水稻细胞周期基因的全基因组分析与Orysa;CycB1;1调节胚和胚乳发育的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞分裂是生物体生长发育的基础。近年来,细胞周期的调控机制逐渐为人们所关注。在高等植物中,细胞周期关键调节因子在双子叶模式植物拟南芥中已经被系统分析,但在单子叶模式植物水稻(Oryza sativa)中研究则较少。水稻是我国重要的粮食作物,研究水稻细胞周期的调控机制对于有目的的改善水稻的农艺性状(如加速生长、增加株高、改善株型、提高千粒重等)进而提高水稻产量有着重要的意义。水稻基因组测序的完成及大量信息学数据的出现为查找水稻细胞周期关键调节因子提供了方便。为了获得水稻所有的细胞周期关键调节因子,本研究根据拟南芥基因组提供的信息,在水稻公共数据库中进行序列检索,将检索到的序列进行了信息挖掘,进而对水稻细胞周期关键调节基因的表达模式和功能进行了初步研究。
     本研究通过序列比对获得了90个水稻细胞周期关键调节因子的基因序列。这些调节因子包括44个细胞周期蛋白(Cyclin)、25个细胞周期蛋白依赖性激酶(CDK)、7个细胞周期蛋白依赖性激酶抑制剂(KRP)、9个E2F转录因子,另外还有2个成视网膜瘤蛋白(Rb),2个WEE激酶和1个细胞周期蛋白依赖性激酶亚单位(CKS)。对这些调节因子的蛋白序列进行了聚类分析并系统命名,其中有41个调控因子的名称是新命名的或对其原有的名称进行了更正。聚类分析以及蛋白质结构分析发现,水稻和拟南芥的细胞周期关键调节因子之间不仅在数目上是保守的,在蛋白序列和结构特征上同样比较保守。
     为了研究水稻细胞周期关键调节基因在水稻发育过程中的功能,首先利用半定量RT-PCR的方法初步研究了上述基因在水稻不同组织中的时空表达模式。根据表达模式,水稻细胞周期关键调节基因大致可分为五大类。这些基因中,同一基因家族成员之间具有相似的表达模式,而不同基因家族之间表达模式差异较大。暗示不同家族的细胞周期关键调节基因在水稻发育过程中可能起着不同的作用,而同一家族的基因成员之间可能存在功能冗余。
     为精确地了解水稻细胞周期关键调节基因所表达的细胞和组织,随机选取Orysa;CycA2;1、Orysa;CycB2;2、Orysa;CycU4;4与Orysa;CDKG;1四个基因进行了原位杂交分析。原位杂交结果显示水稻细胞周期关键调节基因具有时空表达特异性,特异地在细胞分裂旺盛的组织如根端分生组织、苗端分生组织以及发育的胚中表达。另外,原位杂交结果与半定量RT-PCR结果一致,证明通过半定量RT-PCR来研究基因表达模式的方法是比较可靠的。
     为了研究生长素和细胞分裂素对水稻细胞周期关键基因的调节作用,利用半定量RT-PCR的方法研究了这两种激素对上述基因表达的调控模式。结果显示,生长素调控表达的基因有29个,其中有25个基因的表达水平上调,4个基因的表达水平下调;细胞分裂素调控表达的基因有37个,其中,12个基因表达上调,25个基因表达下调;在这些表达变化的基因中,18个基因的表达同时受到生长素和细胞分裂素的调节。这表明生长素和细胞分裂素能够分别或着同时调节不同水稻细胞周期关键调节基因的表达。
     在种子中高水平表达的基因可能对种子的发育起着重要的作用。根据水稻90个细胞周期关键基因的表达模式,选取在种子中高水平表达的7个基因——Orysa;CycA2;1、Orysa;CycB1;1、Orysa;CycB2;2、Orysa;CDKE、Orysa;DEL1、Orysa;DP1以及Orysa;E2F4,通过遗传转化分析其在水稻种子发育过程中的功能。观察转基因水稻的表型发现Orysa;CycB1;1相关转基因水稻植株的生殖发育异常,因此,对Orysa;CycB1;1的功能进行了进一步的研究。
     对转基因植株进行表型分析发现,Pubi::CycB1;1RNAi转基因水稻生殖发育异常,表现为部分花粉和子房败育、结实率降低、种子发育异常、胚乳的发育受到抑制而胚的生长得到促进。组织学分析显示,授粉后3天(3 DAP)的转基因水稻种子胚乳发育出现异常,胚与对照相比没有显著差异,9 DAP的转基因种子中胚乳几乎消失,而胚与对照相比体积则增大三至四倍。在胚乳中特异敲除Orysa;CycB1;1发现,PGluA-1::CycB1;1RNAi转基因水稻能够产生与上述表型类似的种子,表明Orysa;CycB1;1直接调控水稻胚乳的发育,同时影响胚的发育。统计结果显示,Pubi::CycB1;1RNAi转基因水稻种子胚体积增大主要是由于细胞体积增加所致,与细胞数目无关。
     半定量RT-PCR、荧光实时定量PCR、原位杂交以及PCycB1;1::GUS转基因水稻种子的组织学染色结果显示,Orysa;CycB1;1在分裂旺盛的组织和细胞中表达,尤其在发育早期种子的胚和胚乳中均表达,暗示该基因对水稻种子胚和胚乳的发育起调控作用。对PGluA-1::CycB1;1RNAi转基因水稻胚乳的荧光实时定量PCR分析结果显示,种子发育相关基因FIE和GW2的表达量上调。芯片分析结果表明,Pubi::CycB1;1RNAi转基因水稻胚中,一些与发育进程、形态建成及细胞壁组织结构等相关的基因表达水平变化显著。暗示这些基因的表达可能受Orysa;CycB1;1调节。
     综上所述,得出以下结论:水稻与拟南芥的细胞周期关键调节基因在数目及结构上相当保守;不同家族的水稻细胞周期关键调节基因在水稻发育过程中起着不同的作用,而同一家族成员之间可能存在功能冗余现象;生长素和细胞分裂素能够分别或着同时调节不同水稻细胞周期关键调节基因的表达;Orysa;CycB1;1的正常表达为水稻生殖发育所必需,该基因直接调控水稻胚乳的发育,并影响胚的发育;Orysa;CycB1;1可能通过调节FIE和GW2基因调控胚乳的发育;Orysa;CycB1;1可能通过调节与发育进程、形态建成及细胞壁组织结构等相关的基因调控胚的发育。
Cell division plays very important roles in many aspects of plant growth and development. Although extensive and systematic studies of core cell cycle genes such as cyclin-dependent kinases (CDK), cyclins, CDK inhibitors (CKIs), homologs of the retinoblastoma proteins (Rb) and the E2F transcription factors (E2F) have been reported in Arabidopsis, only a small number of core cell cycle genes were functionally examined in monocots. Rice, as a model plant species of monocots, is suitable for the identification of core cell cycle genes because of the availability of its whole genome sequences. In this study, we searched for the predicted core cell cycle genes from rice genome, and examined their expression patterns in various rice tissues and the regulation of their expression by cytokinin and auxin, and then determined the role of some candidate genes during rice development.
     In order to obtain the putative core cell cycle genes in rice, blast searches were conducted against the rice database using the Arabidopsis core cell cycle genes published as query sequences. Ninety putative core cell cycle proteins were identified and they belong to cyclin, CDK, E2F, CKI, CKS, Rb and Wee families, respectively. Phylogenetic and structural analysis indicated that both the number and the structure of the core cell cycle regulators are relatively conserved between the rice and Arabidopsis genomes.
     To understand the fuctions of rice core cell cycle genes, their expression patterns in rice were investigated by semi-quantitative RT-PCR. The tissues include roots, young leaves, spikelets, seeds (0, 1, 3, 6 days after pollination or DAP), endosperms (9, 12 and 15 DAP), and embryos (9 and 15 DAP). The results indicated that the expression of most of the core cell cycle genes are spatially regulated, and they can be divided into five classes based on their expression patterns. The expression patterns of some closely related core cell cycle genes are similar, suggesting functional redundancy of these core cell cycle genes.
     In situ hybridization were conducted to study the transcript localization of the core cell cycle genes in rice. Four genes including Orysa;CycA2;1, Orysa;CycB2;2, Orysa;CycU4;4 and Orysa;CDKG;1 were randomly selected and the results suggested that they are temporally and spatially regulated. Also, this data supports the expression profiles underlied by the RT-PCR analysis. Following auxin or cytokinin treatment, the expression of some core cell cycle genes was either upregulated or downregulated, indicating that auxin and/or cytokinin regulate the expression of these core cell cycle genes.
     Seven core cell cycle genes such as Orysa;CycA2;1, Orysa;CycB1;1, Orysa;CycB2;2, Orysa;CDKE, Orysa;DEL1, Orysa;DP1 and Orysa;E2F4 were chosen to study their functions in rice development by genetic transformation. The results showed that Pubi::CycB1;1RNAi transgenic rice plants displayed aberrant phenotypes, such as lower seed-setting rate and abnormal seed morphology. Histological analysis indicated that abortive endosperm while larger embryo with disturbed morphology and structures to some extent setted in the abnormal seeds compared with the control one. Further analysis showed that endosperm-specific knockdown of Orysa;CycB1;1 produced similar abnormal seeds, indicating that Orysa;CycB1;1 regulated the development of endosperm directly. Statistical analysis showed that the enlarged embryo size in Pubi::CycB1;1RNAi plants was due to the increased cell size.
     The expression patterns of Orysa;CycB1;1 was confirmed using semi-quantitative RT-PCR, qRT-PCR, in situ hybridization and histological staining of PCycB1;1::GUS transgenic rice seeds. The results indicated that Orysa;CycB1;1 was highly expressed in tissues or cells which divide rapidly, and its transcripts were identified in endosperm and embryo.
     Expression analysis of the seed development-related genes in PGluA-1::CycB1;1RNAi transgenic rice endosperm indicated that the transcript levels of FIE and GW2 were stronger than that of control. Microarray analysis revealed that many genes involved developmental processes, morphogenesis and cell wall organization were significantly upregulated or downregulated in transgenic embryos. It was suggested that these gene expression might be regulated by Orysa;CycB1;1 during seed deveopment.
     In conclusion, we have conducted genome-wide identification and expression analysis of rice core cell cycle genes, and provided the evidences that Orysa;CycB1;1 plays the important roles in endosperm and embryo development in rice. Our current results might provide basic information to understand the mechanism of cell cycle regulation and the functions of the core cell cycle genes in rice.
引文
Ach, R.A., Durfee, T., Miller, A.B., Taranto, P., HanleyBowdoin, L., Zambryski, P.C., and Gruissem, W. (1997). RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Molecular Cell. Biol. 17, 5077-5086.
    Aida, M., Beis, D., Heidstra, R., Willemsen, V., Blilou, I., Galinha, C., Nussaume, L., Noh, Y.S., Amasino, R., and Scheres, B. (2004). The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109-120.
    Aida, M., Ishida, T., and Tasaka, M. (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126, 1563-1570.
    Albani, D., Mariconti, L., Ricagno, S., Pitto, L., Moroni, C., Helin, K., and Cella, R. (2000). DcE2F, a functional plant E2F-like transcriptional activator from Daucus carota. J. Biol. Chem. 275, 19258-19267.
    Alleman, M., and Doctor, J. (2000). Genomic imprinting in plants: observations and evolutionary implications. Plant Mol. Biol. 43, 147-161.
    Amon, A., Tyers, M., Futcher, B., and Nasmyth, K. (1993). Mechanisms That Help the Yeast-Cell Cycle Clock Tick - G2 Cyclins Transcriptionally Activate G2 Cyclins and Repress G1 Cyclins. Cell 74, 993-1007.
    Andersen S.U., Buechel S., Zhao Z., Ljung K., Novak O., Busch W., Schuster C., and Lohmann J.U. (2008). Requirement of B2-type cyclin-dependent kinases for meristem integrity in Arabidopsis thaliana. Plant Cell, 20, 88-100.
    Apuya, N.R., Yadegari, R., Fischer, R.L., Harada, J.J., Zimmerman, J.L., and Goldberg, R.B. (2001). The Arabidopsis embryo mutant schlepperless has a defect in the chaperonin-60alpha gene. Plant Physiol. 126, 717-730.
    Assaad, F.F., Mayer, U., Wanner, G., and Jurgens, G. (1996). The KEULE gene is involved in cytokinesis in Arabidopsis. Mol. Gen. Genet. 253, 267-277.
    Austin, R.J., Orr-Weaver, T.L., and Bell, S.P. (1999). Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element. Genes Dev. 13, 2639-2649.
    Baldin, V., and Ducommun, B. (1995). Subcellular-Localization of Human Wee1 Kinase Is Regulated During the Cell-Cycle. J. Cell Sci. 108, 2425-2432.
    Bardin, A.J., and Amon, A. (2001). Men and sin: What's the difference? Nat. Rev. Mol. Cell Biol. 2, 815-826.
    Barroco, R.M., De Veylder, L., Magyar, Z., Engler, G., Inze, D., and Mironov, V. (2003). Novel complexes of cyclin-dependent kinases and a cyclin-like protein from Arabidopsis thaliana with a function unrelated to cell division. Cell. Mol. Life Sci. 60, 401-412.
    Barroco, R.M., Peres, A., Droual, A.M., De Veylder, L., Nguyen le, S.L., De Wolf, J., Mironov, V., Peerbolte, R., Beemster, G.T., Inze, D., Broekaert, W.F., and Frankard, V. (2006). The cyclin-dependent kinase inhibitor Orysa;KRP1 plays an important role in seed development of rice. Plant Physiol. 142, 1053-1064.
    Becraft, P.W., and Asuncion-Crabb, Y. (2000). Positional cues specify and maintain aleurone cell fate in maize endosperm development. Development 127, 4039-4048.
    Becraft, P.W., Stinard, P.S., and McCarty, D.R. (1996). CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273, 1406-1409.
    Beeckman, T., Burssens, S., and Inze, D. (2001). The peri-cell-cycle in Arabidopsis. J. Exp. Bot. 52, 403-411.
    Bell, M.H., Halford, N.G., Ormrod, J.C., and Francis, D. (1993). Tobacco plants transformed with cdc25, a mitotic inducer gene from fission yeast. Plant Mol. Biol. 23, 445-451.
    Bell, S.P., and Stillman, B. (1992). Atp-Dependent Recognition of Eukaryotic Origins of DNA-Replication by a Multiprotein Complex. Nature 357, 128-134.
    Berger, F., Grini, P.E., and Schnittger, A. (2006). Endosperm: an integrator of seed growth and development. Curr. Opin. Plant Biol. 9, 664-670.
    Berger, F., Hamamura, Y., Ingouff, M., and Higashiyama, T. (2008). Double fertilization- caught in the act. Trends Plant Sci. 13, 437-443.
    Berleth, T., and Jürgens, G. (1993). The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118, 575-587
    Bleecker, A.B., Kenyon, W.H., Somerville, S.C., and Kende, H. (1986). Use of Monoclonal Antibodies in the Purification and Characterization of 1 Aminocyclopropane-1-Carboxylate Synthase an Enzyme in Ethylene Biosynthesis. Proc. Natl. Acad. Sci. U S A 83, 7755-7759.
    Blilou, I., Frugier, F., Folmer, S., Serralbo, O., Willemsen, V., Wolkenfelt, H., Eloy, N.B., Ferreira, P.C.G., Weisbeek, P., and Scheres, B. (2002). The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links Plant Cell cycle to progression of cell differentiation. Genes Dev. 16, 2566-2575.
    Blow, J.J., and Dutta, A. (2005). Preventing re-replication of chromosomal DNA. Nat. Rev. Mol. Cell Biol. 6, 476-486.
    Blow, J.J., Gillespie, P.J., Francis, D., and Jackson, D.A. (2001). Replication origins inXenopus egg extract are 5-15 kilobases apart and are activated in clusters that fire at different times. J. Cell Biol. 152, 15-25.
    Booher, R.N., Deshaies, R.J., and Kirschner, M.W. (1993). Properties of Saccharomyces-Cerevisiae Wee1 and Its Differential Regulation of P34 (Cdc28) in Response to G(1) and G(2) Cyclins. EMBO J. 12, 3417-3426.
    Boudolf, V., Inze, D., and De Veylder, L. (2006). What if higher plants lack a CDC25 phosphatase? Trends Plant Sci. 11, 474-479.
    Boudolf, V., Rombauts, S., Naudts, M., Inze, D., and De Veylder, L. (2001). Identification of novel cyclin-dependent kinases interacting with the CKS1 protein of Arabidopsis. J. Exp. Bot. 52, 1381-1382.
    Breyne, P., Dreesen, R., Vandepoele, K., De Veylder, L., Van Breusegem, F., Callewaert, L., Rombauts, S., Raes, J., Cannoot, B., Engler, G., Inze, D., and Zabeau, M. (2002). Transcriptome analysis during cell division in plants. Proc. Natl. Acad. Sci. U S A 99, 14825-14830.
    Brink, R., and Cooper, D. (1947). The endosperm in seed development. Bot. Rev. 13, 479-541.
    Brizuela, L., Draetta, G., and Beach, D. (1987). P13suc1 Acts in the Fission Yeast-Cell Division Cycle as a Component of the P34cdc2 Protein-Kinase. EMBO J. 6, 3507-3514.
    Brown, R.C., Lemmon, B.E., and Olsen, O.A. (1996). Polarization predicts the pattern of cellularization in cereal endosperm. Protoplasma 192, 168-177.
    Busch, M., Mayer, U., and Jurgens, G. (1996). Molecular analysis of the Arabidopsis pattern formation of gene GNOM: gene structure and intragenic complementation. Mol. Gen. Genet. 250, 681-691.
    Canales, C., Bhatt, A.M., Scott, R., and Dickinson, H. (2002). EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr. Biol. 12, 1718-1727.
    Chaboute, M.E., Clement, B., and Philipps, G. (2002). S phase and meristem-specific expression of the tobacco RNR1b gene is mediated by an E2F element located in the 5' leader sequence. J. Biol. Chem. 277, 17845-17851.
    Charlton, W.L., Keen, C.L., Merriman, C., Lynch, P., Greenland, A.J., and Dickinson, H.G. (1995). Endosperm Development in Zea-Mays-Implication of Gametic Imprinting and Paternal Excess in Regulation of Transfer Layer Development. Development 121, 3089-3097.
    Chaubet-Gigot, N. (2000). Plant A-type cyclins. Plant Mol. Biol. 43, 659-675.
    Chaudhury, A.M., and Berger, F. (2001). Maternal control of seed development. Semin. Cell Dev. Biol. 12, 381-386.
    Chaudhury, A.M., Koltunow, A., Payne, T., Luo, M., Tucker, M.R., Dennis, E.S., and Peacock, W.J. (2001). Control of early seed development. Annu. Rev. Cell Dev. Biol. 17, 677-699.
    Chaudhury, A.M., Ming, L., Miller, C., Craig, S., Dennis, E.S., and Peacock, W.J. (1997). Fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U S A 94, 4223-4228.
    Cheng, W.H., Taliercio, E.W., and Chourey, P.S. (1996). The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 8, 971-983.
    Cheng, W.H., Taliercio, E.W., and Chourey, P.S. (1999). Sugars modulate an unusual mode of control of the cell-wall invertase gene (Incw1) through its 3' untranslated region in a cell suspension culture of maize. Proc. Natl. Acad. Sci. U S A 96, 10512-10517.
    Cho, R.J., Huang, M.X., Campbell, M.J., Dong, H.L., Steinmetz, L., Sapinoso, L., Hampton, G., Elledge, S.J., Davis, R.W., and Lockhart, D.J. (2001). Transcriptional regulation and function during the human cell cycle. Nat. Genet. 27, 48-54.
    Ciapa, B., and Chiri, S. (2000). Egg activation: upstream of the fertilization calcium signal. Biol. Cell 92, 215-233.
    Ciosk, R., Zachariae, W., Michaelis, C., Shevchenko, A., Mann, M., and Nasmyth, K. (1998). An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93, 1067-1076.
    Colon-Carmona, A., You, R., Haimovitch-Gal, T., and Doerner, P. (1999). Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J. 20, 503-508.
    Cooper, S. (2003). Reappraisal of serum starvation, the restriction point, G0, and G1 phase arrest points. Faseb J. 17, 333-340.
    Cord Neto, G., Yunes, J.A., da Silva, M.J., Vettore, A.L., Arruda, P., and Leite, A. (1995). The involvement of Opaque 2 on beta-prolamin gene regulation in maize and Coix suggests a more general role for this transcriptional activator. Plant Mol. Biol. 27, 1015-1029.
    Cosgrove, D.J. (2000). Expansive growth of plant cell walls. Plant Physiol. Biochem. 38, 109-124.
    Criqui, M.C., Parmentier, Y., Derevier, A., Shen, W.H., Dong, A.W., and Genschik, P. (2000). Cell cycle-dependent proteolysis and ectopic overexpression of cyclin B1 in tobacco BY2 cells. Plant J. 24, 763-773.
    Criqui, M.C., Weingartner, M., Capron, A., Parmentier, Y., Shen, W.H., Heberle-Bors, E., Bogre, L., and Genschik, P. (2001). Sub-cellular localisation of GFP-tagged tobacco mitotic cyclins during the cell cycle and after spindle checkpoint activation. Plant J. 28, 569-581.
    Dambrauskas, G., Aves, S.J., Bryant, J.A., Francis, D., and Rogers, H.J. (2003). Genes encoding two essential DNA replication activation proteins, Cdc6 and Mcm3, exhibit very different patterns of expression in the tobacco BY-2 cell cycle. In J. Exp. Bot., pp. 699-706.
    De Bondt, H.L., Rosenblatt, J., Jancarik, J., Jones, H.D., Morgan, D.O., and Kim, S.H. (1993). Crystal-Structure of Cyclin-Dependent Kinase-2. Nature 363, 595-602.
    de Jager, S.M., Menges, M., Bauer, U.M., and Murra, J.A. (2001). Arabidopsis E2F1 binds a sequence present in the promoter of S-phase-regulated gene AtCDC6 and is a member of a multigene family with differential activities. Plant Mol. Biol. 47, 555-568.
    De Schutter, K., Joubes, J., Cools, T., Verkest, A., Corellou, F., Babiychuk, E., Van Der Schueren, E., Beeckman, T., Kushnir, S., Inze, D., and De Veylder, L. (2007).
    Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 19, 211-225.
    De Veylder, L., Beeckman, T., Beemster, G.T., Krols, L., Terras, F., Landrieu, I., van der Schueren, E., Maes, S., Naudts, M., and Inze, D. (2001b). Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 13, 1653-1668.
    De Veylder, L., Beeckman, T., Beemster, G.T.S., Engler, J.D., Ormenese, S., Maes, S., Naudts, M., Van der Schueren, E., Jacqmard, A., Engler, G., and Inze, D. (2002).
    Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor. EMBO J. 21, 1360-1368.
    De Veylder, L., Beemster, G.T.S., Beeckman, T., and Inze, D. (2001a). CKS1At overexpression in Arabidopsis thaliana inhibits growth by reducing meristem size and inhibiting cell-cycle progression. Plant J. 25, 617-626.
    De Veylder, L., Segers, G., Glab, N., Casteels, P., Van Montagu, M., and Inze, D. (1997). The Arabidopsis Cks1At protein binds the cyclin-dependent kinases Cdc2aAt and Cdc2bAt. FEBS Lett. 412, 446-452.
    del Pozo, J.C., Lopez-Matas, M.A., Ramirez-Parra, E., and Gutierrez, C. (2005). Hormonal control of Plant Cell cycle. Physiol Plant 123, 173-183.
    Den Haese, G.J., Walworth, N., Carr, A.M., and Gould, K.L. (1995). The Wee1 Protein-Kinase Regulates T14 Phosphorylation of Fission Yeast Cdc2. Mol. Biol. Cell 6, 371-385.
    Dewitte, W., and Murray, J.A. (2003). Plant Cell cycle. Annu. Rev. Plant Physiol. 54, 235-264.
    Dewitte, W., Riou-Khamlichi, C., Scofield, S., Healy, J.M.S., Jacqmard, A., Kilby, N.J., and Murray, J.A.H. (2003). Altered cell cycle distribution, hyperplasia, and inhibited differentiation in arabidopsis caused by the D-type cyclin CYCD3. Plant Cell 15, 79-92.
    Diffley, J.F.X., and Labib, K. (2002). The chromosome replication cycle. J. Cell Sci. 115, 869-872.
    Dilkes, B.P., and Comai, L. (2004). A differential dosage hypothesis for parental effects in seed development. Plant Cell 16, 3174-3180.
    Ding, Y.H., Liu, N.Y., Tang, Z.S., Liu, J., and Yang, W.C. (2006). Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III. Plant Cell 18, 815-830.
    Doerner, P., Jorgensen, J.E., You, R., Steppuhn, J., and Lamb, C. (1996). Control of root growth and development by cyclin expression. Nature 380, 520-523.
    Dynlacht, B.D. (1997). Regulation of transcription by proteins that control the cell cycle. Nature 389, 149-152.
    Dyson, N. (1998). The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245-2262.
    Elledge, S.J. (1996). Cell cycle checkpoints: Preventing an identity crisis. Science 274, 1664-1672.
    Fabian, T., Lorbiecke, R., Umeda, M., and Sauter, M. (2000). The cell cycle genes cycA1;1 and cdc2Os-3 are coordinately regulated by gibberellin in planta. Planta 211, 376-383.
    Farrar, K., Evans, I.M., Topping, J.F., Souter, M.A., Nielsen, J.E., and Lindsey, K. (2003). EXORDIUM--a gene expressed in proliferating cells and with a role in meristem function, identified by promoter trapping in Arabidopsis. Plant J. 33, 61-73.
    Fiers, M., Golemiec, E., van der Schors, R., van der Geest, L., Li, K.W., Stiekema, W.J., and Liu, C.M. (2006). The CLAVATA3/ESR motif of CLAVATA3 is functionally independent from the nonconserved flanking sequences. Plant Physiol. 141, 1284-1292.
    Francis, D. (2007). The plant cell cycle--15 years on. The New phytologist 174, 261-278.
    Friedman, W.E. (2001). Developmental and evolutionary hypotheses for the origin of double fertilization and endosperm. C. R. Acad. Sci. III 324, 559-567.
    Fulop, K., Tarayre, S., Kelemen, Z., Horvath, G., Kevei, Z., Nikovics, K., Bako, L., Brown, S., Kondorosi, A., and Kondorosi, E. (2005). Arabidopsis anaphase-promoting complexes: multiple activators and wide range of substrates might keep APC perpetuallybusy. Cell Cycle 4, 1084-1092.
    Funabiki, H., Yamano, H., Kumada, K., Nagao, K., Hunt, T., and Yanagida, M. (1996). Cut2 proteolysis required for sister-chromatid separation in fission yeast. Nature 381, 438-441.
    Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A., and Palme, K. (1998). Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226-2230.
    Ganoth, D., Bornstein, G., Ko, T.K., Larsen, B., Tyers, M., Pagano, M., and Hershko, A. (2001). The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27. Nat. Cell Biol. 3, 321-324.
    Garcia, D., Fitz Gerald, J.N., and Berger, F. (2005). Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 17, 52-60.
    Garcia, D., Saingery, V., Chambrier, P., Mayer, U., Jurgens, G., and Berger, F. (2003). Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol. 131, 1661-1670.
    Gavazzi, G., Dolfini, S., Allegra, D., Castiglioni, P., Todesco, G., and Hoxha, M. (1997). Dap (Defective aleurone pigmentation) mutations affect maize aleurone development. Mol. Gen. Genet. 256, 223-230.
    Geldner, N., Richter, S., Vieten, A., Marquardt, S., Torres-Ruiz, R.A., Mayer, U., and Jurgens, G. (2004). Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131, 389-400.
    Genschik, P., Criqui, M.C., Parmentier, Y., Derevier, A., and Fleck, J. (1998). Cell cycle-dependent proteolysis in plants: Identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor MG132. Plant Cell 10, 2063-2075.
    Glotzer, M., Murray, A.W., and Kirschner, M.W. (1991). Cyclin is degraded by the ubiquitin pathway. Nature 349, 132-138.
    Gonthier, R., Jacqmard, A., Bernier, G. (1987) Changes in cell-cycle duration and growth fraction in the shoot meristem of Sinapis during floral transition. Planta 170, 55-59.
    Gonzalez, N., Gevaudant, F., Hernould, M., Chevalier, C., and Mouras, A. (2007). The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. Plant J. 51, 642-655.
    Gonzalez, N., Hernould, M., Delmas, F., Gevaudant, F., Duffe, P., Causse, M., Mouras, A., and Chevalier, C. (2004). Molecular characterization of a WEE1 gene homologue intomato (Lycopersicon esculentum Mill.). Plant Mol. Biol. 56, 849-861.
    Grafi, G., Burnett, R.J., Helentjaris, T., Larkins, B.A., DeCaprio, J.A., Sellers, W.R., and Kaelin, W.G. (1996). A maize cDNA encoding a member of the retinoblastoma protein family: Involvement in endoreduplication. Proc. Natl. Acad. Sci. U S A 93, 8962-8967.
    Grafi, G., Larkins, B.A. (1995). Endoreduplication in maize endosperm- involvement of M-phase promoting factor inhibition and induction of S-phase-related kinases. Science 269, 1262-1264.
    Grini, P.E., Jurgens, G., and Hulskamp, M. (2002). Embryo and endosperm development is disrupted in the female gametophytic capulet mutants of Arabidopsis. Genetics 162, 1911-1925.
    Grossberger, R., Gieffers, C., Zachariae, W., Podtelejnikova, A.V., Schleiffer, A., Nasmyth, K., Mann, M., and Peters, J.M. (1999). Characterization of the DOC1/APC10 subunit of the yeast and the human anaphase-promoting complex. J. Biol. Chem. 274, 14500-14507.
    Grossniklaus, U., Vielle-Calzada, J.P., Hoeppner, M.A., and Gagliano, W.B. (1998). Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280, 446-450.
    Guignard, M.L. (1899). Sur les anthe′rozo?¨des et la double copulation sexuelle chez les ve′ge′taux angiospermes. Rev. Ge′n. de Botanique 11, 129–135.
    Guitton, A.E., and Berger, F. (2005). Loss of function of MULTICOPY SUPPRESSOR OF IRA 1 produces nonviable parthenogenetic embryos in Arabidopsis. Curr. Biol. 15, 750-754.
    Guitton, A.E., Page, D.R., Chambrier, P., Lionnet, C., Faure, J.E., Grossniklaus, U., and Berger, F. (2004). Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131, 2971-2981.
    Gutierrez, C., Ramirez-Parra, E., Castellano, M.M., and del Pozo, J.C. (2002). G(1) to S transition: more than a cell cycle engine switch. Curr. Opin. Plant Biol. 5, 480-486.
    Hall, M.N. (2007). TOR signaling and control of cell growth. In Experimental Biology 2007 Annual Meeting (Washington, DC: Federation Amer Soc Exp Biol), pp. A206-A206.
    Hall, Q., and Cannon, M.C. (2002). The cell wall hydroxyproline-rich glycoprotein RSH is essential for normal embryo development in Arabidopsis. Plant Cell 14, 1161-1172.
    Hamann, T., Mayer, U., and Jurgens, G. (1999). The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126, 1387-1395.
    Han, B.W., Bingman, C.A., Mahnke, D.K., Bannen, R.M., Bednarek, S.Y., Sabina, R.L., and Phillips, G.N., Jr. (2006). Membrane association, mechanism of action, and structure of Arabidopsis embryonic factor 1 (FAC1). J. Biol. Chem. 281, 14939-14947.
    Hardtke, C.S., and Berleth, T. (1998). The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. The EMBO J. 17, 1405-1411.
    Hardtke, C.S., Ckurshumova, W., Vidaurre, D.P., Singh, S.A., Stamatiou, G., Tiwari, S.B., Hagen, G., Guilfoyle, T.J., and Berleth, T. (2004). Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131, 1089-1100.
    Haughn, G., and Chaudhury, A. (2005). Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci. 10, 472-477.
    He, S.S., Liu, J., Xie, Z.D., O'Neill, D., and Dotson, S. (2004). Arabidopsis E2Fa plays a bimodal role in regulating cell division and cell growth. Plant Mol. Biol. 56, 171-184.
    Healy, J.M., Menges, M., Doonan, J.H., and Murray, J.A. (2001). The Arabidopsis D-type cyclins CycD2 and CycD3 both interact in vivo with the PSTAIRE cyclin-dependent kinase Cdc2a but are differentially controlled. J. Biol. Chem. 276, 7041-7047.
    Helliwell, C.A., Chin-Atkins, A.N., Wilson, I.W., Chapple, R., Dennis, E.S., and Chaudhury, A. (2001). The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell 13, 2115-2125.
    Hemerly, A.S., Ferreira, P., de Almeida Engler, J., Van Montagu, M., Engler, G., and Inze, D. (1993). cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5, 1711-1723.
    Himanen, K. (2003). Cell cycle regulation during plant growth and development, gene expression studies in arabidopsis thaliana Heynh. Academic dissertation Hirt, H., Mink, M., Pfosser, M., Bogre, L., Gyorgyey, J., Jonak, C., Gartner, A., Dudits, D., and Heberle-Bors, E. (1992). Alfalfa cyclins: differential expression during the cell cycle and in plant organs. Plant Cell 4, 1531-1538.
    Hobbie, L., McGovern, M., Hurwitz, L.R., Pierro, A., Liu, N.Y., Bandyopadhyay, A., and Estelle, M. (2000). The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. Development 127, 23-32.
    Hof, J.V.t., Kuniyuki, A., and Bjerknes, C.A. (1978). The size and number of replicon families of chromosomal DNA of Arabidopsis thaliana. Chromosoma 68, 269-285.
    Hong, S.K., Aoki, T., Kitano, H., Satoh, H., and Nagato, Y. (1995a). Temperature-SensitiveMutation, embryoless-1, Affects Both Embryo and Endosperm Development in Rice. Plant Sci. 108, 165-172.
    Hong, S.K., Aoki, T., Kitano, H., Satoh, H., and Nagato, Y. (1995b). Phenotypic Diversity of 188 Rice Embryo Mutants. Dev. Genet. 16, 298-310.
    Hong, S.K., Kitano, H., Satoh, H., and Nagato, Y. (1996). How is embryo size genetically regulated in rice? Development 122, 2051-2058.
    Hueros, G., Royo, J., Maitz, M., Salamini, F., and Thompson, R.D. (1999). Evidence for factors regulating transfer cell-specific expression in maize endosperm. Plant Mol. Biol. 41, 403-414.
    Hueros, G., Varotto, S., Salamini, F., and Thompson, R.D. (1995). Molecular Characterization of Bet1, a Gene Expressed in the Endosperm Transfer Cells of Maize. Plant Cell 7, 747-757.
    Hunt, T., and Nasmyth, K. (1997). Cell multiplication - Overview. Curr. Opin. Cell Biol. 9, 765-767.
    Huntley, R., Healy, S., Freeman, D., Lavender, P., de Jager, S., Greenwood, J., Makker, J., Walker, E., Jackman, M., Xie, Q., Bannister, A.J., Kouzarides, T., Gutierrez, C., Doonan, J.H., and Murray, J.A.H. (1998). The maize retinoblastoma protein homologue ZmRb-1 is regulated during leaf development and displays conserved interactions with G1/S regulators and plant cyclin D (CycD) proteins. Plant Mol. Biol. 37, 155-169.
    Irniger, S., Piatti, S., Michaelis, C., and Nasmyth, K. (1995). Genes Involved in Sister-Chromatid Separation Are Needed for B-Type Cyclin Proteolysis in Budding Yeast. Cell 81, 269-278.
    Ito, M., Araki, S., Matsunaga, S., Itoh, T., Nishihama, R., Machida, Y., Doonan, J.H., and Watanabe, A. (2001). G2/M-phase-specific transcription during Plant Cell cycle is mediated by c-Myb-like transcription factors. Plant Cell 13, 1891-1905.
    Ito, M., Iwase, M., Kodama, H., Lavisse, P., Komamine, A., Nishihama, R., Machida, Y., and Watanabe, A. (1998). A novel cis-acting element in promoters of plant B-type cyclin genes activates M phase-specific transcription. Plant Cell 10, 331-341.
    Ito, M., Marie-Claire, C., Sakabe, M., Ohno, T., Hata, S., Kouchi, H., Hashimoto, J., Fukuda, H., Komamine, A., and Watanabe, A. (1997). Cell-cycle-regulated transcription of A- and B-type plant cyclin genes in synchronous cultures. Plant J. 11, 983-992.
    Iwakawa, H., Shinmyo, A., and Sekine, M. (2006). Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. Plant J. 45, 819-831.
    Jacqmard, A., De Veylder, L., Segers, G., de Almeida Engler, J., Bernier, G., Van Montagu, M., and Inze, D. (1999). Expression of CKS1At in Arabidopsis thaliana indicates a role for the protein in both the mitotic and the endoreduplication cycle. Planta 207, 496-504.
    Jasinski, S., Riou-Khamlichi, C., Roche, O., Perennes, C., Bergounioux, C., and Glab, N. (2002). The CDK inhibitor NtKIS1a is involved in plant development, endoreduplication and restores normal development of cyclin D3;1-overexpressing plants. J. Cell. Sci. 115, 973-982.
    Jin, P., Guo, T., and Becraft, P.W. (2000). The maize CR4 receptor-like kinase mediates a growth factor-like differentiation response. Genesis 27, 104-116.
    Jofuku, K.D., Boer, B., Montagu, M.V., and Okamuro, J.K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 1211-1225.
    Jorgensen, P., Nishikawa, J.L., Breitkreutz, B.J., and Tyers, M. (2002). Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395-400.
    Joubes, J., Chevalier, C., Dudits, D., Heberle-Bors, E., Inze, D., Umeda, M., and Renaudin, J.P. (2000). CDK-related protein kinases in plants. Plant Mol. Biol. 43, 607-620.
    Jullien, P.E., Kinoshita, T., Ohad, N., and Berger, F. (2006). Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18, 1360-1372.
    Jurgens, G., Torres Ruiz, R.A., and Berleth, T. (1994). Embryonic pattern formation in flowering plants. Annu. Rev. Genet. 28, 351-371.
    Kageyama, Y., Fukuoka, H., Yamamoto, K., and Takeda, G. (1991). The rice plant bearing endospermless grains: A novel mutant induced by gamma-irradiation of tetraploid rice (Oryza sativa L.). Japan. J. Breed. 41, 341-345.
    Kermicle, J.L., and Alleman, M. (1990). Gametic Imprinting in Maize in Relation to the Angiosperm Life-Cycle. In Meeting of the British Soc for Developmental Biology : Genomic Imprinting (Manchester, England), pp. 9-14.
    Kiesselbach, T.A. (1999). The structure and reproduction of corn. 50th Anniversary Edition. In The structure and reproduction of corn. 50th Anniversary Edition. pp. x + 101 pp.
    Kinoshita, T., Yadegari, R., Harada, J.J., Goldberg, R.B., and Fischer, R.L. (1999). Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11, 1945-1952.
    Kohler, C., Hennig, L., Spillane, C., Pien, S., Gruissem, W., and Grossniklaus, U. (2003).The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev. 17, 1540-1553.
    Kojima, A., and Kawaguchi, T. (1989). Apomictic nature of Chinese chive (Allium tuberosum Rottl.) detected in unpollinated ovule culture. J. Breed 39, 449-456.
    Kono, A., Umeda-Hara, C., Lee, J., Ito, M., Uchimiya, H., and Umeda, M. (2003). Arabidopsis D-type cyclin CYCD4;1 is a novel cyclin partner of B2-type cyclin-dependent kinase. Plant Physiol. 132, 1315-1321.
    Kosugi, S., and Ohashi, Y. (2002). Interaction of the Arabidopsis E2F and DP proteins confers their concomitant nuclear translocation and transactivation. Plant Physiol. 128, 833-843.
    La, H., Li, J., Ji, Z., Cheng, Y., Li, X., Jiang, S., Venkatesh, P.N., and Ramachandran, S. (2006). Genome-wide analysis of cyclin family in rice (Oryza Sativa L.). Mol. Genet. Genomics 275, 374-386.
    Lauber, M.H., Waizenegger, I., Steinmann, T., Schwarz, H., Mayer, U., Hwang, I., Lukowitz, W., and Jurgens, G. (1997). The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. The J. Cell Biol. 139, 1485-1493.
    Laureys, F., Dewitte, W., Witters, E., Van Montagu, M., Inze, D., and Van Onckelen, H. (1998). Zeatin is indispensable for the G2-M transition in tobacco BY-2 cells. FEBS Lett. 426, 29-32.
    Laux, T., Wurschum, T., and Breuninger, H. (2004). Genetic regulation of embryonic pattern formation. Plant Cell 16 Suppl, S190-202.
    Lee, J., Das, A., Yamaguchi, M., Hashimoto, J., Tsutsumi, N., Uchimiya, H., and Umeda, M. (2003). Cell cycle function of a rice B2-type cyclin interacting with a B-type cyclin-dependent kinase. Plant J. 34, 417-425.
    Lee, M.H., Reynisdottir, I., and Massague, J. (1995). Cloning or P57(Kip2), a Cyclin-Dependent Kinase Inhibitor with Unique Domain-Structure and Tissue Distribution.
    Genes Dev. 9, 639-649. Leyser, O. (2002). Molecular genetics of auxin signaling. Annu. Rev. Plant Physiol. 53, 377-398.
    Liu, C., Xu, Z., and Chua, N.H. (1993). Auxin Polar Transport Is Essential for the Establishment of Bilateral Symmetry during Early Plant Embryogenesis. Plant Cell 5, 621-630.
    Loeffler, M., and Potten, C.S. (1997). Stem cells and cellular pedigrees: A conceptual introduction. In Stem cells (Academic Press Ltd.; Academic Press, Inc.), pp. 1-27.
    Lopes, M.A., and Larkins, B.A. (1993). Endosperm origin, development, and function. Plant Cell 5, 1383-1399.
    Lui, H., Wang, H., Delong, C., Fowke, L.C., Crosby, W.L., and Fobert, P.R. (2000). The Arabidopsis Cdc2a-interacting protein ICK2 is structurally related to ICK1 and is a potent inhibitor of cyclin-dependent kinase activity in vitro. Plant J. 21, 379-385.
    Lukowitz, W., Mayer, U., and Jurgens, G. (1996). Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84, 61-71.
    Lukowitz, W., Roeder, A., Parmenter, D., and Somerville, C. (2004). A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116, 109-119.
    Luo, M., Bilodeau, P., Koltunow, A., Dennis, E.S., Peacock, W.J., and Chaudhury, A.M. (1999). Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U S A 96, 296-301.
    Luo, M., Dennis, E.S., Berger, F., Peacock, W.J., and Chaudhury, A. (2005). MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc. Natl. Acad. Sci. U S A 102, 17531-17536.
    Lygerou, Z., and Nurse, P. (1999). The fission yeast origin recognition complex is constitutively associated with chromatin and is differentially modified through the cell cycle. J. Cell Sci. 112, 3703-3712.
    Ma, Q.B., Dai, X.Y., Xu, Y.Y., Guo, J., Liu, Y.J., Chen, N., Xiao, J., Zhang, D.J., Xu, Z.H., Zhang, X.S., and Chong, K. (2009). Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol. 150, 244-256.
    Magyar, Z., Meszaros, T., Miskolczi, P., Deak, M., Feher, A., Brown, S., Kondorosi, E., Athanasiadis, A., Pongor, S., Bilgin, M., Bako, L., Koncz, C., and Dudits, D. (1997). Cell cycle phase specificity of putative cyclin-dependent kinase variants in synchronized alfalfa cells. Plant Cell 9, 223-235.
    Maitz, M., Santandrea, G., Zhang, Z.Y., Lal, S., Hannah, L.C., Salamini, F., and Thompson, R.D. (2000). rgf1, a mutation reducing grain filling in maize through effects on basal endosperm and pedicel development. Plant J. 23, 29-42.
    Mariconti, L., Pellegrini, B., Cantoni, R., Stevens, R., Bergounioux, C., Cella, R., and Albani, D. (2002). The E2F family of transcription factors from Arabidopsis thaliana. Novel and conserved components of the retinoblastoma/E2F pathway in plants. J. Biol. Chem. 277, 9911-9919.
    Marinos, N.G. (1970). Embryogenesis of the pea (Pisum sativum) I. The cytological environment of the developing embryo. Protoplasma 70, 261-279.
    Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G., and Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805-815.
    McGarry, T.J., and Kirschner, M.W. (1998). Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043-1053.
    Menges, M., and Murray, J.A. (2002). Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J. 30, 203-212.
    Menges, M., de Jager, S.M., Gruissem, W., and Murray, J.A. (2005). Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J. 41, 546-566.
    Menges, M., Hennig, L., Gruissem, W., and Murray, J.A.H. (2002). Cell cycle-regulated gene expression in Arabidopsis. J. Biol. Chem. 277, 41987-42002.
    Menges, M., Samland, A.K., Planchais, S., and Murray, J.A.H. (2006). The D-type cyclin CYCD3;1 is limiting for the G1-to-S-phase transition in Arabidopsis. Plant Cell 18, 893-906.
    Metraux, J.P., and Kende, H. (1983). The Role of Ethylene in the Growth-Response of Submerged Deep-Water Rice. Plant Physiol. 72, 441-446.
    Mews, M., Sek, F.J., Volkmann, D., and John, P.C.L. (2000). Immunodetection of four mitotic cyclins and the Cdc2a protein kinase in the maize root: their distribution in cell development and dedifferentiation. Protoplasma 212, 236-249.
    Miller, M.E., and Chourey, P.S. (1992). The Maize Invertase-Deficient Miniature-1 Seed Mutation Is Associated with Aberrant Pedicel and Endosperm Development. Plant Cell 4, 297-305.
    Minshull, J., Blow, J.J., and Hunt, T. (1989). Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell 56, 947-956.
    Mironov, V., De Veylder, L., Van Montagu, M., and Inze, D. (1999). Cyclin-dependent kinases and cell division in plants - The nexus. Plant Cell 11, 509-521.
    Mok, M.C. (1994). Cytokinins: chemistry, activity and function. . In Cytokinins and plant development: an overview (ed. M. Mok DWS, MC), pp. 155-166. CRC, Boca Raton, FL. Morgan, D.O. (1997). Cyclin-dependent kinases: Engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261-291.
    Moyer, S.E., Lewis, P.W., and Botchan, M.R. (2006). Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. U S A 103, 10236-10241.
    Murray, A.W., and Kirschner, M.W. (1991). What Controls the Cell-Cycle. Sci. Am. 264, 56-63.
    Murray, A.W., and Marks, D. (2001). Can sequencing shed light on cell cycling? Nature 409, 844-846.
    Murray, D.M. (1988). Nutrition of the Angiosperm Embryo, (Somerset, England: Research Studies Press Ltd).
    Nakagami, H., Kawamura, K., Sugisaka, K., Sekine, M., and Shinmyo, A. (2002). Phosphorylation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco. Plant Cell 14, 1847-1857.
    Nakai, T., Kato, K., Shinmyo, A., and Sekine, M. (2006). Arabidopsis KRPs have distinct inhibitory activity toward cyclin D2-associated kinases, including plant-specific B-type cyclin-dependent kinase. FEBS Lett. 580, 336-340.
    Nakayama, K. (1998). Cip/Kip cyclin-dependent kinase inhibitors: brakes of the cell cycle engine during development. BioEssays 20, 1020-1029.
    Nasmyth, K. (2001). Disseminating the genome: Joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673-745.
    Nawaschin, S.G. (1898). Resultate einer revision der befruchtungsvorgaenge bei Lilium martagon und Fritillaria tenella. Bul. Acad. Imp. Sci. St Petersburg 9, 377–382.
    Neuffer, M.G., and Sheridan, W.F. (1980). Defective Kernel Mutants of Maize. Genetic and Lethality Studies. Genetics 95, 929-944.
    Nevins, J.R. (1992). E2f-a Link between the Rb Tumor Suppressor Protein and Viral Oncoproteins. Science 258, 424-429.
    Niebel, A., de Almeida Engler, J., Hemerly, A., Ferreira, P., Inze, D., Van Montagu, M., and Gheysen, G. (1996). Induction of cdc2a and cyc1At expression in Arabidopsis thaliana during early phases of nematode-induced feeding cell formation. Plant J. 10, 1037-1043.
    Nishii, A., Takemura, M., Fujita, H., Shikata, M., Yokota, A., and Kohchi, T. (2000). Characterization of a novel gene encoding a putative single zinc-finger protein, ZIM, expressed during the reproductive phase in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 64, 1402-1409.
    Nowack, M.K., Grini, P.E., Jakoby, M.J., Lafos, M., Koncz, C., and Schnittger, A. (2006). A positive signal from the fertilization of the egg cell sets off endosperm proliferation inangiosperm embryogenesis. Nat. Genet. 38, 63-67.
    Nugent, J.H., Alfa, C.E., Young, T., and Hyams, J.S. (1991). Conserved structural motifs in cyclins identified by sequence analysis. J. Cell. Sci. 99, 669-674.
    Oakenfull, E.A., Riou-Khamlichi, C., and Murray, J.A. (2002). Plant D-type cyclins and the control of G1 progression. Philos Trans R Soc Lond B Biol Sci 357, 749-760.
    Ohad, N., Margossian, L., Hsu, Y.C., Williams, C., Repetti, P., and Fischer, R.L. (1996). A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci U S A 93, 5319-5324.
    Ohad, N., Yadegari, R., Margossian, L., Hannon, M., Michaeli, D., Harada, J.J., Goldberg, R.B., and Fischer, R.L. (1999). Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11, 407-416.
    Ohto, M., Fischer, R.L., Goldberg, R.B., Nakamura, K., and Harada, J.J. (2005). Control of seed mass by APETALA2. Proc. Natl. Acad. Sci. U S A 102, 3123-3128.
    Olsen, O.A. (2001). ENDOSPERM DEVELOPMENT: Cellularization and Cell Fate Specification. Annu Rev Plant Physiol Plant Mol. Biol. 52, 233-267.
    Olsen, O.A., Lemmon, B., and Brown, R. (1998). A model for aleurone development. Trends Plant Sci. 3, 168-169.
    Olsen, O.A., Lemmon, B.E., and Brown, R.C. (1995). The role of cytoskeleton in barley endosperm cell wall deposition. BioEssays 17, 803-812.
    Olsen, O.A., Linnestad, C., and Nichols, S.E. (1999). Developmental biology of the cereal endosperm. Trends Plant Sci. 4, 253-257.
    Olsen, O.A., Potter, R.H., and Kalla, R. (1992). Histo-differentiation and molecular biology of developing cereal endosperm. Seed Sci. Res. 2, 117-131.
    Orchard, C.B., Siciliano, I., Sorrell, D.A., Marchbank, A., Rogers, H.J., Francis, D., Herbert, R.J., Suchomelova, P., Lipavska, H., Azmi, A., and Van Onckelen, H. (2005). Tobacco BY-2 cells expressing fission yeast cdc25 bypass a G2/M block on the cell cycle. Plant J. 44, 290-299.
    Pagnussat, G.C., Yu, H.J., Ngo, Q.A., Rajani, S., Mayalagu, S., Johnson, C.S., Capron, A., Xie, L.F., Ye, D., and Sundaresan, V. (2005). Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132, 603-614.
    Paulovich, A.G., Toczyski, D.P., and Hartwell, L.H. (1997). When checkpoints fail. Cell 88, 315-321.
    Pines, J. (1995). Cyclins and cyclin-dependent kinases: theme and variations. Adv CancerRes 66, 181-212.
    Pines, J. (1999). Four-dimensional control of the cell cycle. Nat. Cell Biol. 1, 73-79.
    PlanasSilva, M.D., and Weinberg, R.A. (1997). The restriction point and control of cell proliferation. Curr. Opin. Cell Biol. 9, 768-772.
    Planchais, S., Perennes, C., Glab, N., Mironov, V., Inze, D., and Bergounioux, C. (2002). Characterization of cis-acting element involved in cell cycle phase-independent activation of Arath;CycB1;1 transcription and identification of putative regulatory proteins. Plant Mol. Biol. 50, 111-127.
    Porceddu, A., Stals, H., Reichheld, J.P., Segers, G., De Veylder, L., Barroco, R.P., Casteels, P., Van Montagu, M., Inze, D., and Mironov, V. (2001). A plant-specific cyclin-dependent kinase is involved in the control of G2/M progression in plants. J. Biol. Chem. 276, 36354-36360.
    Przemeck, G.K., Mattsson, J., Hardtke, C.S., Sung, Z.R., and Berleth, T. (1996). Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200, 229-237.
    Qin, L.X., Perennes, C., Richard, L., Bouvier-Durand, M., Trehin, C., Inze, D., and Bergounioux, C. (1996). G2-and early-M-specific expression of the NTCYC1 cyclin gene in Nicotiana tabacum cells. Plant Mol. Biol. 32, 1093-1101.
    Qu, L.Q., and Takaiwa, F. (2004). Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant biotechnology journal 2, 113-125.
    Ramirez-Parra, E., Frundt, C., and Gutierrez, C. (2003). A genome-wide identification of E2F-regulated genes in Arabidopsis. Plant J. 33, 801-811.
    Ramirez-Parra, E., Xie, Q., Boniotti, M.B., and Gutierrez, C. (1999). The cloning of plant E2F, a retinoblastoma-binding protein, reveals unique and conserved features with animal G(1)/S regulators. Nucleic Acids Res 27, 3527-3533.
    Redig, P., Shaul, O., Inze, D., Van Montagu, M., and Van Onckelen, H. (1996). Levels of endogenous cytokinins, indole-3-acetic acid and abscisic acid during the cell cycle of synchronized tobacco BY-2 cells. FEBS Lett. 391, 175-180.
    Renaudin, J.P., Doonan, J.H., Freeman, D., Hashimoto, J., Hirt, H., Inze, D., Jacobs, T., Kouchi, H., Rouze, P., Sauter, M., Savoure, A., Sorrell, D.A., Sundaresan, V., and Murray, J.A.H. (1996). Plant cyclins: A unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. Plant Mol. Biol. 32, 1003-1018.
    Riou-Khamlichi, C., Huntley, R., Jacqmard, A., and Murray, J.A. (1999). Cytokininactivation of Arabidopsis cell division through a D-type cyclin. Science 283, 1541-1544.
    Riou-Khamlichi, C., Menges, M., Healy, J.M.S., and Murray, J.A.H. (2000). Sugar control of Plant Cell cycle: Differential regulation of Arabidopsis D-type cyclin gene expression. Molecular and Cellular Biology 20, 4513-4521.
    Rossignol, P., Stevens, R., Perennes, C., Jasinski, S., Cella, R., Tremousaygue, D., and Bergounioux, C. (2002). AtE2F-a and AtDP-a, members of the E2F family of transcription factors, induce Arabidopsis leaf cells to re-enter S phase. Molecular Genetics and Genomics 266, 995-1003.
    Roudier, F., Fedorova, E., Lebris, M., Lecomte, P., Gyorgyey, J., Vaubert, D., Horvath, G., Abad, P., Kondorosi, A., and Kondorosi, E. (2003). The Medicago species A2-type cyclin is auxin regulated and involved in meristem formation but dispensable for endoreduplication-associated developmental programs. Plant Physiol. 131, 1091-1103.
    Sabelli, P.A., Dante, R.A., Leiva-Neto, J.T., Jung, R., Gordon-Kamm, W.J., and Larkins, B.A. (2005). RBR3, a member of the retinoblastoma-related family from maize, is regulated by the RBR1/E2F pathway. Proc. Natl. Acad. Sci. U S A 102, 13005-13012.
    Sambrook, J., Fritsch, E., and Maniatis, T. (1998). Molecular cloning: a laboratory manual.(Cold Spring Harbor Laboratory Press).
    Sauter, M., and Kende, H. (1992). Gibberellin-Induced Growth and Regulation of the Cell-Division Cycle in Deep-Water Rice. Planta 188, 362-368.
    Sauter, M., Mekhedov, S.L., and Kende, H. (1995). Gibberellin Promotes Histone H1 Kinase-Activity and the Expression of Cdc2 and Cyclin Genes During the Induction of Rapid Growth in Deep-Water Rice Internodes. Plant J. 7, 623-632.
    Scanlon, M.J., Stinard, P.S., James, M.G., Myers, A.M., and Robertson, D.S. (1994). Genetic-Analysis of 63 Mutations Affecting Maize Kernel Development Isolated from Mutator Stocks. Genetics 136, 281-294.
    Schmidt, R.J., Burr, F.A., and Burr, B. (1987). Transposon Tagging and Molecular Analysis of the Maize Regulatory Locus Opaque-2. Science 238, 960-963.
    Schmidt, R.J., Burr, F.A., Aukerman, M.J., and Burr, B. (1990). Maize Regulatory Gene Opaque-2 Encodes a Protein with a Leucine-Zipper Motif That Binds to Zein DNA. Proc. Natl. Acad. Sci. U S A 87, 46-50.
    Schnittger, A., Schobinger, U., Stierhof, Y.D., and Hulskamp, M. (2002). Ectopic B-type cyclin expression induces mitotic cycles in endoreduplicating Arabidopsis trichomes. Curr. Biol. 12, 415-420.
    Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jurgens, G., and Laux, T. (2000). Thestem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635-644.
    Schruff, M.C., Spielman, M., Tiwari, S., Adams, S., Fenby, N., and Scott, R.J. (2006). The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133, 251-261.
    Segers, G., Gadisseur, I., Bergounioux, C., de Almeida Engler, J., Jacqmard, A., Van Montagu, M., and Inze, D. (1996). The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phases of the cell cycle. Plant J 10, 601-612.
    Sekine, M., Ito, M., Uemukai, K., Maeda, Y., Nakagami, H., and Shinmyo, A. (1999). Isolation and characterization of the E2F-like gene in plants. FEBS Lett. 460, 117-122.
    Serna, A., Maitz, M., O'Connell, T., Santandrea, G., Thevissen, K., Tienens, K., Hueros, G., Faleri, C., Cai, G., Lottspeich, F., and Thompson, R.D. (2001). Maize endosperm secretes a novel antifungal protein into adjacent maternal tissue. Plant J. 25, 687-698.
    Sessions, R.A., and Zambryski, P.C. (1995). Arabidopsis gynoecium structure in the wild type and in ettin mutants. Development 121, 1519-1532.
    Shikata, M., Matsuda, Y., Ando, K., Nishii, A., Takemura, M., Yokota, A., and Kohchi, T. (2004). Characterization of Arabidopsis ZIM, a member of a novel plant-specific GATA factor gene family. J. Exp. Bot. 55, 631-639.
    Shikata, M., Takemura, M., Yokota, A., and Kohchi, T. (2003). Arabidopsis ZIM, a plant-specific GATA factor, can function as a transcriptional activator. Biosci. Biotechnol. Biochem. 67, 2495-2497.
    Shimotohno, A., Ohno, R., Bisova, K., Sakaguchi, N., Huang, J., Koncz, C., Uchimiya, H., and Umeda, M. (2006). Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis. Plant J. 47, 701-710.
    Sia, R.A.L., Herald, H.A., and Lew, D.J. (1996). Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast. Mol. Biol. Cell 7, 1657-1666.
    Sieberer, T., Hauser, M.T., Seifert, G.J., and Luschnig, C. (2003). PROPORZ1, a putative Arabidopsis transcriptional adaptor protein, mediates auxin and cytokinin signals in the control of cell proliferation. Curr. Biol. 13, 837-842.
    Sieburth, L.E., and Meyerowitz, E.M. (1997). Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9, 355-365.
    Song, X.J., Huang, W., Shi, M., Zhu, M.Z., and Lin, H.X. (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet.39, 623-630.
    Soni, R., Carmichael, J.P., Shah, Z.H., and Murray, J.A. (1995). A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7, 85-103.
    Soni, D.V., Sramkoski, R.M., Lam, M., Stefan, T., Jacobberger, J.W. (2008). Cyclin B1 is rate limiting but not essential for mitotic entry and progression in mammalian somatic cells. Cell Cycle 7, 1285-1300.
    Sorrell, D.A., Combettes, B., Chaubet-Gigot, N., Gigot, C., and Murray, J.A.H. (1999). Distinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco bright yellow-2 cells. Plant Physiol. 119, 343-351.
    Sorrell, D.A., Marchbank, A., McMahon, K., Dickinson, J.R., Rogers, H.J., and Francis, D. (2002). A WEE1 homologue from Arabidopsis thaliana. Planta 215, 518-522.
    Sorrell, D.A., Menges, M., Healy, J.M.S., Deveaux, Y., Amano, C., Su, Y., Nakagami, H., Shinmyo, A., Doonan, J.H., Sekine, M., and Murray, J.A.H. (2001). Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar bright yellow-2 cells. Plant Physiol. 126, 1214-1223.
    Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273-3297.
    Spielman, M., Vinkenoog, R., Dickinson, H.G., and Scott, R.J. (2001). The epigenetic basis of gender in flowering plants and mammals. Trends Genet. 17, 705-711.
    Stevens, R., Mariconti, L., Rossignol, P., Perennes, C., Cella, R., and Bergounioux, C. (2002). Two E2F sites in the Arabidopsis MCM3 promoter have different roles in cell cycle activation and meristematic expression. J. Biol. Chem. 277, 32978-32984.
    Sturaro, M., and Viotti, A. (2001). Methylation of the Opaque2 box in zein genes is parent-dependent and affects O2 DNA binding activity in vitro. Plant Mol. Biol. 46, 549-560.
    Sun, Y.J., Flannigan, B.A., and Setter, T.L. (1999). Regulation of endoreduplication in maize (Zea mays L.) endosperm. Isolation of a novel B1-type cyclin and its quantitative analysis. Plant Mol. Biol. 41, 245-258.
    Sveiczer, A., Novak, B., and Mitchison, J.M. (1996). The size control of fission yeast revisited. J. Cell Sci. 109, 2947-2957.
    Swiatek, A., Lenjou, M., Van Bockstaele, D., Inze, D., and Van Onckelen, H. (2002).Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol. 128, 201-211.
    Takada, S., Hibara, K., Ishida, T., and Tasaka, M. (2001). The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128, 1127-1135.
    Taliercio, E.W., Kim, J.Y., Mahe, A., Shanker, S., Choi, J., Cheng, W.H., Prioul, J.L., and Chourey, P.S. (1999). Isolation, characterization and expression analyses of two cell wall invertase genes in maize. J. Plant Physiol. 155, 197-204.
    Tapon, N., Moberg, K.H., and Hariharan, I.K. (2001). The coupling of cell growth to the cell cycle. Curr. Opin. Cell Biol. 13, 731-737.
    Tian, H.Q., Yuan, T., and Russell, S.D. (2005). Relationship between double fertilization and the cell cycle in male and female gametes of tobacco. Sex. Plant Reprod. 17, 243-252.
    Tiwari, S.B., Hagen, G., and Guilfoyle, T. (2003). The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15, 533-543.
    Toyoshima, H., and Hunter, T. (1994). P27, a Novel Inhibitor of G1 Cyclin-Cdk Protein-Kinase Activity, Is Related to P21. Cell 78, 67-74.
    Trehin, C., Ahn, I.O., Perennes, C., Couteau, F., Lalanne, E., and Bergounioux, C. (1997). Cloning of upstream sequences responsible for cell cycle regulation of the Nicotiana sylvestris CycB1;1 gene. Plant Mol. Biol. 35, 667-672.
    Trehin, C., Glab, N., Perennes, C., Planchais, S., and Bergounioux, C. (1999). M phase-specific activation of the Nicotiana sylvestris Cyclin B1 promoter involves multiple regulatory elements. Plant J. 17, 263-273.
    Trotochaud, A.E., Hao, T., Wu, G., Yang, Z., and Clark, S.E. (1999). The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11, 393-406.
    Uemukai, K., Iwakawa, H., Kosugi, S., de Jager, S., Kato, K., Kondorosi, E., Murray, J.A.H., Ito, M., Shinmyo, A., and Sekine, M. (2005). Transcriptional activation of tobacco E2F is repressed by co-transfection with the retinoblastoma-related protein: cyclin D expression overcomes this repressor activity. Plant Mol. Biol. 57, 83-100.
    Ulmasov, T., Hagen, G., and Guilfoyle, T.J. (1997). ARF1, a transcription factor that binds to auxin response elements. Science 276, 1865-1868.
    Umeda, M., Iwamoto, N., Umeda-Hara, C., Yamaguchi, M., Hashimoto, J., and Uchimiya, H. (1999b). Molecular characterization of mitotic cyclins in rice plants. Mol. Gen. Genet. 262, 230-238.
    Umeda, M., Umeda-Hara, C., Yamaguchi, M., Hashimoto, J., and Uchimiya, H. (1999a). Differential expression of genes for cyclin-dependent protein kinases in rice plants. Plant Physiol. 119, 31-40.
    Vandepoele, K., Raes, J., De Veylder, L., Rouze, P., Rombauts, S., and Inze, D. (2002). Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14, 903-916.
    Vanholme, B., Grunewald, W., Bateman, A., Kohchi, T., and Gheysen, G. (2007). The tify family previously known as ZIM. Trends Plant Sci. 12, 239-244.
    Vijayaraghavan, M.R., and Prabhakar, K. (1984). The endosperm. In Embryology of Angiosperms, B.M. Johri, ed, pp 319-376.
    Waizenegger, I., Lukowitz, W., Assaad, F., Schwarz, H., Jurgens, G., and Mayer, U. (2000). The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Curr. Biol. 10, 1371-1374.
    Wang, G., Kong, H., Sun, Y., Zhang, X., Zhang, W., Altman, N., DePamphilis, C.W., and Ma, H. (2004a). Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol. 135, 1084-1099.
    Wang, H., Fowke, L.C., and Crosby, W.L. (1997). A plant cyclin-dependent kinase inhibitor gene. Nature 386, 451-452.
    Wang, H., Qi, Q.G., Schorr, P., Cutler, A.J., Crosby, W.L., and Fowke, L.C. (1998). ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J. 15, 501-510.
    Wang, H., Zhou, Y.M., Gilmer, S., Whitwill, S., and Fowke, L.C. (2000). Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology. Plant J. 24, 613-623.
    Wang, W., and Chen, X. (2004). HUA ENHANCER3 reveals a role for a cyclin-dependent protein kinase in the specification of floral organ identity in Arabidopsis. Development 131, 3147-3156.
    Wang, Z., Chen, C., Xu, Y., Jiang, R., Han, Y., Xu, Z., and Chong, K. (2004b). A practical vector for efficient knockdown of gene expression in rice (Oryza sativa L.). Plant Mol. Biol. Rep. 22, 409-417.
    Weijers, D., and Jurgens, G. (2005). Auxin and embryo axis formation: the ends in sight? Curr. Opin. Plant Biol. 8, 32-37.
    Weijers, D., Benkova, E., Jager, K.E., Schlereth, A., Hamann, T., Kientz, M., Wilmoth, J.C., Reed, J.W., and Jurgens, G. (2005). Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J. 24, 1874-1885.
    Weinl, C., Marquardt, S., Kuijt, S.J., Nowack, M.K., Jakoby, M.J., Hulskamp, M., and Schnittger, A. (2005). Novel functions of plant cyclin-dependent kinase inhibitors, ICK1/KRP1, can act non-cell-autonomously and inhibit entry into mitosis. Plant Cell 17, 1704-1722.
    Xu, J., Zhang, H.Y., Xie, C.H., Xue, H.W., Dijkhuis, P., and Liu, C.M. (2005). EMBRYONIC FACTOR 1 encodes an AMP deaminase and is essential for the zygote to embryo transition in Arabidopsis. Plant J. 42, 743-756.
    Yabuuchi, H., Yamada, Y., Uchida, T., Sunathvanichkul, T., Nakagawa, T., and Masukata, H. (2006). Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins. EMBO J. 25, 4663-4674.
    Yamaguchi, M., Fabian, T., Sauter, M., Bhalerao, R.P., Schrader, J., Sandberg, G., Umeda, M., and Uchimiya, H. (2000). Activation of CDK-activating kinase is dependent on interaction with H-type cyclins in plants. Plant J. 24, 11-20.
    Yoshida, K.T., Wada, T., Koyama, H., Mizobuchi-Fukuoka, R., and Naito, S. (1999). Temporal and spatial patterns of accumulation of the transcript of Myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol. 119, 65-72.
    Yoshizumi, T., Nagata, N., Shimada, H., and Matsui, M. (1999). An Arabidopsis cell cycle -dependent kinase-related gene, CDC2b, plays a role in regulating seedling growth in darkness. Plant Cell 11, 1883-1896.
    Zeng, Y., Forbes, K.C., Wu, Z.Q., Moreno, S., Piwnica-Worms, H., and Enoch, T. (1998). Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature 395, 507-510.
    Zheng, Q., and Wang, X.J. (2008). GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res. 36, W358-363.
    Zhou, Y., Fowke, L.C., and Wang, H. (2002). Plant CDK inhibitors: studies of interactions with cell cycle regulators in the yeast two-hybrid system and functional comparisons in transgenic Arabidopsis plants. Plant Cell Rep. 20, 967-975.
    Zhou, Y., Wang, H., Gilmer, S., Whitwill, S., and Fowke, L.C. (2003). Effects of co-expressing the plant CDK inhibitor ICK1 and D-type cyclin genes on plant growth, cell size and ploidy in Arabidopsis thaliana. Planta 216, 604-613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700