龙眼体胚发生系统的优化及其在种质保存与遗传转化上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙眼(Dimocarpus longan Lour.)是我国南方大面积种植的重要热带亚热带果树。本研究主要以长期保存的龙眼胚性培养物为材料,对以下6个方面进行研究:①对三种类型龙眼EC进行限制生长保存条件的优化;②17个龙眼品种的体胚发生以及植株再生;③选择并优化龙眼愈伤组织转基因受体系统;④采用根癌农杆菌介导法进行ACS反义基因转化龙眼并优化转化体系;⑤对抗性龙眼EC进行筛选并进行其生长状况观察;⑥对转ACS反义基因的抗性EC进行GUS稳定表达检测和GUS基因的PCR检测。主要研究结果如下:
     1三种类型龙眼胚性愈伤组织限制生长保存条件优化
     试验比较了不同浓度山梨醇、甘露醇、PEG、肌醇、麦芽糖以及光质的差异对三种类型龙眼胚性EC生长的影响,并对上述三种类型龙眼EC最佳保存条件进行验证。试验结果表明: CⅢI和CⅡa两种类型的龙眼EC在相应的培养基中可以将其保存时间延长到60d,CⅡb也能够将其保存时间延长到50d,并且能够保持旺盛的生长及再生能力。
     2 17个龙眼品种的体胚发生和植株再生
     为检测长期限制性离体保存的龙眼EC的体胚发生能力,试验以尚未完成植株再生的17个龙眼胚性愈伤组织为材料,对其进行体胚诱导、成熟以及植株再生的相关研究,与此同时本试验的完成标志着所有长期限制性保存的龙眼EC均实现植株再生。试验结果表明,龙眼品种的差异对体胚发生和植株再生有一定的影响。对17个龙眼品种进行体胚诱导的结果表明:不同品种、不同麦芽糖浓度、甘露醇浓度、PEG浓度对体胚出现时间、胚状体数量以及质量都具有一定的影响,体胚出现时间一般在15-35d,形成胚状体的数量从大约在1080-14380个?g,分化频率为100%,颜色多为白色小子叶胚;对17个龙眼品种进行体胚成熟的研究表明:不同龙眼品种、不同比例的蔗糖和麦芽糖、不同高渗试剂、干燥处理对胚状体的大小、形态以及褐化情况都有一定的影响,其中胚状体大小在5-15mm不等,多白色增大;对17个龙眼品种进行植株再生的研究表明:不同龙眼品种、不同胚状体都对体胚萌发时间、体胚萌发率以及体胚再生苗的长势有一定的影响,萌发率也存在着一定的差异一般在从35.67%-90.00%不等,正常成熟体胚的萌发时间最早在13 d左右就萌发,最晚需要20 d才能萌发。
     3选择并优化龙眼愈伤组织转基因受体系统
     由于愈伤组织受体系统具有较强的分化和再生能力,遗传稳定性良好。试验以红核子的愈伤组织作为根癌农杆菌介导ACS反义基因转化龙眼的受体系统。通过对龙眼EC进行生长量的测定,发现在继代培养15 d左右的龙眼EC其生长速度最快,生活力最强,最适宜作为转基因的受体材料;试验过程中采用生长量测定和定性观察相结合的方法,试验发现100 mg·L-1卡那霉素浓度适合于龙眼愈伤组织进行转化操作的筛选抗生素浓度,而头孢霉素浓度范围在0-400 mg·L-1时,对愈伤组织的正常生长和再生均无较大影响。
     4农杆菌介导的ACS反义基因转化龙眼
     本试验在上述研究的基础上,对农杆菌介导的龙眼受体系统的遗传转化策略进行研究。试验结果表明,高效稳定的转化条件为将龙眼受体材料在转化前置于0.15mol·L-1的液态甘露醇中6 h,农杆菌在1/2 MS附加葡萄糖浓度80 g·L-1的重悬液中,将菌液的浓度稀释成0.9(OD600),受体材料侵染30 min,洗菌后在共培养基pH为5.6,温度为22℃时进行共培养5-6 d。在对最佳转化条件的验证试验中我们发现,以上述条件进行遗传转化可获得GUS瞬时表达率达90%以上的龙眼抗性EC,经过后期筛选本试验得到龙眼抗性EC 55份。
     5筛选和观察抗性EC以及GUS基因的分子检测
     对转化ACS反义基因的龙眼抗性EC进行筛选及观察,并对前期抗性EC进行GUS瞬时表达检测、后期抗性EC的GUS基因的PCR检测。试验采用逐步加压法作为抗性EC的筛选方法,其最终以附加100 mg﹒L-1卡那霉素、1 mg﹒L-1 2,4-D以及0.5 mg﹒L-1NAA的筛选培养基对共培养后的龙眼EC进行筛选,用DNA微量提取法对抗性EC进行PCR检测,结果表明GUS基因已整合进龙眼基因组。但是龙眼的抗性EC生长较为缓慢,体胚发生能力较差。
Longan(Dimocarpus longan Lour.)is an important southern subtropical fruit which has a large-scale cultivation in China. In this experiment, The long-term conserved embryogenic calli (EC) of longan were used as the materials to study the following aspects: the optimization of the restricting conservation conditions for the longan EC of three types; plant regeneration via somatic embryogenesis in 17 cultivars of longan; shoosing and optimizing the transgenic receptor system of longan; optimizing the transformation system of antisense ACS gene into longan;screening of the resistant longan EC and observation of the growth status; detection of the resistant longan EC. The main results were as follows:
     1. The optimization of the conditions for minimal growth conservation of longan EC of three types
     The effects of the concentrations of mannitol, sorbitol, PEG, inositol, maltose and the lights quality on the growth of embryogenic callus (EC) were compared in three types of longan EC, and the optimization of the minimal growth conservation conditions was validated in three types of longan EC. The obtained results showed that the suitable medium for CⅢEC was the MS medium supplemented with 1mg·L-1 2,4-D, 1.5% sucrose, 0.6% agar, 20g·L-1 mannitol, 0.1 g·L-1 inositol and 5g·L-1 maltose; the suitable medium for CⅡa was the MS medium supplemented with 1mg·L-1 2,4-D, 1.5% sucrose, 0.6% agar, 20g·L-1 mannitol, 0.2g·L-1 inositol and 5g·L-1 maltose; the suitable medium for CⅡb was the MS medium supplemented with 1mg·L-1 2,4-D, 1.5% sucrose, 0.6% agar, 20g·L-1 mannitol, 0.1g·L-1 inositol; the subculture cycle could be further prolonged from 20 d to more than 60 d for CⅢI and CⅡa on the suitable medium. For CⅡb, it could be prolonged to more than 50 d. At the same time, the EC could maintain strong growth and regeneration ability.
     2. Plant regeneration via somatic embryogenesis from longan EC of 17 longan cultivars
     In order to checkout the capacity of somatic embryogenesis of the minimal growth conservation of longan EC, in this experiment, longan EC of 17 cultivars were used as the materials for the studies on the induction, maturation and regeneration. And at the same time, when it was finished, it meaned the regeneration of all the conserved EC. The results showed that the somatic embryogenesis and the regeneration were affected by different varieties of longan. During the induction of somatic embryogenesis, different cultivars, concentrations of maltose, mannitol, PEG, affected the time, quantity and quality of somatic embryogenesis. And the somatic embryogenesis occurred from 15 d to 35 d, the frequency of somatic embryogenesis was 100%, the colors of the embryoids were white, the number of differentiated embryoids was 1080-14380 per gram callus. During the stage of embryoid maturation, different cultivars, the ratio of sucrose and maltose, concentrations of mannitol, PEG, and different time of desiccation effected the size, browning and the shape of matured embryoids.The embryoids were from 5 mm to 15 mm in size, white and larger. During the stage of plantlet regeneration, the results showed that the germination rate of somatic embryos and plantlet growth were affected by different cultivars, different types of somatic embryogenesis. The germination rate was 35.67% to 90.00% with a great difference. The time of normal matured somatic embryos germinated is 13-15 d.
     3. Choosing and optimization the transgenic receptor systems for Dimocarpus longan Lour.
     Because the receptor system of calli was provided with strong ability of differentiation, regeneration and favorable genetic stability. In the experiment, the EC of Honghezi was used as material for genetic transformation. Calli pre-cultured for about 15 d were proved to the appropriate genetic transformation materials for their rapid-growth and strong vitality stage. Through measuring the fresh weight increase of EC, it was suitable for transgenic. Through measuring the fresh weight increase combined with the qualitative obserbation, 100mg·L-1 kanamycin concentration was suitable for transgenic operations on EC, both the growth and regeneration were normal, while the cephamycin concentration range was 0-400 mg·L-1.
     4. The introduction of antisense ACS gene into longan mediated by Agrobacterium tumefaciens.
     Based on the above results, new transgenic strategies about transformation of longan were performed. The highly efficient and stable parameters of transgenic operations on longan showed that the receptor material of longan was pretreated with 0.15 mol·L-1 mannitol in liquid for 6 h , taking 1/2 MS liquid culture medium as re-suspension liquid, containing 80.0 g·L-1 glucose, and with 0.9 OD600 value of Agrobacterium suspension, the receptor material was infected for 30 min, then being co-cultured onto the MS medium (pH 5.6) supplemented with 1 mg·L-1 2,4-D for 6 days at 22℃in dark. The transient expression of GUS could reach 90% of the resistant EC, Through the latter part of screening in this study, 55 accessions of resistant EC were chalked up.
     5. The selection and screening of longan resistant EC, and the molecular detection of the GUS gene.
     In this experiment, the transient expression of GUS at the prior period and the detection by PCR assays of GUS for the resistant EC at the later period were examined. The gradual enhancement of concentration for kanamycin was used. At last, the resistant EC were selected on MS medium supplemented with 100 mg﹒L-1 kanamycin, 1 mg·L-1 2,4-D and 0.5 mg·L-1 NAA. 55 accessions of longan germplasm were maintained for further studies. The rapid method for trace genomic DNA extraction for identification of transgenic EC of longan with PCR, which proved that the GUS gene was integrated into the genome of these resistant EC. The resistant EC grew slowly, at the same time the capacity of somatic embryogenesis was weak.
引文
1.安娜.龙眼体胚发生过程中特异表达小分子多肽的分离、鉴定与基因克隆(D).福州:福建农林大学硕士学位论文, 2006.
    2.陈春玲.龙眼体胚发生机理初步研究[D].福州:福建农林大学硕士学位论文, 2001.
    3.陈辉,陈晓玲,陈龙清.百合种质资源限制生长法保存研究.园艺学报,2006,33(4):789-793.
    4.陈金慧,王洪云,诸葛强等.林木体胚发生技术进展[J]林业科技开发,2000,14(3):9-11.
    5.陈善春,张进仁,黄自然等,根癌农杆菌介导柞蚕抗菌肽D基因转化柑桔的研究[J]中国农业科学, 1997,30(3):7-13.
    6.陈廷速,张军,夏宁邵,等.影响根癌农杆菌介导的香蕉遗传转化因素的研究[J].广西农业生物科学, 2002, 21(1): 26-31.
    7.陈夜江,赖钟雄.果树基因工程的应用与面临的主要问题[J].福建果树,2002,1:14-17.
    8.陈颖,姜鸿,王兴智.无选择标记基因植物转化系统研究进展[J].生物工程进展,2001,21(2):4-7.
    9.程家胜,鄂超苏,甲颖川等.转Bt抗虫基因苹果植株的再生[J].中国果树, 1994, (4):14-15.)
    10.程家胜,苹果基因转移技术研究初报[J],园艺学报, 1992,19(2):101-104.
    11.程玉兰,刁丰秋.体细胞胚蔗糖调控培养对胡萝卜体细胞胚内源ABA水平的效应[J ] Acta Botanica Sinica (植物学报:英文版) , 1999 , 41 (7) : 761– 765
    12.崔凯荣、戴若兰主编.《植物体细胞胚胎发生的分子生物学》科学出版社出版.2000 P17.
    13.达克东,任德才,张松等,超强表达介导豇豆胰蛋白酶抑制剂基因转化苹果的研究[J],园艺学报, 2001, 28(1):57-58.
    14.丁燕,韩振海,许雪峰,等.柿花发育相关的MADS- box基因克隆与表达.园艺学报,2007,34(1):39- 42.
    15.窦连登,刘凤之,汪景彦.我国主要果树科研成就与进展[J].中国果树, 1991, (4): 3-6.
    16.樊军锋,李嘉瑞,韩一凡,等.mtlD/gutD双价耐盐基因转化秦美猕猴桃的研究.西北农林科技大学学报,2002,30(3):53- 58.
    17.费云标,孙龙华,黄涛,舒念红,高素琴,简令成.沙冬青高活性抗冻蛋白的发现[J];植物学报; 1994 ,8:11-18
    18.冯殿齐,刘静,孙仲序,等.利用氮离子注入技术转化抗寒基因(afp)初步研究.山东农业大学学报(自然科学版),2005,36(1):86-92.
    19.冯莹.根癌农杆菌介导ACS反义基因转化石斛兰的研究[D].福州:福建农林大学硕士学位论文,2008,5(35):1-100.
    20.付传明,赵志国,黄宁珍,李锋,唐凤鸾.药用植物红根草种质资源的离体保存[J].广西植物, 2007, 27 (4):653 - 657.
    21.高武军,魏开发,孙富丛,等.温度对根癌农杆菌转化效率的影响[J].华北农学报.2004,19(2):81-83.
    22.韩继成,方宣钧.编码荔枝乙烯受体(LcERS1)的cDNA基因的克隆与分析.分子植物育种,2003,3(1):351-356.
    23.郝贵霞,朱祯,朱之悌.豇豆蛋白酶抑制剂基因转化毛白杨的研究[J].植物学报, 1999, 41(12): 1276-1282.
    24.何业华,熊兴华,林顺权,等.根癌农杆菌介导反义ACC合成酶基因对枣树的转化[J].湖南农业大学学报(自然科学版),2004,30(1):33-36.
    25.洪燕萍,陈春玲,赖钟雄.基因工程在果实延熟中的应用[J].福建果树, 2000, (1) 9-11.)
    26.华志华,黄大年.转基因植物中外源基因的遗传学行为[J].植物学报,1999, (1):1-5.
    27.黄琼珍.植物基因工程在控制果实成熟上的应用[J].四川果树,1997, (4):27-29.
    28.黄双龙.根癌农杆菌介导ACS反义基因转化水仙花的研究[D].福州:福建农林大学硕士学位论文,2008.
    29.黄学林,李莜菊.高等植物组织离体培养的形态建成及其调控[M ].北京:科学出版社, 1995.
    30.黄玉吉.根癌农杆菌介导的ACS反义基因和PEAS基因转化香蕉研究[D].福州:福建农林大学硕士学位论文,2006.
    31.金勇丰,张耀洲,陈大明,等.桃ACC氧化酶基因的克隆和植物表达载体的构建[J].园艺学报,1998,25(1):37-43.
    32.金志强,李瑞珍,徐碧玉,等.香蕉果实特异性ACC合成酶基因的cDNA克隆及反义载体的构建[J].农业生物技术学报, 2002,10(3):305-306.
    33.康玉庆,张存金.百合科植物组织培养中的体细胞胚发生[J ] .天津教育学院学报(自然科学版) ,1992 ,(2):8– 11
    34.赖呈纯,赖钟雄,何园,方智振,等.龙眼胚性培养物高分辨率蛋白质双向电泳技术[J].福建农林大学学报:自然科学版. 2008,37 (1): 37-41.
    35.赖钟雄,陈春玲,黄素华,等.龙眼胚性愈伤组织的长期继代与染色体数目变异[J].福建农业大学学报.2001,30(1): 29-32.
    36.赖钟雄,陈桂信,等.龙眼胞浆形抗坏血酸过氧化物酶基因3’末端序列的同源克隆[J].农业生物技术学报, 2006,14(1):141-142.
    37.赖钟雄,陈振光.龙眼胚性悬浮细胞原生质体培养及其体胚发生再生植株[J].热带作物学报. 2002, 23 (3): 45-52.
    38.赖钟雄,潘良镇,陈振光.龙眼胚性细胞系的建立与保持[J].福建农业大学学报.1997b,26(2): 160-167.
    39.赖钟雄,潘良镇,陈振光.龙眼胚性愈伤组织的高频率体细胞胚胎发生[J].福建农业大学学报,1997, 26(3): 271-276.
    40.赖钟雄,陈振光,潘良镇,等.无患子科果树生物技术研究现状与展望[J].中国南方果树,1997c, 26 (6) : 37- 39
    41.赖钟雄,陈振光.龙眼胚性细胞悬浮培养再生植株[J].应用与环境生物学,2002,8:481-491
    42.赖钟雄,潘良镇,陈振光.龙眼体细胞胚胎的高频率萌发与植株再生[J].福建农业大学学报, 1998,27 (1):31-36.
    43.赖钟雄.龙眼生物技术研究[M].福建科学技术出版社, 2003.
    44.赖钟雄.龙眼原生质体培养高效再生体系的研究[D].福州:福建农业大学博士学位论文, 1997.
    45.雷东锋,李剑君,张宴,等.果实成熟过程相关调控基因研究进展[J].西北植物学报2000,20 (1):149-157.
    46.李黛,曾艳玲,魏福伦.淡黄花百合的离体保存[J].贵阳学院学报:自然科学版, 2006, 1 (3):45 - 47.
    47.李冬梅.龙眼体胚成熟机理研究[D].福州:福建农林大学硕士学位论文, 2003.
    48.李广平,房经贵,蔡斌华,等.梅PGIP基因的克隆及全序列分析.园艺学报,2006,33(1):125- 127.
    49.李广平,乔玉山,陶建敏,等.中国李PGIP基因的克隆及序列分析.西北植物学报,2006,26(9):1870- 1893.
    50.李惠华.龙眼体胚发生过程中APX的生理学与分子生物学研究[D].福州:福建农林大学硕士学位论文, 2005.
    51.李娟.果树转基因研究进展[J].陕西农业科学, 2005 ,1:61-63
    52.李天然,等.番茄ACC合成酶反义基因对河套蜜瓜的转化[J].植物学报,1999,41(2):142-145.
    53.李小红,汤浩茹.根癌农杆菌介导的草莓遗传转化研究进展[J].生物技术通报,2006,6: 23-25
    54.梁海曼,1991.见:颜昌敬主编,农作物组织培养,上海:上海科技出版社
    55.林秀莲.龙眼胚性愈伤组织限制生长保存及其遗传机理的研究[D].福州:福建农林大学硕士学位论文, 2009.
    56.林顺全,宋刚,曾黎辉.果树转基因研究进展. [J].园艺学报,2001,28:589~596.
    57.刘传银,田颖川,沈全光,等.番茄ACC合成酶cDNA克隆及其对果实成熟的反义抑制[J].生物工程学报,1998,14(2):139~146.
    58.刘存德.果实成熟及其基因调控[J].生物学通报,1999, 1: 4-6
    59.刘凤华,郭岩,谷东梅,等.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报,1997,24:54- 58.
    60.刘华英,萧浪涛,等植物体细胞胚发生与内源激素的关系研究进展[J ]湖南农业大学学报(自然科学版) 2002,28 (4) :349- 354.
    61.刘庆忠,赵红军,等抗真菌r-硫蛋白Rs-afpl基因导入苹果获得转基因植株[J]农业生物技术学报, 2001,9:239-242.
    62.刘石泉,余沛涛.农杆菌介导高等植物基因转化的影响因素[J].科技进展,2003, 25(1):16-21
    63.刘松瑜,谢深喜,陶爱群等,农杆菌介导的果树转基因研究进展[J].中国农学通报2009,25(09):179-183.
    64.鲁国武,植物体细胞胚胎研究进展及研究基础[J].安徽农学通报,2007,13(8):52-54
    65.罗云波,生吉萍,申琳.番茄反义ACC合成酶基因的导入与乙烯生物合成的控制[J].农业生物技术学报,1995,3:38-44.
    66.马庆虎,等.在转基因烟草中表达番茄ACC合成酶反义基因及其对芽再生的影响[J].植物学报,1997,39(11):1047-1052.
    67.满若君.蝴蝶兰.文心兰再生体系的建立及遗传转化体系的初步研究[D].南宁:广西大学硕士学位论文, 2007.
    68.曾黎辉,农杆菌介导荔枝(Litchi chinensis Sonn.)遗传转化体系的建立及导入LEAFY基因研究[D].福州:福建农业大学博士学位论文, 2002.
    69.潘才博.蝴蝶兰ACS反义基因的遗传转化及ACS基因的克隆研究[D].福州:福建农林大学硕士学位论文,2007.
    70.潘晓,徐春香,陈厚彬.植物体细胞胚发生的研究进展[J ] .江西农业学报,2009,21 (10):103~107
    71.潘颖南,蒙平,何铁光,等.根癌农杆菌介导库拉索芦荟遗传转化因素优化[J].广西植物, 2005,25(2):125-128.
    72.权银,陈竹生,郭天池,张进仁,陈善春.柑桔种质的离体保存[J].中国南方果树, 1996, 25 (4): 3 - 5.
    73.饶雪琴,李华平.番木瓜体胚间接发生方式的研究[ J ].园艺学报, 2007,34 (6) :1539~1542
    74.任小林,金志强,李嘉瑞,等.猕猴桃钙调蛋白cDNA的克隆及测序.西北农业大学学报,1997,25(3):1- 5.
    75.邵巍.龙眼胚性培养物胞质型apx基因克隆及其表达研究[D].福州:福建农林大学硕士学位论文, 2008.
    76.宋刚,林顺权,吕柳新,等.反义RNA技术控制果实成熟的研究进展[J].福建农业大学学报,2000,29(4):421-428.
    77.宿红艳,周盛梅,王磊,等.草莓APETALA2同源基因的克隆及表达分析.西北植物学报,2005,25(10):1937-1942.
    78.汤福强,刘愚.ACC合成酶基因及其反义基因转化番茄获得转基因植株[J].科学通报,1994, 39(24): 2280-2283.
    79.汤浩如,王永清,任正隆.果树的体细胞胚发生[J].四川农业大学学报,1999,17(1):69- 75.
    80.陶兴林.甜瓜高效再生体系、转化体系的建立与优化[D].兰州:甘肃农业大学,2005:17-18.
    81.王春霞,简志英,刘愚,等. ACC合成酶基因及其对西瓜的遗传转化[J].植物学报,l997,39(5): 445-450.
    82.王蒂主编.植物组织培养[M].北京:中国农业出版社出版,2004.
    83.王凤华.龙眼体细胞胚胎发生过程中的基因差异表达[D].福州:福建农林大学博士学位论文, 2002.
    84.王关林,方宏筠.果树基因工程研究进展及展望[J].中国果树,2002,2:43-46.
    85.王关林,方宏筠.植物基因工程原理与技术[M」.北京:科学出版社, 1998.646
    86.王关林,杨怀义,夏然,等.草莓果实膜联蛋白基因(annfaf)全长cDNA克隆及序列分析.植物学报,2001,43(8):873-875.
    87.王家福,朱春林,陈桂信,等.龙眼梅PGIP基因的克隆及序列分析.果树学报,2007,24(1):55- 58.
    88.王俊英,慈忠玲,等.毛叶海棠( Begonia cathayana Hemsl1)的组织培养和体细胞胚的发生[J ]内蒙古农业大学学报, 2001, 22 (3): 52 - 55
    89.王俊英,张开春,王俊平,等.樱桃ACC氧化酶基因的克隆和序列分析.华北农学报,2002,16(1):11- 15.
    90.王萍,吴颖,季静等.抗生素对大豆愈伤组织的诱导和生长的影响[J].遗传, 2001, 23(4): 321-324.
    91.王声斌,邹伟权,余让才等,农杆菌法将抗菌肽D基因导入焦柑胚性细胞的研究[J].华南农业大学学报, 2002,23(2):47-50.
    92.王新力,彭学贤,李宏.香蕉果实特异性ACC合酶的cDNA克隆及序列分析[J].生物工程学报,2000,16(2):134-136.
    93.王瑶,林木兰,沈锡辉等.农杆菌介导的木本植物遗传转化[J].生物技术通报,1999,6:23~27.
    94.王宇.根癌农杆菌介导ACS反义基因转化厚荚相思的研究[D].福州:福建农林大学硕士学位论文,2007.
    95.王中英,王艺,童德中.生物技术在果树上的应用.世界农业,1997,12:20-23.
    96.魏文雄,杨永青.龙眼子叶胚状体的诱导和试管苗培育[J].福建师范大学学报(自然科学版), 1981, (2): 102-106.
    97.吴凡,徐勇,常凤启,等.桃中两个MADS box基因的克隆与表达分析.遗传学报,2004,31(9):908- 918.
    98.吴刚等.Bt杀虫晶体蛋白基因及其转基因育种研究进展[J].生物工程进展, 2000,20(2):45-48.
    99.吴延军,徐昌杰等[J].果树学报, ,2002 ;2 :123-127
    100.吴延军,张上隆,徐昌杰,李南羿,金勇丰.根癌农杆菌介导的桃幼胚转化实验参数研究[J].果树学报,2004,21(5):477-479.
    101.熊爱生,姚泉洪,李贤,等. ACC氧化酶和ACC合成酶反义RNA融合基因导入番茄和乙烯合成的抑制[J].实验生物学报, 2003, 36(6):428-434.
    102.熊爱生,姚泉洪,李贤,等. ACC氧化酶和ACC合成酶反义RNA融合基因导入番茄和乙烯合成的抑制[J].实验生物学报, 2003,36(6):428-434.
    103.徐刚标.植物种质资源离体保存研究进展[J].中南林学院学报,2000,20(4): 81-87.
    104.徐培文,曲士松,刘恒英,张杰,孙晋斌,黄宝勇.中国大蒜种质资源离体保存初步研究[J].中国农业科学, 2002, 35 ( 3) : 314 - 319.
    105.许勇,余阳俊,段渺香.黄瓜成熟胚胚性细胞悬浮系的建立[J].农业生物技术学报,1993, 1(1):79-83
    106.闫新甫,主编.转基因植物[M].北京:科学出版社,2003.
    107.杨永青,魏文雄.龙眼花粉植株的诱导[J].遗传学报, 1984, 11(4): 288-293.
    108.杨永青,陈永锋.焦核龙眼果实遗传性状及胚培养的研究[J].园艺学报,1987,14(4):217- 222.
    109.叶炜,赖钟雄,陈义挺,林秀莲. 51份龙眼种质的胚性愈伤组织诱导及其离体保存[J].福建农林大学学报:自然科学版, 2007, 36 (1): 28 - 33.
    110.叶霞,陶建敏,蔡斌华,等.苹果铁结合蛋白基因的克隆及表达特性.园艺学报,2006,33(5):1051- 1054.
    111.尹俊,哈斯阿古拉,方天祺.河套蜜瓜ACC合成酶cDNA片断的克隆和序列分析[J].生物技术,1997,7:10-13.
    112.曾黎辉,陈振光,吕柳新.发根农杆菌转化龙眼研究初报[J].福建农业大学学报, 2000, 29(1):27- 30.
    113.曾黎辉.龙眼遗传转化研究初报[D].福州:福建农业大学硕士学位论文.1998.
    114.张春叶,朱凤林,邱煜辉,刘景春,黄聪丽.我国龙眼品种资源栽培技术及生理研究的进展[J].福建农业大学学报,1999,(2).157-162.
    115.张开春,张军科.马哈利樱桃PGIP基因克隆及全序列测定.农业生物技术学报,2000,8(3):281- 283
    116.张克忠,白永延苏云金杆菌内毒素蛋白基因转人葡萄胚性愈伤组织细胞及转基因.实验生物学报, 1997,30(3):303-311.,
    117.张克忠,鲍雪珍,白永延等.苏云金杆菌内毒素蛋白基因转入葡萄胚性愈伤组织细胞及转基因植株再生的研究[J ].实验生物学报, 1997,30 (3) :303-308.
    118.张蕾,齐力旺,韩素英,落叶松体细胞胚原胚团阶段差异表达基因文库的构建与分析,分子植物育种, 2008, 6 (4):675-682
    119.张松,温孚江,朱常香,等.抗生素对大白菜组织培养形态发生的影响[J].山东农业大学学报(自然科学版), 2000, 4: 385-388.
    120.张涛.芸芥体细胞胚胎发生的组织细胞学研究[ J ].园艺学报,2007,34 (1):131~134.
    121.张宪省,闫先喜,马小杰.授粉诱导兰花花部乙烯生物合成基因在转录水平上的表达[J].植物学报,1995,37(5):356-360.
    122.张献龙,唐克轩.植物生物技术[M].北京:科学出版社, 2004,291.
    123.张志宏,景士西,王关林.果树基因工程研究进展[J].果树科学,1995, (3): 188-193
    124.赵慧,宋桂英,将菜豆几丁质酶基因导入苹果砧木的研究[J]激光生物学报,1998,7(3):163-167.
    125.赵密珍,王壮伟,钱亚明,苏家乐,袁骥.不同培养基对草莓种质离体保存的影响[J].果树学报, 2006, 23 (1):27 - 30.
    126.赵巧阳.香蕉根癌农杆菌介导ACS反义基因遗传转化及ACS基因克隆[D].福州:福建农林大学硕士学位论文,2009.
    127.赵玉辉.农杆菌介导果树遗传转化之研究进展.[J]中国农学通报报, 2005,11 (11):281-284.
    128.郑启发,陈大成,黄自然等,人工合成柞蚕抗菌肽D基因转化沙田袖[J],华南农业大学学报, 1999,20 (1):103-107.
    129.郑启发,胡桂兵,陈大成,等.荔枝龙眼细胞悬浮培养和转基因研究[J].果树学报,2005,22(2):125-128.
    130.郑泗军,吴吉祥,洪彩霞.棉花组织培养中畸形胚产生原因的分析[J].浙江农业大学学报,1993,19(2)193-197.
    131.郑学勤,禤维言,李明芳.无核荔枝花发育相关MADS- box基因的克隆及结构分析.生物技术,2005,15(3):6-9.
    132.周国辉,李华平.转基因植物及其应用[J].热带作物学报, 2000, (3): 70-76.
    133.周冀明,卫志明,许智宏等.根癌农杆菌介导转化诸葛菜获得转基因植株[J].植物生理学报, 1997, 23(1):21-28.
    134.周丽侬,曹静,邝哲师,等.园艺植物体胚发生及植株再生技术研究[J].热带作物学报,1998,19(2):15-19
    135.周鹏,郑学勤.PRSV-CP转基因番木瓜表达与抗病能力关系的研究[J].热带作物学报,1996,17(2):77-83.
    136.周盛梅,宿红艳,王磊,等.苹果apetala2同源基因的克隆和转化研究.园艺学报,2006,33(2):239- 243.
    137.朱军,胡永华,黄惠琴,等.ACS基因和HBsAg基因的可隆及瞬时表达分析[J].分子植物育种,2005,3(6):787-791.
    138.邹克琴.苹果钙依赖蛋白激酶MdCPK1:分子克隆、表达、定位及被脱落酸的激活:[学位论文].北京:中国农业大学,2005.
    139. Alt-Morbe J, Ktihlmann H, Schroder J. Differences in induction of Ti plasmid virulence genes vir G and vir D, and continued control of vir D expression by our external factors [J]. Mol Plant Microbe Interact, 1989, 2: 301-308.
    140. Assy-Bah B, Engelmann F, Cryopreservation of mature embryos of coconut and subsequent regeneration of plantlets .1993. Plant Cell tissue and Organ Culture, 33:19~24.
    141. Bell RL,Scorza R,Srinivasan C,et al.Trasformnation of Beurre Bosc pear with the rolC gene[J],J Amer Soc Hort Sci,1999,124(6):570-574.
    142. Bird C R,Ray J A,Fletcher J D,et al.Using antiscese RNA to study gene function:Inhibition of caroteniod biosynthesis in transgenic tomatoes[J].Biotechnology,1999,9:635-639.
    143. Bronwyn R, Frame, Huixia Shou, et a1. Agrobacterium tumefaciens mediated transformation of maize embryos using a standard binary vector system [J]. Plant Physiology, 2002, 129: 13-22.
    144. Cabrera-Ponce J L,Vegas-Garcia A, Herbicide resistant papaya plants produced by an efficient particle bombardment transformnation methods[J],Plant Cell Reports, 1995,15:1-7.
    145. Cao Q F, Wada M, Meng Y P, et al. Molecular cloning and expression analysis of a zinc finger protein gene in apple. Acta Botanica Sinica,2004, 46 (9):1091- 1099.
    146. Caplin S M, Mineral oil overlay for conservation of plant tissue cultures[J] American Journal of Botany,1959. 46(5):324~329.
    147. Cervera M,Ortega C,Navarro L,et al.Gereration of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast[J],J Hort science and Biotech,2000,75(1):26-30.
    148. Da Camara Machadao A, Katinger H, Laimer da Camara Machado M, et al. coat protein-mediated protection against plum pox virus in herbaceous model plants and transformnation of apricot and plum [J],Euphytica, 1994,177:1-2,129-134.
    149. Dandekar A M,Mcgrananan G H,Vail P V,et al.Low levels of expression of wild typeBacillus thuringgiensis var.kurstaki cryIA(c)sequences in transgenic walnut somatic embryos Plant Science, 1994,96:151-162.
    150. Divakaran M, Nirmal B M, Peter K V. Conservation of Vanilla species, in vitro[J].Scientia Horticulturae, 2006, 110: 175 -180.
    151. Dolgov S V. genetic transformnation of sour cherry leaf dises. In Bajaj YPS Biotechnology in Agricultural and Forestry,Tansgenic Trees[M].1999,44:29-38.
    152. Dong JG, Li ZG (1983).Measurements of ACC and MACC contents in ethylene synthesis[J].Plant Physiol Commun 19,32-35.
    153. Dyachok J, et al. Endogenous Nod-factor-like signal molecules suppress cell death and promote early somatic embryo development in Norway spruce. Plant Physiol,2002.128:523-533.
    154. Ebinuma H, Sugita K, Matsunaga E, et al. Systems for the removal of a selection marker and their combination with a positive marker [J]. Plant Cell Report, 2001, 20:383-392.
    155. Elomaa P, Honhanen J, Puska R, et al. Agrobacterium mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation [J]. Biotechnology, 1993, 11: 508-511.
    156. Engelmann, F. 1991 In vitro conservation of tropical plant germplasm– a review. Euphytica 57:227-243.
    157. Fitch M M,Manshardt R M,Consalve D,et al.Transgenic papaya plants from Agrobacterium-mediated transformnation of somatic embryos[J],Plant Cell Reports, 1993,12:245-249.
    158. Fitch M M,Manshardt R M,Consalve D,et al.Virus resistant papays plant derives from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio?Technol[J]1992,10:1466-1472
    159. Gall O L, Totregroaa L, Danglot Y, et al. Agrobacterium-mediated transformnation of grapevine chrome moaaic neprovirus[J],Plant Science, 1994,102:161-170.
    160. Godwin I. ,Todd G. ,Ford L.B.,et al.The effects of acetosyringone andpH on Agrobacterium mediated transformation vary according to plant species. Plant Cell Rep ,1991 ;9 :671-675.
    161. Gutierrez E M A,luth D,Moorc G A,Factors affecting Agrobacterium-mediated transformnation in citrus and production of sour orange (Citrus aurantium L.) plant expressing the coat protein gene of citrus tristeza virus[J],Plant Cell Reports, 1997,16(11):745-753
    162. Hiei Y. ,Ohta S. , Komari T. , et al . Effectienct transformation of rice (oryza sativa L. )mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J ,1994 ;6 :271-281
    163. James D J.Passey A J,Barbare D, et al. Genetic transformnation of apple using a disarmed Ti-birary vector[J],Plant Cell Reports, 1999,7:658-661.
    164. James D. J . ,Passey A. J . ,Babara J . Agrobacterium mediated transformation of the cultivated strawberry(Fragaria X Anannassa Duch. )using disarmed binary vectors,Plant Sci ,1990 ;69 :79-94 .
    165. James D. J . ,Uratsu S. ,Cheng J . , et al . Acetosyringone and os moprotectants like betaine or proline synergistically enhance Agrobacteriunr mediated transformation of apple. Plant Cell Rep ,1993 ;12 :559-563
    166. Jin S,Song Y,Pan S,et a1. E.W. Characterisation of a vir G mutation that confers constitutive virulence gene expression in Agrobacterium tumefaciens [J]. Molecular Microbiology,1993,7: 555-562.
    167. Jones M L,Woodson W R. Differential expression of three members of the 1-aminocy- clopropane -1-car-boxylate synthase gene family in carnation [J]. Plant Physiol, 1999, 119: 755-764.
    168. Kareiva P. Transgenic plants on trail,Nature 1993,363:580-581.
    169. Ko W H, Chwang S, Ku F M, A new technique for storage of meris-tem-tip cultures of Cavendish banana. 1991. Plant cell,Tissue and Organ Culture, 25(3):179~183.
    170. Kobayashi S,Nakamara Y,Kaneoshi J,et al.Transformnation of kiwifruit and trifoliate orange with a synthetic gene encoding the human epidermal growth factor[J].Japan.Hortic.Sci,1996,64:763-769.
    171. Krastanova S, Perrin M, Barbier P, et al. Transformnation of grapevine rootstocks with coat protein gene of grapevine fanleaf neprovirus[J],Plant Cell Reports, 1995,14:550-554.
    172. Laimer da Camara Machado M,da Camara Machado A,hanzer V, et al, Regeneration of transgenic plant of prunus armeniaca containing the coat protein gene of Plum Pox Virus[J],Plant Cell Reports, 1992,11:25-29.
    173. Laurena A C, Magdalita P M, Hidalgo M S P, el al. Cloning and molecular characterization of ripening-related ACC Synthase from papaya fruit (Carica papaya L.) [J]. Acta Hort. 2002, 575, 163-170.
    174. Lu W J, Nakano R, Kubo Y, et al. Cloning and expression analysis of an XET cDNA in the peel and pulp of banana fruit ripening and softening.Acta Botanica Sinica, 2004, 46(3):355-362.
    175. Maheswaran C.The development of Agrobacterium transfer system for apple and pearcultivars.Final Report.Melbourne Vic.Department of Agriculture,1994,41.
    176. Mathewes H,Wagoner W,Cohen C,et al.Efficient genetic transformnation of red raspberry,Rubus ideaus L[J],Plant Cell Report,1995,14:471-475.
    177. Mathews H,Wagoner W,Kellogg J,et al.Genetic transformnation of strawberry:stable integration of a gene to control biosythesis of ethylene[J],In Vitro Cellular and Developmental Biology Plant,1995,31(1):36-43.
    178. Mauro M C,Toutain S,Walter B,et al.High efficieney regeneration of grapevine plants transferd with the GFLV coat protein gene[J],Plant Science, 1995,112:97-106.
    179. McGranahan G H,Lealie C A,Uratsu S L,Improved Efficiency of the walnut somatic embryo gene transfer systerm[J],Plant Cell Reports, 1990,8:512-516.
    180. McGranahan GH,Leslie CA,Uratsu SL,etal.Agrobacterium-mediated transformation of walnut somtic embryos and regeneration of transgenic plants[J]. Bio/Technology,1998,6:800~804.
    181. Ming C, Tianci H, Jeanne L, Chong N. L, Oyce E F. Desication of p1ant tissues post- Agrobacterium infection enhances T-DNA delivery and increases stlable transformation efficiencv in wheat. Vitro Cell Dev[J]. Biol,2003, 39: 595- 604.
    182. Moere G A,Tang A G F,facciotti D. Agrobacterium-mediated transformnation of citrus stem segment and regeneration of transgenic plants[J],Plant Cell Red ,1992,1:238-242.
    183. Morris Lieberman.Biosynthesis and Action of Ethylene Ann. Rev Plant Physil,1979,30:533~591.
    184. MukhopadhyayA.,Arumugam N.,Nandakumar P.B..A.,et al.Agrobacterium-mediated transformation of oilseed Brassica campestris:Transformation frequency is strongly influenced by the mode of shoot regeneration. Plant Cell Rep,1992;11:506-513
    185. Murayama H, Toyomasu T, Mitsuhashi W, et a1. Transfomation of Pear (Pyrus Communis cv. 'LA France') with genes invovled in Ethylene Biosynthesis [J]. Acta Hort 2003, 625, 387-393.
    186. Nakajima N, Itoh T, Takikawa S, et a1. Improvement in ozone tolerance of tobacco plants with an antisense DNA for 1-aminocyclopropane-1-carboxylate synthase [J]. Plant, Cell & Environment, 2002, 6(25): 727-735.
    187. Nehra R S,Chibhar R N,Kartha KK,et al.Agrobacerium-mediatedtransformation strawberry calli and recovery of transgenic plants[J].Plant Cell Reports.,1990,9:10~13.
    188. Noa Matarasso, Silvia Schuster, and Adi Avni. A Novel Plant Cysteine Protease has a Dual Function as a Regulator of 1-Aminocyclopropane-1-Carboxylic Acid Synthase Gene Expression [J]. The Plant Cell, 2005, 4(17), 1205-1216.
    189. Norelli J L,Aldwinckie H S.The role of aminoglycoside antibiotics in the regenerationand selection of neomycin phospotransferase-transgenic apple tissue[J],J Amer Soc Hort Sci,2003,118:311-316.
    190. Oeller P W, Lu M W, Tanlor P L ,et al. Reversible inhibition oftomato fruit senescence by antisense RNA[J]Science, 1991,254:437-439.
    191. Ogasawara H,Ueda S,Harada T,et al.Itroduction of a herbicide resistant gene into an apple root-stock with Agrobacterium tumefaciens.Bulletin of the Faculty of Agriculture Hirosaki University,1994,(57):1-8.
    192. Olivera M M,Baroso J,Pais M S S.Direct gene transfer into Actinidia deliciosa protoplasts:ananlysis of transient expression of the CAT gene using TLC autoradiography and a GC-MS-based method[J] .Plant Mol. Biol.,1994,17:235-242.
    193. Orzaez D, Granell A. DNA fragment is regulated by ethylene during carpel senescence in Pisum sativum. Plant J[J], 1997,11:137-144
    194. Pang S Z.Sanford J G. Agrobacterium-mediated gene transfer in papaya[J],J Amer Soc Hort Sci,1998,113:187-221.
    195. Qu S H, Huang X D, Zhang Z, et al. Agrobacterium- mediated Tansformation of Malus robusta with Tomato Iron Transporter Gene. Journal of Plant Physiology and Molecular Biology. 2005,31(3):235- 240.
    196. Sato T,Theologis A.Cloning the mRNA encoding 1-aminocyclo-propanc-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants [J]. Proc Natl Acad Sci. USA, 1989, 86: 6621-6625.
    197. Scorza R, Cordrs J M, Agrobacterium-mediated transformnation of plum with the papaya ringspot virus coat protein gene[J].Hortscience,1991,26:788-789.
    198. Scorza R, Cordrs J M, Ramming D W,et al. Transgenic plum express the plum pox virus coat protein gene[J],Plant Cell Reports, 1994,14:18-22.
    199. Scorza R,Cordts JM,Gray DJ,et al.Producing transgenic Thompson Seedless grape plant[J],J Amer Soc Hort Sci,1996,121(4):616-619.
    200. Seres R,Stang E,McCable D,Gene transfer using electric discharge particle bombardment and recovery of transformed cranberry plant[J],J Amer Soc Hort Sci,1992,117:174-180.
    201. Shimoda N, Toyoda-Yamamoto A, Nagamine J, et al. Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides [J]. Proc Natl Acad Sci USA, 1990, 87: 1184-1188.
    202. Shimoda N. ,Toyoda2yamamoto A. ,Nagamine J . , et al . Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monsaccharides. Pros.Natl Acad Sci USA ,1990 ;87 :6684-6688
    203. Smigocki A C,Hammerachlag F A. Regeneration of plants from peach embryo cell infected with a shooty mutant strain of Agrobacterium [J],J Amer Soc Hort Sci,1991,116:1092-1097.
    204. Song Y. N. ,Shibuya M. ,Ebizuka Y. et al.Synergistic action of phenolic signal compounds and carbohydrates in the induction of virukence gene expression in Agrobacterium tumefaciens. Chem Pharm Bull ,1991 ;39 :2347-2350
    205. Tao R等.采用苏云金芽抱杆菌的cryIA(c)基因使柿子具有遗传工程抗虫性[J].生物技术通报,2008,3:55.
    206. Van Der Straeten D, Van Wiemeersch L, Goodman H M, et al. Cloning and sequence of two different cDNAs encoding 1 aminocy-clopropanc 1 carboxylate synthase in tomato [J]. Proc Natl Acad Sci USA, 1990, 87: 4859-4863.
    207. Villemont E, Dubois F, Sangwan R S. et al. Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T DNA transfer [J]. Plantar, 1997, 201: 160-172.
    208. Williams EG, Maheswaran G. Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group [J]Ann Bot,1986,57:443-462
    209. Xiao J N, Huang X L, Wu Y J, et al. Direct somatic embryogenesis induced from cotyledons of mango immature zygotic embryos[ J ]. Invitro cellular and developmental Biology, 2004, 40 (2):196~199.
    210. Yao J L,Cohen D,Atkinson R,et al,Regeneration of the transgenic plants from the commercial apple cultivar Royal Gala[J],Plant Cell Reports, 1995,14:407-412.
    211. Yu X C, Li M J, Gao G F, et al. Abscisic acid stimulates a calcium-dependent protein kinase in grape berry. Plant Physiology, 2006,140: 558- 579.
    212. Zee F T, Munekata M. In vitro storage of pineapple (Ananas spp.) germplasm[J]. HortScience, 1992, 27:57-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700