磺化聚醚砜醚酮酮及其纳米复合质子交换膜的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)和直接甲醇燃料电池(DMFC),因其具有安全、高效、无污染等特点,已成为当今能源领域的研究热点。质子交换膜(PEM)是燃料电池的核心组件之一。当前广泛使用的Nafion膜,由于高的甲醇渗透率、在高温及低湿条件下质子传导率大幅降低及高昂的成本等制约了其大规模应用。开发质优价廉的新型质子交换膜已成为燃料电池研究中的一个新热点。
     磺化聚芳醚酮具有优异的机械性能、热氧化稳定性以及较高的质子传导率,被认为是制备质子交换膜的优良材料。碳纳米管具有独特的电学性能,优良的力学性能及良好的化学稳定性,是聚合物基体的良好增强材料。磺酸基功能化修饰的碳纳米管与聚合物有良好的相容性,将其分散于磺化聚芳醚酮制备复合质子膜,有望结合两者的优势,实现质子传导率和力学性能提高同时甲醇透过率降低。
     本文以4,4'-二苯氧基二苯砜(DPODPS)与间苯二甲酰氯(IPC),在1,2-二氯乙烷(DCE)/N-甲基吡咯烷酮(NMP)/无水三氯化铝(AICl3)复合催化剂溶剂体系中,通过低温溶液亲电缩聚法合成了聚醚砜醚酮酮(PESEKK)。以浓硫酸为溶剂、氯磺酸为磺化剂对PESEKK进行磺化改性,通过改变磺化反应时间,制备了一系列不同磺化度(DS)的磺化聚醚砜醚酮酮(SPESEKK)。采用核磁共振氢谱(1H NMR)对PESEKK、SPESEKK进行表征,结果表明产物具有预期的化学结构。通过热重分析仪(TGA)和差示扫描量热仪(DSC)对聚合物进行了热稳定性表征。以N,N-二甲基甲酰胺(DMF)为溶剂制备了一系列不同磺化度的SPESEKK膜,并对膜的吸水率、离子交换容量(IEC)、质子传导率及甲醇透过率进行了测试。结果表明,SPESEKK具有良好的热稳定性;随着磺化反应时间和磺化度的增加,所得SPESEKK膜的吸水率、离子交换容量及质子传导率均提高;SPESEKK膜具有优异的阻醇性能,其甲醇透过率为7.02×10-8至4.48×10-7cm2·s-1,比商业化的Nafion115低一至两个数量级。通过扫描电镜(SEM)对SPESEKK膜的断面形貌进行了表征。
     将多壁碳纳米管(MWCNTs)用浓硝酸和浓盐酸组成的混酸刻蚀后,在较高温度下用浓硫酸进行磺化处理,得到磺酸基功能化的碳纳米管(sCNTs)。超声作用下将sCNTs分散于SPESEKK (DS= 0.58)的N,N-二甲基乙酰胺(DMAc)溶液中,采用流延成膜法制备了一系列不同掺杂量的sCNTs-SPESEKK复合质子膜。采用傅里叶变换红外光谱仪(FT-IR)对sCNTs的结构进行了表征,并考察了其在几种常用溶剂中的分散稳定性。对复合膜的断面形貌、力学性能、质子传导率及甲醇透过率进行了表征和测试。结果表明,经浓硫酸处理后,磺酸基团被成功地引入到碳纳米管表面;sCNTs在水和DMAc中均匀分散,并能在DMAc中长期稳定分散;SEM结果表明,sCNTs在SPESEKK基体中均匀分散;sCNTs的掺入,提高了SPESEKK膜的拉伸强度和质子传导率的同时降低了其甲醇透过率,且随着掺入量的增大,其复合膜的拉伸强度和质子传导率随之提高,甲醇透过率随之降低。
Proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), are receiving considerable attention as transport, stationary, and portable future power sources because of their low emissions and high energy conversion efficiency. The proton exchange membrane (PEM), is the key component of the PEMFCs. Nafion, one of the perfluorosulfonic acid membranes, is the current state-of-the-art PEM material. However, several drawbacks of Nafion, such as high cost, high methanol permeability, low humidity and a major reduction in conductivity at high temperatures, have led researchers to investigate promising alternatives.
     Sulfonated poly(aryl ether ketone)s (SPAEKs), are receiving considerable attention as a kind of promising PEM for their excellent high thermal stability, mechanical properties, oxidation resistance and high proton conductivity. Owing to their unique mechanical properties and excellent high chemical stability, carbon nanotubes (CNTs) are considered to be ideal candidates for polymer reinforcement. Sulfonic acid group functionalized CNTs (sCNTs) are believed to be homogeneously dispersed within the SPAEKs matrix. It is easy to afford sCNTs/SPAEKs composite membranes.by a solution casting method. The composite membranes are expected to exhibit enhanced mechanical properties, improvements in proton conductivity and reduced methanol permeability compared with the neat SPAEKs membrane.
     The poly(ether sulfone ether ketone ketone) (PESEKK) was synthesized by the low temperature solution polycondensation of 4,4-bis(Phenoxy)diphenyl sulfone (DPODPS) and isophthaloyl chloride (IPC) in 1,2-dichloroethane and in the presence of aluminum chloride (AICl3) and N-methylpyrrolidone (NMP). A series of sulfonated poly(ether sulfone ether ketone ketone) (SPESEKK) with different degree of sulfonation (DS) are prepared by the postsulfonation of PESEKK using chlorosulfonic acid as sulfonating agent and concentrated sulfuric acid as solvent. The chemical structures of the polymers are analyzed by the 1H NMR. The thermal properties of the SPESEKK are studied, showing that they are greatly influenced by the DS value and sulfonation time. The water uptake, proton conductivity and IEC values increase as the sulfonation time increasing. The methanol permeability of the SPESEKK in the range of 7.02×10-8 to 4.48×10-7 cm2·s-1, is one or two orders of magnitude lower than that of Nafion 115. The morphology of the SPESEKK membranes is investigated by scanning electron microscope.
     A series of composite membranes consisting of sulfonated carbon nanotubes (sCNTs) and SPESEKK (DS=0.58) were successfully fabricated via the solution casting method. The chemical structure, as well as the long-term stability of the sCNTs in different solvents was investigated by FTIR analysis and solubility experiment, respectively. The morphology, tensile strength, proton conductivity and methanol permeability of the composite membranes were also investigated. The SEM observation indicated the good dispersion of the carbon nanotubes in polymer matrix, as well as the strong interfacial bonding between the SPESEKK matrix and sCNTs. The addition of either pristine carbon nanotubes or modified carbon nanotubes significantly enhanced the tensile strength of the SPESEKK membrane. The proton conductivity of the SPESEKK membrane increased while the methanol permeability decreased as the sCNTs content increasing, showing a strong interaction between the modified nanotubes and SPESEKK.
引文
[1]蔡年生.质子交换膜在燃料电池中的应用[J].膜科学与技术,1996,16(4):1-6.
    [2]李国欣.新型化学电源导论[M].上海:复旦大学出版社,1992.
    [3]Dobrovol'skii Y A, Volkov E V, Pisareva A V, et al. Proton-exchange membranes for hydrogen-air fuel cells[J]. Russian Journal of General Chemistry 2007,77(4):766-777.
    [4]Du X Z, Yu J R, Yi B L, et al. Performances of proton exchange membrane fuel cells with alternate membranes[J]. Physical Chemistry Chemical Physics,2001,3(15):3175-3179.
    [5]Brandell D, Karo J, Liivat A, et al. Molecular dynamics studies of the Nafion, Dow and Aciplex fuel-cell polymer membrane systems[J]. Journal of Molecular Modeling,2007, 13(10):1039-1046.
    [6]Kamarudin S K, Daud W R W, Ho S L, et al. Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC)[J]. Journal of Power Sources,2007,163(2): 743-754.
    [7]王哲.用于燃料电池质子交换膜材料的系列磺化聚芳醚砜的合成与性能研究[D].吉林大学,2006.
    [8]Peron J, Ruiz E, Jones D J, et al. Solution sulfonation of a novel polybenzimidazole[J]. Journal of Membrane Science,2008,314(1-2):247-256.
    [9]Peron J, Ng F, Ruiz E, et al. Functionalized polybenzimidazoles for PEMFC[J]. ECS Transactions,2008,16(2):1415-1421.
    [10]Kwon K, Park J O, Yoo D Y, et al. Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells[J]. Electrochimica Acta, 2009,54(26):6570-6575.
    [11]Qian G Q, Smith D W, Benicewicz B C. Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB-PBI) for high temperature polymer electrolyte membrane fuel cells[J]. Polymer,2009,50(16):3911-3916.
    [12]Suryani, Liu Y L. Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes[J]. Journal of Membrane Science,2009,332(1-2):121-128
    [13]Pasupathi S, Ji S, Bladergroen B J, et al. High DMFC performance output using modified acid-base polymer blend[J]. International Journal of Hydrogen Energy,2008,33(12): 3132-3136.
    [14]Gogel V, Joerissen L, Chromik A, et al. Ionomer Membrane and MEA Development for DMFC[J]. Separation Science and Technology,2008,43(16):3955-3980.
    [15]Sutou Y, Yin Y, Hu Z X, et al. Synthesis and properties of sulfonated polyimides derived from bis(sulfophenoxy) benzidines[J]. Journal of Polymer Science, Part A:Polymer Chemistry,2009,47(5):1463-1477.
    [16]Chen K C, Chen X B, Yaguchi K, et al. Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for fuel cell application[J]. Polymer,2009, 50(2):510-518.
    [17]Hu Z X, Yin Y, Okamoto K, et al.Synthesis and characterization of sulfonated polyimides derived from 2,2'-bis(4-sulfophenyl)-4,4'-oxydianiline as polymer electrolyte membranes for fuel cell applications[J]. Journal of Membrane Science,2009,329(1-2):146-152.
    [18]Zhang F, Li N W, Cui Z M, et al. Novel acid-base polyimides synthesized from bi-naphthalene dianhydride and triphenylamine-containing diamine as proton exchange membranes[J]. Journal of Membrane Science,2008,314(1-2):24-32.
    [19]Li N W, Zhang S B, Liu J, et al. Synthesis and Properties of Sulfonated Poly[bis(benzimidazobenzisoquinolinones)] as Hydrolytically and Thermooxidatively Stable Proton Conducting Ionomers[J]. Macromolecules,2008,41(12):4165-4172.
    [20]Matsumoto K, Nakagawa T, Higashihara T, et al. Sulfonated poly(ether sulfone)s with binaphthyl units as proton exchange membranes for fuel cell application[J]. Journal of Polymer Science, Part A:Polymer Chemistry,2009,47(21):5827-5834.
    [21]Hasani-Sadrabadi M M, Dashtimoghadam E, Ghaffarian S R, et al. Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone) [J]. Renewable Energy,2009,35(1):226-231.
    [22]Bae B, Miyatake K, Watanabe M. Synthesis and Properties of Sulfonated Block Copolymers Having Fluorenyl Groups for Fuel-Cell Applications[J]. ACS Applied Materials & Interfaces, 2009,1(6):1279-1286.
    [23]Feng S G, Shang Y M, Xie X F, et al. Synthesis and characterization of crosslinked sulfonated poly(arylene ether sulfone) membranes for DMFC applications[J]. Journal of Membrane Science,2009,335(1-2):13-20.
    [24]Lee H S, Roy A, Lane O, et al. Hydrophilic-hydrophobic multiblock copolymers based on poly(arylene ether sulfone) via low-temperature coupling reactions for proton exchange membrane fuel cells[J]. Polymer,2008,49(3):715-723.
    [25]Fang J, Shen P K, Liu Q L. Low methanol permeable sulfonated poly(phthalazinone ether sulfone) membranes for DMFCs[J]. Journal of Membrane Science,2007,293(1-2):94-99.
    [26]Lee J K, Li W, Manthiram A. Sulfonated poly(ether ether ketone) as an ionomer for direct methanol fuel cell electrodes[J]. Journal of Power Sources,2008,180(1):56-62.
    [27]Colicchio I, Wen F, Keul H, et al. Sulfonated poly(ether ether ketone)-silica membranes doped with phosphotungstic acid. Morphology and proton conductivity [J]. Journal of Membrane Science,2009,326(1):45-57.
    [28]Zhong S L, Cui X J, Fu T Z, et al. Modification of sulfonated poly(ether ether ketone) proton exchange membrane for reducing methanol crossover[J]. Journal of Power Sources,2008, 180(1):23-28.
    [29]Pan H Y, Zhu X L, Chen J W, et al. Synthesis of fluoro-containing sulfonated poly(phthalazinone ether ketone ketone)s and their properties as PEM in PEMFC and DMFC[J]. Journal of Membrane Science,2009,326(2):453-459.
    [30]Ramani V, Swier S, Shaw M T, et al. Membranes and MEAs Based on Sulfonated Poly(ether ketone ketone) and Heteropolyacids for Polymer Electrolyte Fuel Cells[J]. Journal of the Electrochemical Society,2008,155(6):B532-B537.
    [31]Park H S, Seo D W, Choi S W, et al. Preparation and characterization of branched and linear sulfonated poly(ether ketone sulfone) proton exchange membranes for fuel cell applications[J]. Journal of Polymer Science, Part A:Polymer Chemistry,2008,46(5): 1792-1799.
    [32]Zhang G, Fu T Z, Shao K, et al. Novel sulfonated poly(ether ether ketone ketone)s for direct methanol fuel cells usage:Synthesis, water uptake, methanol diffusion coefficient and proton conductivity[J]. Journal of Power Sources,2009,189(2):875-881.
    [33]Kawasaki S, Yamada M, Kobori K, et al. Synthesis and Chemical, Physical, and Optical Properties of 9,9-Diarylfluorene-Based Poly(ether-ether-ketone)[J]. Macromolecules,2007, 40(15):5284-5289.
    [34]Yildiz E, Inan T Y, Yildirim H, et al. Thermal and Mechanical Properties of Poly(arylene ether ketone)s having Pendant Tertiary Butyl Groups[J]. Journal of Polymer Research,2007, 14(1):61-66.
    [35]Zhang Y H, Sun X B, Xu R, et al. Synthesis and characterization of novel fluorine-containing poly(aryl ether ketone)s containing 1,4-naphthylene units[J]. Materials Chemistry and Physics,2006; 99(2-3):465-469.
    [36]宋才生,蔡明中,周丽云.低温溶液缩聚合成聚芳醚酮酮的研究[J].高分子学报,1995,(1):99-102.
    [37]盛寿日,宋才生,蔡明中.含稠杂环结构聚醚酮酮的合成与性能研究(Ⅰ)[J].中国塑料,1999,13(5):27-30.
    [38]Yu Y K, Xiao F, Cai M Z. Synthesis and properties of poly(aryl ether ketone ketone)/poly(aryl ether ether ketone ketone) copolymers with pendant cyano groups[J]. Journal of Applied Polymer Science,2007,104(6):3601-3606.
    [39]Huang Z Z, Yu L M, Sheng S R, et al. Synthesis and characterization of novel soluble poly(ether ketone sulfone)s with pendant polychloro groups[J]. Journal of Applied Polymer Science,2008,108(2):1049-1054.
    [40]Sheng S R, Luo Q Y, Huo Y, et al. Synthesis and properties of novel organosoluble aromatic poly(ether ketone)s containing pendant methyl groups and sulfone linkages[J]. Journal of Applied Polymer Science,2008,107(1):683-687.
    [41]Wen H L, Song C S, Tong Y F, et al. Synthesis and properties of poly(aryl ether sulfone ether ketone ketone) (PESEKK)[J]. Journal of Applied Polymer Science,2005,96(2):489-493.
    [42]Robertson G P, Mikhailenko S D, Wang K P, et al. Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication[J]. Journal of Membrane Science,2003,219(1-2):113-121.
    [43][a] Daoust D, Devaux J, Godard P. Mechanism and kinetics of poly(ether ether ketone) (PEEK) sulfonation in concentrated sulfuric acid at room temperature. Part 1. Qualitative comparison between polymer and monomer model compound sulfonation[J]. Polymer International,2001,50(8):917-924. [b] Daoust D, Devaux J, Godard P. Mechanism and kinetics of poly(ether ether ketone) (PEEK) sulfonation in concentrated sulfuric acid at room temperature. Part 2. Quantitative interpretation of model compound sulfonation[J]. Polymer International,2001,50(8): 925-931. [c] Daoust D, Devaux J, Godard P. Mechanism and kinetics of poly(ether ether ketone) (PEEK) sulfonation in concentrated sulfuric acid at room temperature. Part 3. General kinetic model of the sulfonation of PEEK fluoroarylketone chain-end repeat unit[J]. Polymer International,2001,50(8):932-936.
    [44]Kobayashi T, Rikukawa M, Sanui K, et al. Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene)[J]. Solid State Ionic, 1998,106(3,4):219-225.
    [45]Xing P X, Robertson G P, Guiver M D, et al. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes[J]. Journal of Membrane Science, 2004,229(1-2):95-106.
    [46]Carbone A, Pedicini R, Portale G, et al. Sulphonated poly(ether ether ketone) membranes for fuel cell application:thermal and structural characterisation[J]. Journal of Power Sources, 2006,163(1):18-26.
    [47]Matsumoto K, Higashihara T, Ueda M. Star-Shaped Sulfonated Block Copoly(ether ketone)s as Proton Exchange Membranes[J]. Macromolecules,2008,41(20):7560-7565.
    [48]Noshay A, Robeson L M. Sulfonated polysulfone[J]. Journal of Applied Polymer Science 1976,20(7):1885-903.
    [49]Gao Y, Robertson G P, Guiver M D, et al. Sulfonation of poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials[J]. Journal of Membrane Science,2003,227(1-2):39-50.
    [50]Jeong M H, Lee K S, Hong Y T, et al. Selective and quantitative sulfonation of poly(arylene ether ketone)s containing pendant phenyl rings by chlorosulfonic acid[J]. Journal of Membrane Science,2008,314(1-2):212-220.
    [51]Matsumura S, Hlil A R, Lepiller C, et al. Ionomers for Proton Exchange Membrane Fuel Cells with Sulfonic Acid Groups on the End Groups:Novel Linear Aromatic Poly(sulfide-ketone)s[J]. Macromolecules,2008,41(2):277-280.
    [52]Matsumura S, Hlil A R, Lepiller C, et al. Ionomers for Proton Exchange Membrane Fuel Cells with Sulfonic Acid Groups on the End Groups:Novel Branched Poly(ether-ketone)s[J]. Macromolecules,2008,41(2):281-284.
    [53]Zhang Y, Cui Z M, Zhao C J, et al. Synthesis and characterization of novel sulfonated poly(arylene ether ketone) copolymers with pendant carboxylic acid groups for proton exchange membranes[J]. Journal of Power Sources,2009,191(2):253-258.
    [54]Li H T, Cui Z M, Zhao C J, et al. Synthesis and property of a novel sulfonated poly(ether ether ketone) with high selectivity for direct methanol fuel cell applications[J]. Journal of Membrane Science,2009,343(1-2):164-170.
    [55]Zhong S L, Liu C G,Dou Z Y, et al. Synthesis and properties of sulfonated poly(ether ether ketone ketone) containing tert-butyl groups as proton exchange membrane materials[J]. Journal of Membrane Science,2006,285(1-2):404-411.
    [56]Xing P X, Robertson G P, Guiver M D, et al. Synthesis and characterization of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials[J]. Polymer,2005,46(10):3257-3263.
    [57]Gil M, Ji X L, Li X F, et al. Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications[J]. Journal of Membrane Science, 2004,234(1-2):75-81.
    [58]Xing P X, Robertson G P, Guiver M D, et al. Sulfonated poly(aryl ether ketone)s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes[J]. Journal of Polymer Science, Part A:Polymer Chemistry,2004, 42(12):2866-2876.
    [59]Wang F, Chen T L, Xu J P, et al. Synthesis and characterization of poly(arylene ether ketone) (co)polymers containing sulfonate groups[J]. Polymer,2006,47(11):4148-4153.
    [60]Swier S, Ramani V, Fenton J M, et al. Polymer blends based on sulfonated poly(ether ketone ketone) and poly(ether sulfone) as proton exchange membranes for fuel cells[J]. Journal of Membrane Science,2005,256(1-2):122-133.
    [61]黄绵延,陈华艳,郭剑钊,等.DMFC用PES/SPEEK共混阻醇质子交换膜[J].物理化学学报,2007,23(1):44-49
    [62]蔡雨泉,黄绵延,王宇新,等.DMFC用磺化聚醚醚酮/聚苯胺共混型质子交换膜的研究[J].高分子材料科学与工程,2007,23(1):246-249.
    [63]Zhang H Q, Li X F, Zhao C J, et al. Composite membranes based on highly sulfonated PEEK and PBI:Morphology characteristics and performance[J]. Journal of Membrane Science, 2008,308(1-2):66-74.
    [64]Wu X M, He G H, Gu S, et al. Novel interpenetrating polymer network sulfonated poly(phthalazinone ether sulfone ketone)/polyacrylic acid proton exchange membranes for fuel cells[J]. Journal of Membrane Science,2007,295(1-2):80-87.
    [65]Zhang Y, Zhang H M, Zhu X B, et al. Promotion of PEM Self-Humidifying Effect by Nanometer-Sized Sulfated Zirconia-Supported Pt Catalyst Hybrid with Sulfonated Poly(Ether Ether Ketone)[J]. Journal of Physical Chemistry B,2007,111(23):6391-6399.
    [66]Zhang Y, Zhang H M, Bi C, et al. An inorganic/organic self-humidifying composite membranes for proton exchange membrane fuel cell application[J]. Electrochimica Acta, 2008,53(12):4096-4103.
    [67]Jang I Y, Kweon O H, Kim K E, et al. Covalently cross-linked sulfonated poly(ether ether ketone)/tungstophosphoric acid composite membranes for water electrolysis application[J]. Journal of Power Sources,2008),181(1):127-134.
    [68]Wang Z, Ni H Z, Zhao C J, et al. Investigation of sulfonated poly(ether ether ketone sulfone)/heteropolyacid composite membranes for high temperature fuel cell applications[J]. Journal of Polymer Science, Part B:Polymer Physics,2006,44(14):1967-1978.
    [69]Fu T Z, Cui Z M, Zhong S L, et al. Sulfonated poly(ether ether ketone)/clay-SO3H hybrid proton exchange membranes for direct methanol fuel cells[J]. Journal of Power Sources, 2008,185(1):32-39.
    [70]Licoccia S, Traversa E. Increasing the operation temperature of polymer electrolyte membranes for fuel cells:From nanocomposites to hybrids[J]. Journal of Power Sources, 2006,159(1):12-20.
    [71]Zhang H W, Fan X H, Zhang J, et al. Modification research of sulfonated PEEK membranes used in DMFC[J]. Solid State Ionics,2008,179(27-32):1409-1412.
    [72]Hasani-Sadrabadi M M, Emami S H, Ghaffarian R, et al. Nanocomposite Membranes Made from Sulfonated Poly(ether ether ketone) and Montmorillonite Clay for Fuel Cell Applications[J]. Energy & Fuels,2008,22(4):2539-2542.
    [73]Silva V S, Ruffmann B, Silva H, et al. Proton electrolyte membrane properties and direct methanol fuel cell performance I. Characterization of hybrid sulfonated poly(ether ether ketone)/zirconium oxide membranes. Journal of Power Sources,2005,140(1):34-40.
    [74]Nunes S P, Ruffmann B, Rikowski E, et al. Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells[J]. Journal of Membrane Science,2002, 203(1-2):215-225.
    [75]Thomassin J M, Kollar J, Caldarella G, et al. Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications[J]. Journal of Membrane Science,2007,303(1-2):252-257.
    [76]Kannan R, Kakade B A, Pillai V K. Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes[J]. Angewandte Chemie, International Edition,2008,47(14):2653-2656.
    [77]Joo S H, Pak C, Kim E A, et al. Functionalized carbon nanotube-poly(arylene sulfone) composite membranes for direct methanol fuel cells with enhanced performance[J]. Journal of Power Sources,2008,180(1):63-70.
    [78]杨家义,李鲲,金维亚,等.磺化聚醚醚酮/接枝多壁碳纳米管复合膜的制备与表征[J].化学推进剂与高分子材料,2008,6(3):29-34.
    [79]Wang L, Meng Y Z, Wang S J, et al. Synthesis and sulfonation of poly(arylene ether)s containing tetraphenylmethane moieties[J]. Journal of Polymer Science, Part A:Polymer Chemistry,2004),42(7):1779-1788.
    [80]Jin X G, Bishop M T, Ellis T S, et al. A sulfonated poly(aryl ether ketone)[J]. British Polymer Journal,1985,17(1):4-10.
    [81]Bishop M T, Karasz F E, Russo P S, et al. Solubility and properties of a poly(aryl ether ketone) in strong acids[J]. Macromolecules,1985,18(1):86-93.
    [82]Lee J, Marvel C S. Polyaromatic ether-ketone sulfonamides prepared from polydiphenyl ether-ketones by chlorosulfonation and treatment with secondary amines[J]. Journal of Polymer Science, Polymer Chemistry Edition,1984,22(2):295-301.
    [83]Ogawa T, Marvel C S. Polyaromatic ether-ketones and ether-keto-sulfones having various hydrophilic groups[J]. Journal of Polymer Science, Polymer Chemistry Edition,1985,23(4): 1231-41.
    [84]Schauer J, Brozova L. Heterogeneous ion-exchange membranes based on sulfonated poly(1,4-phenylene sulfide) and linear polyethylene:preparation, oxidation stability, methanol permeability and electrochemical properties[J]. Journal of Membrane Science, 2005,250(1-2):151-157.
    [85]Bailly C, Williams D J, Karasz F E, et al. The sodium salts of sulfonated poly(aryl-ether-ether-ketone) (PEEK):preparation and characterization[J]. Polymer,1987, 28(6):1009-16.
    [86]Huang R Y M, Shao P H, Burns C M, et al. Sulfonation of poly(ether ether ketone) (PEEK): kinetic study and characterization[J]. Journal of Applied Polymer Science,2001,82(11): 2651-2660.
    [87]Dai H, Guan R, Li C H, et al. Development and characterization of sulfonated poly(ether sulfone) for proton exchange membrane materials[J]. Solid State Ionics,2007,178(5-6): 339-345.
    [88]王新东,王博,张红飞,等.一种燃料电池质子交换膜横向电导率的测试方法与装置[P].中国专利,CN1564014A,2005.
    [89]Guan R, Zou H, Lu D P, et al. Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics[J]. European Polymer Journal,2005,41(7):1554-1560.
    [90]Bae B, Miyatake K, Watanabe M. Sulfonated poly(arylene ether sulfone) ionomers containing fluorenyl groups for fuel cell applications[J]. Journal of Membrane Science,2008, 310(1-2):110-118.
    [91]Einsla M L, Kim Y S, Hawley M, et al. Toward Improved Conductivity of Sulfonated Aromatic Proton Exchange Membranes at Low Relative Humidity[J]. Chemistry of Materials, 2008,20(17):5636-5642.
    [92]Dou Z Y, Zhong S L, Zhao C J, et al. Synthesis and characterization of a series of SPEEK/TiO2 hybrid membranes for direct methanol fuel cell[J]. Journal of Applied Polymer Science,2008,109(2):1057-1062.
    [93]Kim Y, Lee J S, Rhee C H, et al. Montmorillonite functionalized with perfluorinated sulfonic acid for proton-conducting organic-inorganic composite membranes[J]. Journal of Power Sources,2006,162(1):180-185.
    [94]Rhee C H, Kim Y, Lee J S, et al. Nanocomposite membranes of surface-sulfonated titanate and Nafion for direct methanol fuel cells[J]. Journal of Power Sources,2006,159(2): 1015-1024.
    [95]Liu Y H, Yi B L, Shao Z G,et al. Carbon Nanotubes Reinforced Nafion Composite Membrane for Fuel Cell Applications[J]. Electrochemical and Solid-State Letters,2006,9(7): A356-A359.
    [96]Yu H, Jin Y G, Li Z L, et al. Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst[J]. Journal of Solid State Chemistry,2008,181(3):432-438.
    [97]Wang Y B, Iqbal Z, Mitra S. Rapidly Functionalized, Water-Dispersed Carbon Nanotubes at High Concentration[J]. Journal of the American Chemical Society,2006,.128(1):95-99.
    [98]Kim U J, Furtado C A, Liu X M, et al. Raman and IR Spectroscopy of Chemically Processed Single-Walled Carbon Nanotubes[J]. Journal of the American Chemical Society,2005, 127(44):15437-15445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700