[J].无损检测.2006,28(1):26-27.
    [25]高克成.超声物位计现状[J].声学技术.2002,21(Z1):50-51.
    [26]艾延宝.超声波测物位[J].煤炭技术.2003,22(11).
    [27]方原柏.核辐射液位计的设计选用[J].电子仪器仪表用户.1998,5(3):34-38.
    [28]李艳萍,张丽红,伦翠芬等.基于光反射原理的油罐液位测量系统的研究[J].光通信技术.2004,(12):57-58.
    [29]徐风云.浮子式光纤液位传感器的液位测量[J].安庆师范学院学报(自然科学版).2003,9(2):56-57.
    [30]黄燕平,裴丽,简永生.光纤液位传感器综述[J].光通信技术.1995,19(2):30-36.
    [31]V.I.Melnikov,V.N.Khokhlov.Waveguide ultrasonic liquid level transducer for nuclear power plant stream generator[J].nuclear engineering and design.1997,176:225-232.
    [32]K.S.Ho,D.R.Billson,D.A.Hutchins.Inspection of drinks cans using non-contact electromagnetic acoustic transducers[J].Journal of food engineering.2007,80:431-444.
    [33]Santiago M.Enamorado,Maria Dolores Hurtado,Luis Andreu.Development of a recording water flow meter using ultrasonic measurement of water levels in a slotted U-pipe[J].agricultural water management.2007,88:263-268.
    [34]K.S.Ho,D.R.Billson,D.A.Hutchins.Inspection of drinks cans using non-contact electromagnetic acoustic transducers[J].Journal of food engineering.2007,80:431-444.
    [35]Bozena Parczewska.the static dilatometric method with ultrasonic liquid level detection to determine phase diagrams and(soild+liquid)equilibrium in (hexadecane+octadecane)[J].J.Chem.Thermodynamics.2000,32:777-788.
    [36]E.Vargas,R.Ceres,J.M.Martin,L.Calderon.Ultrasonic sensor for liquid-level inspection in bottles[J].Sensors and Actuators A.1997,61:256-259.
    [37]王春麟,郭丽,彭光俊等.智能气介式超声物位仪的研制[J].武汉理工大学学报.2002,24(2):45-49.
    [38]马志敏,王敏,刘珍秧.大型压力容器定点液位的超声非介入式检测[J].无损检测.2003,25(12):626-627.
    [39]贾嘉,马志敏.高压容器壁外式超声波液位检测仪的研制[J].仪表技术与传感器.2003,(2):20-22.
    [40]洪志刚,杜维玲,周玲.超声波外侧液位检测方法研究[J].电子测量与仪器学报.2007,21(4):46-49.
    [41]李敏哲,赵继印,李建坡.基于超声波传感器的无线液位测量系统[J].仪表技术与传感器.2005,(11):35-36.
    [42]杨必武,郭晓松.推进剂液位罐外超声波远距离检测的实现[J].无损检测.2003,25(3):121-123.
    [43]藤永平,张洪生.超声波直探头声场的数值计算方法[J].北方交通大学学报.1995,19(2):239-241.
    [44]许天增,许克平,许茹等.超声传输特性和超声传感系统研究[J].厦门大学学报(自然科学版).2001,40(2):303-310.
    [45]林书玉.超声换能器的原理及设计[M].北京:科学出版社.2004.
    [46]竺科仪.水浸超声探头频率、声场特性的分析及测定研究[D].浙江:浙江大学.2006.
    [47]应宗福.超声学[M].北京:科学出版社.1993.
    [48]杜功焕,朱哲民,龚秀芬等.声学基础[M].南京:南京大学出版社.2001.
    [49]陈卫松,邱小军.多层板的隔声特性研究[J].南京大学学报.2005,41(1):91-96.
    [50]刘志宏,盛美萍.水下多层均匀材料垂直入射的声特性分析[J].噪声与振动控制.2005,(2):11-13.
    [51]帅长庚,何林,朱海潮等.声波在多层介质中传播的四端参数模型应用分析研究[J].噪声与振动控制.2002,(4):7-9.
    [52]Varouzhan Baluni,Jorge Willemsen.Transmission of acoustic waves in a random layeres medium[J].Physical Review A.1985,31(5):3358-3363.
    [53]John Lekner.matrix methods in reflection and transmission of compressional waves by stratified media[J].J.Acoust.Soc.Am.1990,87(6):2319-2324.
    [54]Daniel Levesque and Luc Piche.A robust transfer matrix formulation for the ultrasonic response of multilayered absorbing media[J].J.Acoust.Soc.Am.1992,92(1):452-467.
    [55]程言章,朱蓓丽.固态多层介质隔声性能研究[J].噪声与振动控制.1998,(6):2-5.
    [56]龚凡,黄其柏.双层阻抗复合吸声结构的优化研究[J].噪声与振动控制.2001,(1):36-39.
    [57]李海涛,朱锡,石勇等.层状结构水下声学特性研究[J].噪声与振动控制.2005,(3):54-57.
    [58]杨德林,章向明,王安稳等.多层介质系统声透射问题的传递矩阵方法[J].海军工程大学学报.2000,(3):28-30.
    [59]赵洪,靳云姬,郭成山等.水下多层均匀材料的声特性[J].应用声学.1999,18(4):8-12.
    [60]范玉玲,王敏庆.复合板隔声性能分析[J].噪声与振动控制.2007,(2):90-93.
    [61]刘志宏,盛美萍.水下多层均匀材料垂直入射的声特性分析[J].噪声与振动控制.2005,(2):11-13.
    [62]刘志宏,盛美萍.声波斜入射下各向同性均匀板的吸声特性[J].噪声与振动控制.2006,(2):58-61.
    [63]Bruce Drinkwater,Peter Cawley.Measurement of the frequency dependence of the ultrasonic reflection coefficient from thin interface layers and partially contacting interfaces[J].ultrasonic.1997,35:479-488.
    [64]S.chonan,and Y.Kugo.acoustic design of a three-layered plate with high sound interception[J].J.Acoust.soc.Am.1991,89(2):792-798.
    [65]Pi-Gang Luan and Zhen Ye.acoustic wave propagation in a one-dimensional layered system[J].physical review E.2001,63(066611):1-8.
    [66]O.Tanneau,J.B.Casimir,and P.Lamary.Optimization of multilayered panels with poroelastic components for an acoustical transmission objective[J].J.Acoust.Soc.Am.2006,120(3):1227-1238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700