转果聚糖合成关键酶基因多年生黑麦草获得及抗旱性的提高
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年生黑麦草是重要的冷季型禾草,既可做草坪草,也可做牧草,但其抗旱性较差,限制了在生产中的应用。采用生物技术分离抗旱基因,通过转基因方法培育新品种是提高黑麦草抗旱能力的有效途径。本研究以黑麦草卡特胚性愈伤组织为转化受体材料,通过农杆菌侵染和基因枪转化的方法将从冰草中克隆的果聚糖:果聚糖-1-果糖基转移酶基因(Ac-1-FFT)导入黑麦草中,获得了抗旱性明显增强的转基因植株。主要研究结果如下:
     1.将果聚糖:果聚糖-1-果糖基转移酶基因(Ac-1-FFT)导入黑麦草
     从冰草中克隆了Ac-1-FFT基因,cDNA序列全长1950 bp。构建了含有Ac-1-FFT基因的植物表达载体Ac-1-FFT-pCambia3301,该载体的Ac-1-FFT基因由玉米泛素基因-1启动子驱动,以bar基因为选择标记。通过农杆菌侵染和基因枪转化的方法将Ac-1-FFT基因导入黑麦草中,共获得122个再生株系,其中利用农杆菌侵染的方法获得89个株系,而利用基因枪的方法获得了33个株系。
     2.转基因植株的分子鉴定
     对122个再生株系喷洒5‰的Basta溶液,表明有18个株系正常生长,叶片保持绿色,其余植株和对照叶片均枯黄,甚至死亡。通过PCR法和半定量PCR对这18个再生株系在分子水平上进行了鉴定,结果表明18个株系均能扩增到Ac-1-FFT基因的特异片段,而且该基因在黑麦草中得到有效的表达,但不同株系间的表达量不同。
     3.转基因植株抗旱性鉴定
     对转Ac-1-FFT基因黑麦草进行了干旱胁迫实验。在干旱的条件下,转基因植株表现出了良好的抗旱能力,干旱胁迫6天时,转基因植株叶片仍保持绿色,仅个别叶片开始枯萎,而此时对照植株叶片整体表现枯萎,甚至死亡。复水实验表明对照植株失去恢复能力,而转基因植株恢复较快,虽然个别叶片仍表现枯黄,但植株整体长势良好。
     4.转基因植株生理生化指标的测定
     检测结果表明转基因黑麦草株系中的可溶性总糖含量和果聚糖含量明显高于对照植株,干旱胁迫6天时其相对含水量和叶绿素含量明显高于对照植株,且下降速度慢,但其电解质渗漏率和丙二醛含量显著低于对照植株,复水后很快复原,而对照植株无法恢复,说明转基因植株中由于干旱处理发生的损伤是可逆的,而对照植株中的损伤是非可逆的。以上结果表明转基因黑麦草中Ac-1-FFT基因的表达及果聚糖合成可能是其耐旱性提高的最重要原因。
Perennial ryegrass (Lolium perenne L.) is an important cool-season grass; it can be turfgrass and forage. But the weak drought tolerance limits its application in production. Isolation of resistance drought-related genes by biological methods and breeding new varieties through transgenic methods is an effective way to improve the drought resistance of ryegrass. In this study, Ac-1-FFT (fructan: fructan 1-fructosyltransferase) cloned from Agropyron cristatum (L.) Gaertn was transformed into embryogenic callus ryegrass (Lolium perenne L. ) Carter by Agrobacterium mediated method and particle bombardment. We obtained significantly enhanced drought resistance of transgenic plants.The main results are as follows:
     1. Ac-1-FFT (fructan: fructan 1-fructosyltransferase) was transformed into perennial ryegrass
     Ac-1-FFT gene cloned from Agropyron cristatum (L.) Gaertn, the length of cDNA sequence is 1950 bp.We construct a plant expression vector Ac-1-FFT-pCambia3301, it contains Ac-1-FFT gene, the maize ubiquitin-1 gene as promoter and bar gene as selectable marker. Ac-1-FFT transformed into ryegrass through Agrobacterium infection and particle bombardment method.We totally obtained 122 independent lines of regenerated plants, 89 of which was by Agrobacterium infection and 33 of which was by particle bombardment method.
     2. Molecular identification of transgenic plants
     Transgenic plants were analyzed by 5‰basta spraying, 18 strains showed normal growth and green leaves, the other plants and control palnts’leaves turned yellow, and even death. The 18 strains were identified on the molecular level through PCR, and semi-quantitative PCR. PCR analysis showed that Ac-1-FFT gene’s specific fragment could be amplified, and RT-PCR analysis showed that Ac-1-FFT gene expressed strongly in transgenic Lolium perenne plants whereas didn’t in control plants. The expression was different between the different strains.
     3. Drought resistance of transgenic plants
     Under drought stress, transgenic plants showed good drought resistance. After 6 days drought stress, the leaves of transgenic plants remained green, few leaves began to wither, in the same time the control plants showde withered, and even death. Rehydration experiments showed that the control plants lost the ability to recover while transgenic plants recovered rapidly. Although few leaves were still yellow, the whole plants were doing well.
     4. Physiological and biochemical determination of transgenic plants
     The results showed that water soluble carbohydrate and fructan contents in Ac-1-FFT transgenic ryegrass are significantly higher than those in control plants. Relative water content and chlorophyll content are significantly higher, while electrolyte leakage and malondialdehyde (MDA) content are significantly lower in Ac-1-FFT transgenic ryegrass than those in control plants 6 days after drought treatment. Relative water content, chlorophyll content, electrolyte leakage and MDA content restored to its original level in Ac-1-FFT transgenic plants rather than in control plants 7 days after rewatering, suggesting that the damages in Ac-1-FFT transgenic plants are reversible but not in control plants. These results indicate that Ac-1-FFT expression and fructan biosynthesis might play an important role in the improved drought tolerance in Ac-1-FFT transgenic ryegrass.
引文
1.陈季琴,韩烈保.多年生黑麦草转基因育种研究进展[J].草业学报, 2004, 13(5):12~17.
    2.成善汉,谢从华,柳俊.高等植物果聚糖研究进展[J].植物学通报, 2002, 19(3): 280~289.
    3.樊金娟,刘广文,阮燕晔.草坪草基因转化研究进展[J].江苏农业科学, 2009, 24: 222~225.
    4.郭振飞,卢少云.基因工程在草坪草育种上的应用[J].草地学报, 2002, 10(3): 185~189.
    5.胡繁荣.草坪草遗传转化进展与研究热点[J].分子植物育种, 2004, 2(6): 867~875.
    6.胡化广,刘建秀.草坪草生物技术研究进展[J].中国野生植物资源, 2004, 23(6):10~12.
    7.胡张华,陈火庆,吴关庭,章锡良,金卫,夏正红,等.高羊茅悬浮细胞系的建立及绿色植株的高频再生[J].草业学报, 2003, (12): 95~99.
    8.侯丙凯,陈正华.高等植物的质体基因转化[J].生物工程进展, 2000, 20(1): 70~73.
    9.李得孝,郭月霞,员海燕,张敏,龚小艳,穆芳.玉米叶绿素含量测定方法研究[J].中国农学通报, 2005, 21(6):153~155.
    10.李慧娟,尹海英,张学成,杨爱芳.转蔗糖:蔗糖-1-果糖基转移酶基因提高烟草的耐旱性[J].山东大学学报, 2007, 42(1): 89~94.
    11.李浚明. (主编).植物组织培养教程[M].北京:中国农业大学出版社. 1992.
    12.刘燕琼,黄雪松.大蒜中果聚糖的测定[J].食品与发酵工业, 2005, 31(8): 84~86.
    13.刘文真,玄松南,陈惠哲,朱睦元,孙宗修.几种作用因子对多年生黑麦草组织培养影响的研究[J].林业科学研究, 2004, 17(1): 95~101.
    14.齐春辉,韩烈保.转基因技术在草坪草育种中的应用研究进展[J].中国草地, 2002, 24(6): 47~54.
    15.单兰兰,毛碧增,夏波,赖齐贤.草坪草组织培养和遗传转化研究进展[J].热带农业科学, 2005, 25(4): 70~74, 79.
    16.谭继清. (主编) .新编中国草坪与地被[M].重庆:重庆出版社. 2000.
    17.唐益苗,赵昌平,高世庆,田立平,单福华,吴敬新.植物抗旱相关基因研究进展[J].麦类作物学报, 2009, 29(1) :166~173.
    18.王艳,李建龙,潘永年,王加真.草坪草转基因育种研究进展[J].草原与草坪, 2007, 4(123): 13~17.
    19.王军辉,查学强,罗建平,李楠.干旱胁迫对玉米幼苗脂质过氧化作用及保护酶活性的影响[J].安徽农业科学, 2006, 34(15): 3568~3569, 3571.
    20.王晶英. (主编).植物生理生化实验技术与原理[M].哈尔滨:东北林业大学出版社. 2003.
    21.王志敏.高等植物的果聚糖代谢[J].植物生理学通讯, 2000, 36(1): 71~76.
    22.吴金霞,陈彦龙,何近刚,路铁刚.生物技术在牧草品质改良中的应用[J].草业学报, 2007, 16(1):1~9.
    23.闫新甫. (主编).转基因植物[M].北京:科学出版社. 2003.
    24.杨成民.基因枪轰击法获得转P5CS基因黑麦草植株[硕士学位论文].内蒙古:内蒙古农业大学, 2004.
    25.杨凤萍,梁荣奇,张立全,张晓东,孙振元.抗逆调节转录因子DREB1B基因转化多年生黑麦草的研究[J].西北植物学报. 2006, 26(7): 1309~1315.
    26.鄢燕,张新全,张新跃.黑麦草种子生产研究现状及发展对策[J].草业科学, 2003, 20(2):16~19.
    27.殷桂香,佘茂云,高翔,王瑾,叶兴国.植物果聚糖合成酶基因克隆及特性分析[J].中国生物工程杂志, 2009, 29(2): 125~133.
    28.杨晓红,陈晓阳.果聚糖对植物抗逆性的影响及相应基因工程研究进展[J].华北农学报, 2006, 10:6~11.
    29.张俊卫,包满珠,孙振元.草坪草遗传转化研究进展[J].林业科学研究, 2003, 16(1): 87~94.
    30.张万军,王涛.多年生黑麦草组织培养与植株再生研究[J].草地学报, 2003, 11(3): 219~222.
    31.张振霞,刘萍,杜雪玲,苏乔,杨中艺.农杆菌介导GUS基因对多年生黑麦草转化的研究[J].广西植物, 2007, 27(1): 121~126.
    32. Ahoowalia, B. S. Regeneration of ryegrass plants in tissue culture [J]. Crop Science, 1997, 15(4): 449~452.
    33. Amiard, V., Morvan-Bertrand, A., Jean-Pierre, B., Claude, H., Keller, F., Marie-Pascale, P. Fructans, but not the sucrosyl-galactosides, raffinose and loliose, are affected by drought stress in Perennial Ryegrass [J]. Plant Physiology, 2003, 132(4): 2210~2229.
    34. Altpeter, F., Xu, J. P., & Ahmed, S. Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forge- and turf-type cultivars [J]. Molecular Breeding, 2000, 6(5): 519~528
    35. Altpeter, F., & Xu, J.P. Rapid production of transgenic turfgrass (Fescue rubra) plants [J]. Journal of Plant Physiology, 2000, l57: 441~448.
    36. Albrecht, G., Kammerer, S., Praznik, W., & Wie denroth, E. M. Fructan content of wheat seedlings (Triticum aestivum L.) under hypoxia and following reaeration [J]. New Phytologist, 1993, 123: 471~476.
    37. Asano, Y., & Sugiura, K. Plant regeneration from suspension culture-derived protoplasts of Agrostis Alba L. (Redtop) [J]. Plant Science, 1990, (72): 267~273.
    38. Asano, Y., & Ugaki, M. Transgenic plants of Agrostis Alba obtained by electroporation-mediated direct gene transfer into protoplasts [J]. Plant Cell Reports, 1994, l3: 243~246.
    39. Bai, Y., & Qu, R. Factors influencing tissue culture responses of mature seeds and immature embryos in turf-type tall Fescue [J]. Plant Breeding, 2001, 120: 239~242.
    40. Banguela, A., & Hernández, L. Fructans: from natural sources to transgenic plants[J]. Biotecnología Aplicada, 2006, 23(3): 202~210.
    41. Beever, D. E. Ruminant animal production from forages: present position and future opportunities [M]. Proceedings of the XV11 International Grassland Congress, Wellington, New Zealand. 1993
    42. Bettany, A. J., Dalton, S. J., Timms, E., Manderyck , B., Dhanoa, M. S., & Morris, P. Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.)[J]. Plant Cell Reports. 2003, 21:437~444.
    43. Bhalla, P. L., Swoboda, I., & Singh, M.B. Ruduction in allergenicity of grass pollen by genetic engineering [J]. International Archives of Allergy and Immunology, 2001, 124(1): 51~54.
    44. Cairns, A. J. Fructan biosynthesis in transgenic plants [J]. Journal of Experimental Botany, 2003, 54(382): 549~567.
    45. Chai, B. L. & Sticklen, M. B. Application of biotechnology in turfgrass genetic improvement [J]. Crop Science. 1998, 38:1320~1338.
    46. Chhandak, B., Albert, P. K., Luo, H., Chandlee, J. M. Promoter analysis in transient assays using a GUS reporter gene construct in creeping bentgrass (Agrostis palustris)[J]. Journal of Plant Physiology. 2003, 160: 1233~1239.
    47. Cho, M. J., Ha, C. D., & Lemaux, P. G. Production of transgenic tall rescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative issues[J]. Plant Cell Reports, 2000, 19: 1084~l089.
    48. Creemers-Molenaar, J. Van Der Valkb, P., Loeffena, J. P. M. & Zaal, M. A. C. M. Plant regeneration from suspension cultures and protoplasts of Lolium perenne L.[J].Plant Science, 1989, 63: 167~176.
    49. Creemers, M. J. & Loeffen, J. P. M., & Zaal, M. A. C. M. Isolation,culture and regeneration of Lolium perenne and Lolium multiflorum protoplasts[J]. Current Plant Science and Biotechnology in Agriculture, 1988, 7:53~54.
    50. Dale, P. J. Meristem tip culture in Lolium. Festuca and Dactylis [J]. Plant Science Letters, 1977, 9:333~338.
    51. Dale P J. Embryoids from cultured immature of Lolium multiflorum [J]. Z Pflanzenphysiol. 1980, 100: 73~77
    52. Dalton, S. J. Plant regeneration from cell suspension protoplasts of Fesruca arundinacea and Lolium perenne [J]. Plant Physiology, 1988, 132: 170~175.
    53. Dalton, S. J., Bettany, A. J. E., Timms, E., & Morris, P. The effect of selection pressure on transformation frequency and copy number in transgenic plants oftall fescue (Festuca arundinacea Schreb.)[J]. Plant Science., 1995, l08: 63~70.
    54. Dalton, S. J., Bettany, A. J., Timms, E., & Morris, P. Transgenic plants of Lolium multiflorum, Lolium perenne, Festuca arundinacea and Agrostis stolonifera by silicon carbide fibre-mediated transformation of cell suspension cultures [J]. Plant Science. 1998, 132(1):31~43.
    55. Dalton, S. J., Bettany, A. J. E., Timms, E. J., & Morris, P. Co-transformed,diploid Lolium perenne (peremnial ryegrass),Lolium multiflorum (Italian ryegrass)and Lolium temulentum (Darne1)plants produced by microprojectile bombardment[J]. Plant Cell Reports, 1999, l8 (9):721~726.
    56. Denchev, P. D., Songstad, D. D., McDaniel, J. K., & Conger, B. V. Transgenic plants of orchargrass (Dactylis glomerata L.) by direct embryogenesis from microprojectile bombardment leaf cells [J]. Plant Cell Reports, 1997, 16: 813~819.
    57. De Roover, J., De Winter, M., & Van Laere, A. Timmermans J W, Van den Ende W. Purification and properties of a second fructan exohydrolase from the roots of Cichorium intybus L. [J]. PlantPhysiology, 1999, 106:28~34.
    58. Devereaux, A. Transformation and overexpression of a MnSOD gene in perennial ryegrass [J]. Plant Cell Tissue and Organ Culture, 2002, 95: 111~116.
    59. Dias-Tagliacozzo,G.M.,Itaya,N.M.,Carvalho,M.,&Figueiredo-Ribeiro,R.D. Fructans and water suppression on intact and fragmented rhizophores of Vernonia herbacea[J]. Brazilian Archives of Biology and Technology, 2004, 47(3):363~373.
    60. Ebstamp, M. J. M., Van der Meer, I. M., Spronk, B. A., Weisbeek, P. J., & Smeekens, S. C. M. Accumulation of fructose polymers in transgenic tobacco [J]. Biotechnology, 1994, 12: 272~275.
    61. Edelman, J., & Jefford, T. G. The mechanism of fructan metabolism in plants as exemplified in Helianthus tuberosis [J]. New Phytologist, 1968, 67: 517~531.
    62. Pilon-Smits, E. A. H., Terry, N., Sears, T., & van Dun, K. Enhanced drought resis-tance in fructan-producing sugar beet [J]. Plant Physiology Biochemistry, 1999, 37:313~317.
    63. Fuchs, A. (Ed). Inulin and inulin containing crops: studies in Plant Science [M]. Amsterdam: Elsevier. 1993.
    64. Gibson, G. R., Beatty, E. R., Wang, X., & Cumming, C. H. Selective simulation of bifidobacteria in the human colon by oligof ructo se and inulin [J]. Gastroenterology, 1995, 108: 975~982.
    65. Ha, S. B., Wu, F. S. & Thorne, T. K. Transgenic turf-type tall fescue (Festuca arundinacea Schreb.)Plants regenerated from protoplasts [J]. Plant Cell Reports, 1992, (11): 601~604.
    66. Hendry, G. F. Evolutionary origins and natural fractions of fructans: a climatological, biogeographic and mechanistic appraisal [J]. New Phytologist, 1993, 123: 3~14.
    67. Hincha, D. K., Hellwege, E. M., Heyer, A. G., & Crowe, J. H. Plant fructans stabilize phosphatidylcholine liposomes during freezing- dry-ing [J]. European Journal of Biochemistry, 2000, 267:535~540.
    68. Hellwege, E. M., Maik, R., Dominique, G., Willmitzer, L., & Heyeretc, A. J. Differences in chain length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-FFT cDNAs[J]. FEBS Letters, 1998, 427: 25~28.
    69. Hellwege, E. M., Czapla, S., Jahnke, A., Willmitzer. L., & Heyer, A. G. Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots [J]. Proceedings of the National Academy of Sciences, 2000, 97: 8699~8704.
    70. Van der Maas, H. M., De Jong, E. R., Rueb, S., Hensgens, L. A., & Krens, F. A. Stable transformation and long-tern expression of the gusA reporter gene in callus lines of Perennial ryegrass (Lolium perennial) [J]. Molecular Biology, 1994, 24(2):401~405
    71. Hisano, H., Kanazawa, A., Kawakami, A., Yoshida, M., Shimamoto, Y., & Toshihiko, Y. Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing[J]. Plant Science, 2004, 167(4):861~868.
    72. Horn, M. E., Shillito, R. D., Conger, B.V., & Harms, C. T. Transgenic plants of orchardgrass (Dactylis gomerata L.) from protoplast [J]. Plant Cell Reports, 1988, 7: 469~472.
    73. Inokuma, C., Sugiura, K., lCho, C., Okawara, R., & Kaneko, S. Plant regeneration from protoplasts of Japanese lawngrass [J]. Plant Cell Reports, 1996, 15(10):737~741.
    74. Ji, X., Vanden, E. W., Schroeven, L., Clerens, S., Geuten, K., Cheng, S., & Bennett, J. The rice genome encodes two vacuolar invertases with fructan exohydrolase activity but lacks the related fructan biosynthesis genes of the Pooideae[J], New Phytologist, 2007, 173(1): 50~62.
    75. Jones, E. L., Robert, S. E. A note on the relationship between palatability and water soluble carbohydrates in perennial ryegrass [J]. Australian Journal of Agricultural Research, 1991, 30:163~167.
    76. Kafi, M., Stewart W. S. & Borland, A. M. Carbohydrate and Proline Contents in Leaves, Roots, and Apices of Salt-Tolerant and Salt-Sensitive Wheat Cultivars [J]. Russian Journal of Plant Physiology, 2003, 50(2): 155~162.
    77. Kawakami, A., & Yoshida, M. Fructan: fructan 1-fructosyltransferase, a key enzyme for biosynthesis of graminan oligomers in hardened wheat [J]. Planta, 2005, 223(1): 1432~2048.
    78. Knipp, G., & Honermeier, B. Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans [J]. Plant Physiology, 2006, 163:1~6.
    79. Koops, A. J., Jonker, H. H. Purification and characterization of the enzymes of fructn biosynthesis in tubers of Helianthus tuberosus Colombia.Ⅱ.Purification of sucrose: sucrose 1-fructosyltransferase and reconstitution of fructan synthesis in vitro with purified Sucrose: sucrose1- fructosyltransferase and fructan: fructan 1-fructosyltransferase[J]. Plant Physiology, 1996, 110:1167~1175.
    80. Lee, L. Turfgrass biotechnology [J]. Plant Sciences, 1996, ll5: l~8.
    81. Lee, L., Laramore, C. L., Day, R., & Turner, N. E. Transformation and regeneration of creeping bentgrass(Agrostis palustris Hunds) protoplast [J]. Crop Science, 1996, 36: 401~406.
    82. Liang, C. M., & Hwan, K. D. Agrobacterium-mediated transformation of Korean lawngrass (zoysia japonica) [J]. Korean Society Horticultural Science, 2000, 41:455~458.
    83. Li, H. J., Yang, A. F., Zhang, X. C., Gao, F., & Zhang, J. R. Improving freezing tolerance of transgenic tobacco expressing sucrose : sucrose 1-fructosyltransferase from Lactuca sativa[J]. Plant Cell: Tissue and Organ Culture, 2007, 89:37~48.
    84. Marianne, F., Charlote, P., & Anisette, O. Reduction of nuclease activity from Lolium protoplasts: effect on transformation frequency [J]. Plant Science. 1998, 139: 29~40
    85. Nielsen, K. A., & Knudsen, E. Regeneration of green plants from embryogenic suspension cultures of Kentucky bluegrass (Poa pratensis L.)[J]. Plant Physiology, 1993, (141): 589~595.
    86. Pavis, N., Boucaud, J., & Prud, M. P. Fructan and fructan metabolizing enzymes in leaves of Lolium perenne [J]. New Phytologist, 2001, 150: 97~109.
    87. Petrovska, N., Wu, X. L., Donato, R., Wang, Z.Y., Ong, E. K., Jones, E., et al. Transgenicryegrasses (Lolium spp.) with down-regulation of main pollen allergens[J]. Molecular. Breeding, 2004, 14: 489~501.
    88. Pilon-Smits, E. A. H., Ebskamp, M. J. M., Jeuken, M. J. W., Weisbeek, P. J, & Smeekens, S. C. M. Improved performance of transgenic fructan-accumulating tobacco under drought stress [J]. Plant Physiology, 1995, 107: 125~130.
    89. Pollock, C. J. Fructans and the metabolism of sucrose in vascular plants [J]. New Phytologist, 1986, 104: 1~24.
    90. Pollock, C. J., & Cairns, A. J. Fructan metabolism in grasses and cereals [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42; 77~101.
    91. Posselt, U. K., Wang, G., Schubert, J., & Boller, B. Stadelmann, F. J. (Eds.). Induction of virus resistance by means of Agrobacterium-mediated gene transfer in ryegrasses [M]. // Breeding for a functional agriculture, Proceedings of the 21th Meeting of the Fodder Crops and Amenity Grasses Section of EUCARPIA, Switzerland: Ittingen, 1997 &1998: 9~12; 154~156.
    92. De Roover, J., Vandenbranden, Van Laere, A., & Van den Ende, W. Drought induces fructan synthesis and 1-SST (sucrose: sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.) [J]. Planta, 2000, 210:808~814.
    93. Shivendra, B. Yidong, R., & Jonathan, P. A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.)[J]. Plant Cell Reports, 2006, 25(7):651~659.
    94. Smart, D. R., Chatterton, N. J., & Bugbee, B. The influence of elevated CO2 on non- structural carbohydrate distribution and fructan accumulation in wheat canopies [J]. Plant Cell Environment, 1994, 17: 435~442.
    95. Spangenberg G., Wang Z. Y., Wu X. L., Nagel J., Iglesias V. A., & Potrykus I. Transgenie tall Fescue and red Fescue plants from microprojectile bombardment of embryogenic suspension cells[J]. Journal of Plant Physiology, 1995, 145: 693~701.
    96. Spangenberg, G., Wang, Z. Y. & Nagel, J. Protopast culture and generation of transgenic plants in red fescue (Festuca rubra L.) [J]. Plant Science, 1994, 97(1): 83~94.
    97. Spangenberg, G., Wang, Z. Y., Wu, X. L., Nagel, J., & Potrykus, I. Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells [J]. Plant Science, 1995, 108: 209~217.
    98. Sprenger, N., Bortlik, K., Brandt, A., Boller, T., & Wiemken, A. Purification, cloning, and functional expression of sucrose: fructan 6-fructosyltransferase, a key enzyme of fructan synthesis in barley [J]. Proceedings of the National Academy of Sciences, 1995, 92: 11652~11656.
    99. Turk, S. C. H. J., & Smeekens, S. (Eds). Genetic modification of plant carbohydrate metabolism [M]. USA: Science Publishers. 1999.
    100. Tognetti, J. A., Calderon, P. L., & Pontis, H. G. Fructan metabolism: Reversal of cold acclimation [J]. Journal of Plant Physiology, 1989, 14: 232~234.
    101. Vanden, W., Moors,S., Van, H.G., & Van, L.A. Effect of osmolytes on the fructan pattern in feederroots produced during forcing of chicory (Cichorium intybus L.)[J]. Journal of Plant Physiology, 1998, 153(3-4): 290~298.
    102. Van Laere, A., & Van den, E. W. Inulin metabolism in dicots: chicory as a model system [J]. Plant Cell and Environment, 2002, 25:803~813.
    103. Van den, E. W., Van Wonterghem, D., & Dewil, E., Verhaert, P., De Loof, A., & Van laere, A. Purification and characterization of 1-SST, the key enzyme initiating fructan biosynthesis in young chicory roots(Cichorium intybus L.)[J]. Physiologia Plantarum, 1996, 98: 455~466.
    104. Van den Ende, W., Van Wonterghem, D., Verhaert, P., Dewil, e., & Van Laere, A. Purification and characterization of fructan: fructan fructosyltransferase from chicory (Cichorium intybus L.) roots [J]. Planta, 1996, 199: 493-502.
    105. Van der Meer, I. M., Koops, A. J., Hakkert, J. C., & Van Tunen, A. J. Cloning of the fructan biosynthesis pathway of Jerusalem artichoke[J]. The Plant Journal, 1998, 15(4): 489~500.
    106. Vasi1, V., & Vasi1, I.K. Isolation and culture of cerea1 protoplasts [J]. Theoretical and Applied Genetics, 1980, 56: 97~99.
    107. Van der, H. M., de Jong, E. R., Rueb, S., Hensgens, L. A., & Krens, F. A. Stable transformation and long-term expression of the Gus A reporter gene in callus lines of perennial ryegrass (Lolium perenne L.)[J]. Plant Molecular Biology, 1994, 24(2): 40l~405.
    108. Van der Meer, I. M., Ebskamp, M. J. M., Visser, R. G. F., Winsbeek, P. J., & Smeekens, S. C. M. Fructan as a new carbohydrate sink in transgtnic potato plant[J]. Plant Cell, 1994, 6: 561~570.
    109. Vijn, I., & Smeekens, S. Fructan: more than a reserve carbohydrate [J]. Plant Physiology, 1999, 120: 351~359.
    110. Wang, Z.Y., Nagel, J., & Potrykus, I. & Spangenberg, G. Plants from cell suspension-derived protoplasts in Lolium species [J]. Plant Science, 1993, 94(1, 2): 179~193.
    111. Wang, Z. Y., Valles, M. P., Montavon, P., Potrykus, I., & Spangenberg, G. Fertile plant regeneration from protoplasts of meadow fescue (Festuca pratensis Huds.)[J]. Plant Cell Reports, 1993, 12(2):95~100.
    112. Wang, G. R., Binding, H., & Posselt, U. K. Fertile transgenic plants from direct gene transfer to protoplasts of Lolium perenne L. and Lolium multiflorum Lam[J].Plant Physiology, 1997, 151:83~90.
    113. Wiemken, A., Sprenger, N., & Boller, T. Fructan: an extension of sucrose by sucrose. In: Pontis, H. G., Salerno, G. L., & Echeverria, E. J. (Eds). Sucrose Metabolism, Biochemistry, Physiology and Molecular Biology. Rockville, MD: American Society of Plant Physiologists, 1995, 178~189.
    114. Wu, Y. Y., Chen, Q. J., Chen, M., Chen, J., & Wang, X. C. Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene[J]. Plant Science, 2005, 169:65~73.
    115. Xiao, L., & Ha, S. B. (1997). Efficient selection and regeneration of creeping bentgrass transformant following particle bombardment [J]. Plant Cell Reports, 16: 874~878.
    116. Xu, J. P., Schubert, J., & Altpeter, F. Dissection of RNA-mediated ryegrass mosaic virus resistancein fertile transgenic perennial ryegrass (Lolium perenne L.)[J]. Plant Journal. 2001, 26(3): 265~274.
    117. Ye, X. D., Wu, X. L., Zhao, H., Frehner, M., N?sberger, J., Potrykus, I., et al. Altered fructan accumulation in transgenic Lolium multiflorum plants expressing a Bacillus subtilis SacB gene [J]. Plant Cell Reports, 2001, 20: 205~212.
    118. Ye, X., Wang, Z. Y., Wu, X., Potrykus, I., & Spangenberg, G. Transgenic Italian ryegrass (Lolium multifiorum) plants from microprojectile bombardment of embryogenic suspension cells [J]. Plant Cell Repots, l997, l6 (6): 379~384.
    119. Zhao, H., & Bughrara, S. S. Isolation and characterization of cold-regulated transcriptional activator LpCBF3 gene from perennial ryegrass (Lolium perenne L.)[J]. Molecular Genetics and Genomics, 2008, 279:585~594.
    120. Zhong, H., Bolyard, M., Srinivasan, C., & Mariam, B. Transgenic plants turfgrass (Agrostis palustris Huds.) From microprojectile bombardment of embryogenic callus [J]. Plant Cell Reports, 1993, 13: 1~6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700