hCtr1跨膜肽的结构和聚集及模型肽与脂质体相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜离子转运蛋白家族(SLC31)包括铜离子转运蛋白与铜离子转运磷酸化ATP酶(Copper transporting phosphorylated ATPase),其中后者包括ATP7A和ATP7B蛋白。铜离子转运蛋白1(Ctr1)是铜离子的主要摄入蛋白,而ATP7A和ATP7B蛋白主要参与铜离子的转运出胞过程。铜离子转运蛋白家族和细胞内分子伴侣协同调节细胞内外的铜离子的代谢平衡。哺乳动物的铜离子转运蛋白对其胚胎发育至关重要。先天性的铜离子转运蛋白的缺失会导致像Menkes综合症和Wilson等疾病。研究还发现,铜离子转运蛋白家族不仅参与铜离子的转运和代谢,也参与基于铂类的抗肿瘤药物的转运过程。
     在酿酒酵母的遗传研究中,在真核细胞的细胞膜上鉴定发现了第一类高亲和力的铜吸收蛋白,yCtr1和yCtr3。Zhou和Gitschier等(1997)在Ctr1缺陷的酵母功能互补的实验中第一次发现人类铜离子摄入基因(hCtr1),该基因位于9q31—q32。后来从hCtr1蛋白的同源序列中分离出了第二个铜离子传输体蛋白hCtr2,它可能与人类细胞内舱隔间释放铜离子有关。研究证实,人类铜离子传输体蛋白1(hCtr1)由190个氨基酸组成,包含有三个假定的跨膜区,一个胞外的N端区域和一个胞内的C端区域。由于缺乏高分辨的原子水平上的三维空间结构,所以对hCtr1蛋白传输铜离子和铂类药物的机理至今还不太清楚。
     在本论文中,我们首次运用CD和NMR方法分别研究了hCtr1蛋白三个跨膜肽片段(TMD)在原子水平上的三维空间结构,并尝试用SDS-PAGE和FRET方法对三个跨膜肽片段的聚集进行研究。CD实验结果表明三个跨膜肽片段在40%HFIP/60%H_2O中的结构与在囊泡POPC中的结构相似。NMR实验结果表明,在40%HFIP-d2/60%H_2O中,TMD1在残基Gly67-Glu84之间形成典型的螺旋结构,并且通过C端螺旋紧密堆积形成二聚体;TMD2形成一段较长的螺旋结构,螺旋从残基Leu134到Thr155,形成的螺旋结构具有两亲性,极性残基包括结构上重要的残基如His、Ser、Met等位于同侧,而非极性残基如Leu、Val、Phe等位于另一侧。这样特殊的两亲性结构可能与整个hCtr1蛋白空间结构的形成,以及离子传输过程中离子的选择、转移抑或是调节离子通道的开关有关。螺旋主链上氨基质子的化学位移变化(ΔHN)和分子扩散排序(DOSY)实验表明,TMD2在40%HFIP-d2/60%H_2O中通过疏水残基(Ile141, Ile145, Leu149和Met154)间的相互作用形成三聚体且N端分子间的相互作用较弱,因此三聚体C端(靠近细胞膜外的区域)形成的孔隙尺寸小于N端的尺寸,这一结果与先前通过低温电子显微镜技术报道的结果一致。 TMD3在40%HFIP-d2/60%H_2O中则形成
     -helix-coiled segment--helix的特殊结构,螺旋分为两段:Cys161-Gly169和Phe173-Ser176,与残基Gly167构成GXXXG特征基序的残基Gly171不在螺旋中,而是作为一个链接在两段螺旋间。
     SDS-PAGE实验表明,三个跨膜肽片段的聚集能力或者形成的聚集体稳定性不同,TMD2﹥TMD1≈TMD3,并且通过此实验还证明TMD2的聚集依赖于溶液中跨膜肽浓度,高浓度下发生聚集。尽管改变在上样缓冲液中的浓度,TMD1和TMD3始终表现为单体形式。在低浓度下的(5.5μМ)FRET实验,也得到了相似的结果,三个跨膜肽在低浓度下都以单体形式存在。蛋白hCtr1的三个跨膜肽片段中,TMD2较强的聚集能力和聚集随浓度变化的特性以及它的两亲性结构,可能在蛋白形成聚集体的过程中起主导因素。
     不同的空间三维结构和聚集能力导致三个跨膜肽片段在hCtr1蛋白聚集体的形成和离子传输过程中发挥的生物学功能不同。hCtr1蛋白通过TMD2的聚集诱导和不同亚基间TMD1与TMD3的紧密堆积形成孔隙,且孔隙尺寸的大小很可能受位于孔隙内侧的TMD2取向的调控。由于在TMD2和TMD3之间的loop区较短只有三个残基,因此当TMD2的取向发生变化时必然会引起TMD3的移动,若TMD3整体发生移动则很有可能破坏hCtr1整个蛋白的聚集,但TMD3特殊的
     -helix-coiled segment--helix结构,在螺旋间的链接可灵活伸长或缩短,避免了在孔隙尺寸变化时上述情况的发生。但究竟是什么因素诱导TMD2的取向改变,引起孔隙尺寸的大小变化,从而来调控离子通道的开关我们目前还不清楚。
     研究已经证实,跨膜肽的疏水长度和膜的疏水厚度之间的疏水性不匹配可能诱导膜蛋白的取向或倾斜角发生变化。在本论文的另一部分中,我们综合运用了荧光光谱、圆二色谱(CD)和衰减全反射傅里叶变换红外光谱(ATR-FTIR)等实验方法,选取了天然抗性相关巨噬细胞蛋白1的第四跨膜区(Nramp1-TMD4)作为模型肽,对其在不同酰基链长的脂质体膜(磷脂酰胆碱-PC、磷脂酰甘油-PG)中,脂质体膜和模型跨膜肽的行为表现进行了研究。研究结果表明,在PG脂质体中TMD4以稳定的螺旋结构形式存在并且螺旋轴平行于脂质体的酰基链。在不同疏水长度的PG中,TMD4的这种结构和取向并不发生变化,而是脂质体的酰基链伸展或弯曲来调整适应TMD4的疏水长度。与在PG中相反,TMD4的螺旋结构在PC中并不稳定。当嵌入不同疏水长度的PC中,TMD4通过改变自身螺旋结构的长短来适应脂质体膜的疏水厚度。除此以外,膜和跨膜肽的这种疏水性不匹配导致嵌入其中的跨膜肽聚集倾向性增加,并且对于同一肽在PC中的聚集倾向性要比在PG中大。
     本论文中的研究为揭示hCtr1蛋白传输铜离子和铂类药物的机理提供了结构相关信息,同时疏水性不匹配的研究也为进一步认识膜和跨膜肽的相互作用提供了帮助。
The SLC31family contains two members: copper transporter proteins andcopper transporting phosphorylated ATPases, and the latter includ ATP7A and ATP7Bproteins. At the protein level, two families of membrane proteins control cellularcopper uptake and secretion: copper efflux is governed by the ATP-dependent pumpsATP7A and ATP7B, whereas copper influx is mediated by the copper transporter (Ctr)proteins. The SLC31family and intracellular chaperone co-regulate intracellularmetabolic balance of copper ions. The copper transport protein of mammalian isessential for the embryonic development and the congenital absence will causediseases such as Menkes syndrome and Wilson etc.. Resent studies have confirmedthat the SLC31family not only mediates cellular uptake of copper, but also are linkedto the cellular uptake of Pt-based chemotherapeutic anticancer drugs like cisplatin.
     The genes encoding high affinity copper ion transport proteins were firstindentified in the plasma membrane by studies in yeast cells. The human high-affinitycopper transporter (hCtr1) was subsequently isolated by the functionalcomplementation of Ctr1-deficient yeast (Zhou and Gitschier et al.,1997). Thesecond human Ctr family member, hCtr2(SLA31A2), was isolated by sequencehomology to hCtr1, and the function of it may be the release of copper from internalcompartments in human cells. The hCtr1is comprised of190amino acids, includingthree putative transmembrane domains, an extracellular N-terminal region and anintracellular C-terminal region. Because of lacking high-resolution structuralinformation on the atomic level, until now the mechanisms of transporting copper andPt-containing drugs remain obscure.
     In our thesis, we firstly used the CD and NMR spectral methods to study thestructure of the three transmembrane domains (TMD) from hCtr1protein, respectively, and try to characterize the aggregation of the three transmembrane domains bySDS-PAGE and FRET methods. The CD results showed that the secondary structuresof the three transmembrane domains in both40%HFIP/60%H_2O and POPC lipidvesicles are similar. We determined the three dimensional structure andoligomerization of the transmembrane domains in40%HFIP/60%H_2O usingsolution-state NMR spectroscopy. And firstly revealed that TMD1forms an-helicalstructure from Gly67to Glu84and is dimerized by close packing of its C-terminalhelix; TMD2forms an amphiphilic-helical structure from Leu134to Thr155and thepolar residues including the residues (His, Ser, Met) that may be important forfunction lie in the same face of the helix, the other face occupied by non-polarresidues (Leu、Val、Phe). The amphiphilic structure may be related to the spatialstructure formation of the hCtr1protein, ion selection and transferring in the processof transporting or regulation of ion channel switch. The chemical shifts of HN protons(HN) in peptides and DOSY experiments demonstrated that the trimerization ofTMD2is induced by the interactions of the apolar residues in the region from thecenter (Ile11) to the C-terminal end (Met24), therefore, the pore size at the C-terminalend of trimer (extracellular end of TMD2in hCtr1) is smaller than that of theN-terminal end. The aggregate result is complied with the previous cryo-EM results.The TMD3adopts a discontinuous helix structure, known as―-helix-coiledsegment--helix‖, and is dimerized by the interaction between the N-terminal parthelices. The motif GxxxG in TMD3is not fully involved in the helix, but partiallyunstructured between helices as a linker.
     The SDS-PAGE results suggest that the second transmembrane domain haveintense propensity to aggregate than the first and the third transmembrane domains.The experiments also display that the aggregation of TMD2depends on theconcentration in solution, which is different from the TMD1and TMD3. In the FRETexperiments with lower concentration of peptides (5.5μМ), all the threetransmembrane domains exist as monomer. The intense propensity of aggregation, thedenpendence of aggragation on the concentration and the amphiphilic structure maymake TMD2important in aggregation of hCtr1protein.
     Different spatial structure and aggregation ability may have three transmembranedomains different both in trimeric assembly and the role playing in process of iontransporting. The hCTR1forms cone-shaped pore by the packing of TMD2helices inthe inner and by close contact between TMD1and TMD3from different subunit ofhCtr1. The pore size may be regulated by the relative orientation of TMD2heliceslining the inner of the pore, which could induce a cooperative change in theorientation of TMD3helices because the loop between TMD2and TMD3is veryshort (only3residues). The flexible linker between the helices of TMD3accommodates a partial change of the N-terminal half helix in the orientation.However, the detailed mechanism by which the TMDs play roles in the switch of thehCtr1channel is still unknown.
     Studies have confirmed that the hydrophobic mismatch between the hydrophobiclength of transmembrane peptide and hydrophobic thickness of lipid membrane mayinduce the changes in membrane protein orientation or tilt angle. In another part ofthis thesis, we combined fluorescence, CD and ATR-IR spectroscopic methods toinvestigate the behaviors of the peptide and lipids under hydrophobic mismatch usinga model peptide from the fourth transmembrane domain of Nramp1, thephosphatidylcholines (PCs) and phosphatidylglycerols (PGs) with different lengths ofacyl chains (14:0,16:0and18:0). The experimental results show that in all PG lipidmembranes, the peptide forms stable-helix structure and the helix axis is parallel tolipid chains. The helical span and orientation are nearly unchanged in varyingthickness of PG membranes, while the lipid chains can deform to accommodate thehydrophobic surface of embedded peptide. In contrast, the helical structures of themodel peptide in PC lipid membranes are less stable. Upon incorporation with PClipid membranes, the peptide can deform itself to accommodate the hydrophobicthickness of lipid membranes in response to hydrophobic mismatch. In addition,hydrophobic mismatch can increase aggregation propensity of the peptide in both PCand PG lipid membranes and the peptide in PC membranes has more aggregationtendency than in PG membranes.
     The structural studies of hCtr1-TMDs in our thesis may be meaningful to understand the transporting mechanism of the entire hCtr1protein, and the study onthe hydrophobic mismatching will be helpful to better understanding of the interactionof membrane with transmembrane peptides.
引文
[1]蒋英芝,贺连华,刘建军.蛋白质功能研究方法及技术[J].生物技术通报,2009,(9):38-43.
    [2]马静,葛熙,昌增益.蛋白质功能研究:历史,现状和将来[J].生命科学,2007,19(3):294-300.
    [3] STAHLBERG H, FOTIADIS D, SCHEURING S, et al. Two-dimensionalcrystals: a powerful approach to assess structure, function and dynamics ofmembrane proteins[J]. Febs Letters,2001,504(3):166-172.
    [4]祁艾红,吴健民.铜代谢及其相关基因的研究[J].国际遗传学杂志,2006,29(5):356-359.
    [5] HARRIS E D. Basic and clinical aspects of copper[J]. Critical Reviews inClinical Laboratory Sciences,2003,40(5):547-586.
    [6] VOSKOBOINIK I, CAMAKARIS J. Menkes copper-translocating P-typeATPase (ATP7A): Biochemical and cell biology properties, and role in Menkesdisease[J]. Journal of Bioenergetics and Biomembranes,2002,34(5):363-371.
    [7] LUTSENKO S, EFREMOV R G, TSIVKOVSKII R, et al. Humancopper-transporting ATPase ATP7B (the Wilson's disease protein): biochemicalproperties and regulation[J]. Journal of Bioenergetics and Biomembranes,2002,34(5):351-362.
    [8] MEADE B R, DOWDY S F. Exogenous siRNA delivery using peptidetransduction domains/cell penetrating peptides[J]. Advanced Drug DeliveryReviews,2007,59(2-3):134-140.
    [9] SHIM H, HARRIS Z L. Genetic defects in copper metabolism[J]. Journal ofNutrition,2003,133(5):1527-1531.
    [10] PETRIS M J, MERCER J F B, CAMAKARIS J. The cell biology of theMenkes disease protein[J]. Copper Transport and Its Disorders,1999,448:53-66.
    [11] YAMAGUCHI Y, HEINY M E, GITLIN J D. Isolation and Characterization ofa Human Liver cDNA as a Candidate Gene for Wilson Disease[J]. Biochemicaland Biophysical Research Communications,1993,197(1):271-277.
    [12] ADACHI Y, OKUYAMA Y, MIYA H, et al. Presence of ATP-dependentcopper transport in the hepatocyte canalicular membrane of the Long-Evanscinnamon rat, an animal model of Wilson disease[J]. Journal of Hepatology,1997,26(1):216.
    [13]张英丽,鹿欣,丰有吉.铜离子转运蛋白家族与卵巢癌顺铂耐药关系的研究进展[J].现代妇产科进展,2007,16(5):388-390.
    [14] LEE J, PROHASKA J R, DAGENAIS S L, et al. Isolation of a murine coppertransporter gene, tissue specific expression and functional complementation of ayeast copper transport mutant[J]. Gene,2000,254(1–2):87-96.
    [15] PETRIS M J. The SLC31(Ctr) copper transporter family[J]. PflugersArchiv-European Journal of Physiology,2004,447(5):752-755.
    [16] DANCIS A, HAILE D, YUAN D S, et al. The Saccharomyces cerevisiaecopper transport protein (Ctr1p). Biochemical characterization, regulation bycopper, and physiologic role in copper uptake[J]. Journal of BiologicalChemistry,1994,269(41):25660-25667.
    [17] M LLER L B, PETERSEN C, LUND C, et al. Characterization of the hCTR1gene: Genomic organization, functional expression, and identification of ahighly homologous processed gene[J]. Gene,2000,257(1):13-22.
    [18] PE A M M O, LEE J, THIELE D J. A delicate balance: homeostatic control ofcopper uptake and distribution[J]. The Journal of nutrition,1999,129(7):1251-1260.
    [19] BELLEMARE D R, SHANER L, MORANO K A, et al. Ctr6, a VacuolarMembrane Copper Transporter inSchizosaccharomyces pombe[J]. Journal ofBiological Chemistry,2002,277(48):46676-46686.
    [20] KNIGHT S, LABBE S, KWON L F, et al. A widespread transposable elementmasks expression of a yeast copper transport gene[J]. Genes&development,1996,10(15):1917-1929.
    [21] KLOMP A E M, JUIJN J A, VAN DER GUN L T M, et al. The N-terminus ofthe human copper transporter1(hCTR1) is localized extracellularly, andinteracts with itself[J]. Biochemical Journal,2003,370:881-889.
    [22] ZHOU B, GITSCHIER J. hCTR1: a human gene for copper uptake identifiedby complementation in yeast[J]. Proceedings of the National Academy ofSciences,1997,94(14):7481-7486.
    [23] KAMPFENKEL K, KUSHNIR S, BABIYCHUK E, et al. Molecularcharacterization of a putative Arabidopsis thaliana copper transporter and itsyeast homologue[J]. Journal of Biological Chemistry,1995,270(47):28479-28486.
    [24] RIGGIO M, LEE J, SCUDIERO R, et al. High affinity copper transport proteinin the lizard Podarcis sicula: molecular cloning, functional characterization andexpression in somatic tissues, follicular oocytes and eggs[J]. Biochimica EtBiophysica Acta-Gene Structure and Expression,2002,1576(1-2):127-135.
    [25] LEE J, PENA M M O, NOSE Y, et al. Biochemical characterization of thehuman copper transporter Ctr1[J]. Journal of Biological Chemistry,2002,277(6):4380-4387.
    [26] KLOMP A E M, TOPS B B J, VAN DEN BERG I E T, et al. Biochemicalcharacterization and subcellular localization of human copper transporter1(hCTR1)[J]. Biochemical Journal,2002,364:497-505.
    [27] PETRIS M J, SMITH K, LEE J, et al. Copper-stimulated endocytosis anddegradation of the human copper transporter, hCtr1[J]. Journal of BiologicalChemistry,2003,278(11):9639-9646.
    [28] EISSES J F, KAPLAN J H. Molecular characterization of hCTR1, the humancopper uptake protein[J]. Journal of Biological Chemistry,2002,277(32):29162-29171.
    [29] PUIG S, LEE J, LAU M, et al. Biochemical and genetic analyses of yeast andhuman high affinity copper transporters suggest a conserved mechanism forcopper uptake[J]. Journal of Biological Chemistry,2002,277(29):26021-26030.
    [30] PUIG S, THIELE D J. Molecular mechanisms of copper uptake anddistribution[J]. Current Opinion in Chemical Biology,2002,6(2):171-180.
    [31] PENA M M O, PUIG S, THIELE D J. Characterization of the Saccharomycescerevisiae high affinity copper transporter Ctr3[J]. Journal of BiologicalChemistry,2000,275(43):33244-33251.
    [32] ALLER S G, UNGER V M. Projection structure of the human coppertransporter CTR1at6-A resolution reveals a compact trimer with a novelchannel-like architecture[J]. Proceedings of the National Academy of Sciencesof the United States of America,2006,103(10):3627-3632.
    [33] DE FEO C J, ALLER S G, SILUVAI G S, et al. Three-dimensional structure ofthe human copper transporter hCTR1[J]. Proceedings of the National Academyof Sciences of the United States of America,2009,106(11):4237-4242.
    [34] KOMATSU M, SUMIZAWA T, MUTOH M, et al. Copper-transporting P-typeadenosine triphosphatase (ATP7B) is associated with cisplatin resistance[J].Cancer Research,2000,60(5):1312-1316.
    [35] ISHIDA S, LEE J, THIELE D J, et al. Uptake of the anticancer drug cisplatinmediated by the copper transporter Ctr1in yeast and mammals[J]. Proceedingsof the National Academy of Sciences of the United States of America,2002,99(22):14298-14302.
    [36] KUO M T, CHEN H H W, SONG I S, et al. The roles of copper transporters incisplatin resistance[J]. Cancer and Metastasis Reviews,2007,26(1):71-83
    [37] LIN X J, OKUDA T, HOLZER A, et al. The copper transporter CTR1regulatescisplatin uptake in Saccharomyces cerevisiae[J]. Molecular Pharmacology,2002,62(5):1154-1159.
    [38] ZHOU H, THIELE D J. Identification of a novel high affinity copper transportcomplex in the fission yeast Schizosaccharomyces pombe[J]. Journal ofBiological Chemistry,2001,276(23):20529-20535.
    [39] LEE J, PROHASKA J R, THIELE D J. Essential role for mammalian coppertransporter Ctr1in copper homeostasis and embryonic development[J].Proceedings of the National Academy of Sciences,2001,98(12):6842-6847.
    [40] KUO Y M, ZHOU B, COSCO D, et al. The copper transporter CTR1providesan essential function in mammalian embryonic development[J]. Proceedings ofthe National Academy of Sciences of the United States of America,2001,98(12):6836-6841.
    [41] NISHIHARA E, FURUYAMA T, YAMASHITA S, et al. Expression of coppertrafficking genes in the mouse brain[J]. Neuroreport,1998,9(14):3259-3263.
    [42] HUFFMAN D L, O'HALLORAN T V. Function, structure, and mechanism ofintracellular copper trafficking proteins[J]. Annual Review of Biochemistry,2001,70:677-701.
    [43] STRAUSAK D, HOWIE M K, FIRTH S D, et al. Kinetic analysis of theinteraction of the copper chaperone Atox1with the metal binding sites of theMenkes protein[J]. Journal of Biological Chemistry,2003,278(23):20821-20827.
    [44] FURUKAWA Y, TORRES A S, O'HALLORAN T V. Oxygen-inducedmaturation of SOD1: a key role for disulfide formation by the copper chaperoneCCS[J]. The EMBO journal,2004,23(14):2872-2881.
    [45] BEERS J, GLERUM D M, TZAGOLOFF A. Purification, characterization, andlocalization of yeast Cox17p, a mitochondrial copper shuttle[J]. Journal ofBiological Chemistry,1997,272(52):33191-33196.
    [46] ARNESANO F, BALATRI E, BANCI L, et al. Folding Studies of Cox17Reveal an Important Interplay of Cysteine Oxidation and Copper Binding[J].Structure,2005,13(5):713-722.
    [47] GUNSHIN H, MACKENZIE B, BERGER U V, et al. Cloning andcharacterization of a mammalian proton-coupled metal-ion transporter[J].Nature,1997,388(6641):482-488.
    [48] LEE J, PETRIS M J, THIELE D J. Characterization of mouse embryonic cellsdeficient in the Ctr1high affinity copper transporter-Identification of aCtr1-independent copper transport system[J]. Journal of Biological Chemistry,2002,277(43):40253-40259.
    [49] SAFAEI R, HOWELL S B. Copper transporters regulate the cellularpharmacology and sensitivity to Pt drugs[J]. Critical Reviews inOncology/Hematology,2005,53(1):13-23.
    [50] KIM R B. Transporters and Drug Discovery: Why, When, and How[J].Molecular Pharmaceutics,2006,3(1):26-32.
    [51] LACAPERE J J, PEBAY-PEYROULA E, NEUMANN J M, et al. Determiningmembrane protein structures: still a challenge![J]. Trends in BiochemicalSciences,2007,32(6):259-270.
    [52]石攀,田长麟.核磁共振方法研究膜蛋白三维结构的进展[J].中国科学技术大学学报,2008,38(8):950-960.
    [53] MURATA K, MITSUOKA K, HIRAI T, et al. Structural determinants of waterpermeation through aquaporin-1[J]. Nature,2000,407(6804):599-605.
    [54]金聪,陈慰峰.膜蛋白结构研究方法新进展[J].生命科学,2003,15(5):312-316.
    [55] M LLER D J, HAND G M, ENGEL A, et al. Conformational changes insurface structures of isolated connexin26gap junctions[J]. The EMBO journal,2002,21(14):3598-3607.
    [56] BURKHARD B. Solid-state NMR investigations of interaction contributionsthat determine the alignment of helical polypeptides in biological membranes[J].Febs Letters,2001,504(3):161-165.
    [57] TORRES J, STEVENS T J, SAMS M. Membrane proteins: the Wild West‘ofstructural biology[J]. Trends in Biochemical Sciences,2003,28(3):137-144.
    [58] BORBAT P P, MCHAOURAB H S, FREED J H. Protein StructureDetermination Using Long-Distance Constraints from Double-QuantumCoherence ESR: Study of T4Lysozyme[J]. Journal of the AmericanChemical Society,2002,124(19):5304-5314.
    [59] SUN Z R, ZHANG C T, WU F H, et al. A vector projection method forpredicting supersecondary motifs[J]. Journal of protein chemistry,1996,15(8):721-729.
    [60]阎隆飞,孙之荣.蛋白质分子结构[M].北京:清华大学出版社,1999.
    [61] CZAPLEWSKI C, O DZIEJ S, LIWO A, et al. Prediction of the structures ofproteins with the UNRES force field, including dynamic formation andbreaking of disulfide bonds[J]. Protein Engineering Design and Selection,2004,17(1):29-36.
    [62] CUTELLO V, NARZISI G, NICOSIA G. A multi-objective evolutionaryapproach to the protein structure prediction problem[J]. Journal of the RoyalSociety Interface,2006,3(6):139-151.
    [63] BRUNETTE T J, BROCK O. Improving protein structure prediction withmodel-based search[J]. Bioinformatics,2005,21(1):66-74.
    [64]来鲁华.蛋白质的结构预测与分子设计[M].北京:北京大学出版社,1993.
    [65] PELLEGRINI M, MIERKE D F. Threonine6-Bradykinin: MolecularDynamics Simulations in a Biphasic Membrane Mimetic[J]. Journal ofMedicinal Chemistry,1997,40(1):99-104.
    [66] TAKEDA-SHITAKA M, TAKAYA D, CHIBA C, et al. Protein structureprediction in structure based drug design[J]. Current Medicinal Chemistry,2004,11(5):551-558.
    [67] BADER R, BETTIO A, BECK-SICKINGER A G, et al. Structure anddynamics of micelle-bound neuropeptide Y: comparison with unligated NPYand implications for receptor selection[J]. Journal of Molecular Biology,2001,305(2):307-329.
    [68] TRAMONTANO A, MOREA V. Assessment of homology-based predictions inCASP5[J]. Proteins-Structure Function and Genetics,2003,53(6):352-368.
    [69] OLZSCHA H, SCHERMANN S M, WOERNER A C, et al. Amyloid-likeAggregates Sequester Numerous Metastable Proteins with Essential CellularFunctions[J]. Cell,2011,144(1):67-78.
    [70] SITTE H H, FARHAN H, JAVITCH J A. Sodium-dependent neurotransmittertransporters: oligomerization as a determinant of transporter function andtrafficking[J]. Molecular interventions,2004,4(1):38-47.
    [71] F RSTER T. Intermolecular energy transference and fluorescence[J]. AnnPhysik,1948,2:55-75.
    [72] COZZENS R F, FOX R B. Intramolecular Triplet Energy Transfer in Poly(1‐vinylnaphthalene)[J]. The Journal of Chemical Physics,1969,50:1532-1535.
    [73] STRYER L, HAUGLAND R P. Energy transfer: a spectroscopic ruler[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,1967,58(2):719-726.
    [74]许金钩,王尊本.荧光分析法[M].北京:科学出版社,2006.
    [75] WATROB H M, PAN C P, BARKLEY M D. Two-step FRET as a structuraltool[J]. Journal of the American Chemical Society,2003,125(24):7336-7343.
    [76] GALPERIN E, VERKHUSHA V V, SORKIN A. Three-chromophore FRETmicroscopy to analyze multiprotein interactions in living cells[J]. NatureMethods,2004,1(3):209-217.
    [77] HE L, WU X, SIMONE J, et al. Determination of tumor necrosis factorreceptor-associated factor trimerization in living cells by CFP→YFP→mRFPFRET detected by flow cytometry[J]. Nucleic Acids Research,2005,33(6):61-61.
    [78] CLEVELAND D W, FISCHER S G, KIRSCHNER M W, et al. Peptidemapping by limited proteolysis in sodium dodecyl sulfate and analysis by gelelectrophoresis[J]. Journal of Biological Chemistry,1977,252(3):1102-1106.
    [79] SCH GGER H, VON JAGOW G. Tricine-sodium dodecylsulfate-polyacrylamide gel electrophoresis for the separation of proteins in therange from1to100kDa[J]. Anal Biochem,1987,166(2):368-379.
    [80] SCH GGER H. Tricine–SDS-PAGE[J]. Nature Protocols,2006,1(1):16-22.
    [81] BRANDEN C, TOOZE J. Introduction to protein structure[M]. New York:Garland Publishing,1991.
    [82]夏佑林.生物大分子多维核磁共振[M].合肥:中国科学技术大学出版社,1999.
    [83] WUTHRICH K. NMR of proteins and nucleic acids[M]. New York: JohnWiley&Sons1986.
    [84]华庆新.蛋白质分子的溶液的三维结构测定:多维核磁共振方法[M].长沙:湖南师范大学出版社,1995.
    [85]华庆新.二维核磁共振与蛋白质三维结构[J].生物物理学报,1988,4(1):67-73.
    [86] SZIL GYI L. Chemical shifts in proteins come of age[J]. Progress in NuclearMagnetic Resonance Spectroscopy,1995,27(4):325-430.
    [87] WISHART D, SYKES B, RICHARDS F. Relationship between nuclearmagnetic resonance chemical shift and protein secondary structure[J]. Journalof Molecular Biology,1991,222(2):311-333.
    [88]常建华,董绮功.波谱原理及解析[M].北京:科学出版社,2001.
    [89] VIEL S, MANNINA L, SEGRE A. Detection of a π–π complex bydiffusion-ordered spectroscopy (DOSY)[J]. Tetrahedron letters,2002,43(14):2515-2519.
    [90] ALTIERI A S, HINTON D P, BYRD R A. Association of biomolecularsystems via pulsed field gradient NMR self-diffusion measurements[J]. Journalof the American Chemical Society,1995,117(28):7566-7567.
    [91]勒格朗, LEGRAND M,鲁吉耶, et al.旋光谱和圆二色光谱[M].开封:河南大学出版社,1990.
    [92] SREERAMA N, WOODY R W. Computation and analysis of protein circulardichroism spectra[J]. Methods in enzymology,2004,383:318-351.
    [93] ROGERS D M, HIRST J D. Calculations of protein circular dichroism fromfirst principles[J]. Chirality,2004,16(4):234-243.
    [94]黄汉昌,姜招峰,朱宏吉.紫外圆二色光谱预测蛋白质结构的研究方法[J].化学通报,2007,7:501-506.
    [95] MORRISETT J D, DAVID J S K, POWNALL H J, et al. Interaction of anapolipoprotein (apoLP-alanine) with phosphatidylcholine[J]. Biochemistry,1973,12(7):1290-1299.
    [96] HENNESSEY JR J P, JOHNSON JR W C. Information content in the circulardichroism of proteins[J]. Biochemistry,1981,20(5):1085-1094.
    [97] ADLER A J, GREENFIELD N J, FASMAN G D. Circular dichroism andoptical rotatory dispersion of proteins and polypeptides[J]. Methods inenzymology,1973,27:675-735.
    [98] SREERAMA N, WOODY R W. Estimation of protein secondary structure fromcircular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTRmethods with an expanded reference set[J]. Analytical Biochemistry,2000,287(2):252-260.
    [99] GREENFIELD N J. Methods to estimate the conformation of proteins andpolypeptides from circular dichroism data[J]. Analytical Biochemistry,1996,235(1):1-10.
    [100] KELLY S M, JESS T J, PRICE N C. How to study proteins by circulardichroism[J]. Biochimica et Biophysica Acta (BBA)-Proteins&Proteomics,2005,1751(2):119-139.
    [101] PENZER G, BROWN S. An Introduction to spectroscopy for biochemists [M].Academic Press, New York.1980.
    [102] TATULIAN S A. Attenuated total reflection Fourier transform infraredspectroscopy: a method of choice for studying membrane proteins and lipids[J].Biochemistry,2003,42(41):11898-11907.
    [103] LIN X, OKUDA T, HOLZER A, et al. The copper transporter CTR1regulatescisplatin uptake in Saccharomyces cerevisiae[J]. Molecular Pharmacology,2002,62(5):1154-1159.
    [104] ISHIDA S, LEE J, THIELE D J, et al. Uptake of the anticancer drug cisplatinmediated by the copper transporter Ctr1in yeast and mammals[J]. Proceedingsof the National Academy of Sciences,2002,99(22):14298-14302.
    [105] NAKAYAMA K, KANZAKI A, TERADA K, et al. Prognostic value of theCu-transporting ATPase in ovarian carcinoma patients receiving cisplatin-basedchemotherapy[J]. Clinical cancer research,2004,10(8):2804-2811.
    [106] SAMIMI G, SAFAEI R, KATANO K, et al. Increased expression of the copperefflux transporter ATP7A mediates resistance to cisplatin, carboplatin, andoxaliplatin in ovarian cancer cells[J]. Clinical cancer research,2004,10(14):4661-4669.
    [107] SAMIMI G, VARKI N M, WILCZYNSKI S, et al. Increase in expression of thecopper transporter ATP7A during platinum drug-based treatment is associatedwith poor survival in ovarian cancer patients[J]. Clinical cancer research,2003,9(16):5853-5859.
    [108] TAMBURRO A M, PEPE A, BOCHICCHIO B. Localizing-helices in humantropoelastin: assembly of the elastin―puzzle‖[J]. Biochemistry,2006,45(31):9518-9530.
    [109] SHINDO K, TAKAHASHI H, SHINOZAKI K, et al. Solution structure ofmicelle-bound H5peptide (427-452): a primary structure corresponding to thepore forming region of the voltage dependent potassium channel[J]. Biochimicaet Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,2001,1545(1-2):153-159.
    [110] KATRAGADDA M, ALDERFER J L, YEAGLE P L. Assembly of a polytopicmembrane protein structure from the solution structures of overlapping peptidefragments of bacteriorhodopsin[J]. Biophysical Journal,2001,81(2):1029-1036.
    [111] HUNT J F, EARNEST T N, BOUSCH O, et al. A biophysical study ofintegral membrane protein folding[J]. Biochemistry,1997,36(49):15156-15176.
    [112] KELKAR D A, CHATTOPADHYAY A. Modulation of gramicidin channelconformation and organization by hydrophobic mismatch in saturatedphosphatidylcholine bilayers[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes,2007,1768(5):1103-1113.
    [113] BOTELHO A V, HUBER T, SAKMAR T P, et al. Curvature and hydrophobicforces drive oligomerization and modulate activity of rhodopsin inmembranes[J]. Biophysical Journal,2006,91(12):4464-4477.
    [114] CHATTOPADHYAY A, RAWAT S S, GREATHOUSE D V, et al. Role oftryptophan residues in gramicidin channel organization and function[J].Biophysical Journal,2008,95(1):166-175.
    [1] SCHNEGGENBURGER P E, MU LLAR S, WORBS B, et al. MolecularRecognition at the Membrane Water Interface: Controlling Integral PeptideHelices by Off-Membrane Nucleobase Pairing[J]. Journal of the AmericanChemical Society,2010,132(23):8020-8028.
    [2] NAARMANN N, BILGICER B, MENG H, et al. Fluorinated interfaces driveself-association of transmembrane alpha helices in lipid bilayers[J]. AngewChem Int Ed Engl,2006,45(16):2588-2591.
    [3] LIU L P, LI S C, GOTO N K, et al. Threshold hydrophobicity dictates helicalconformations of peptides in membrane environments[J]. Biopolymers,1996,39(3):465-470.
    [4]李建涛. SLc11a1跨膜区在磷脂膜中的结构和取向的谱学研究[D].吉林:吉林大学理化所,2011.
    [5] QI H, YANG L, XUE R, et al. The third and fourth transmembrane domains ofSlc11a1: Comparison of their structures and positioning in phospholipid modelmembranes[J]. Peptide Science,2009,92(1):52-64.
    [6] SREERAMA N, WOODY R W. Estimation of protein secondary structure fromcircular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTRmethods with an expanded reference set[J]. Analytical Biochemistry,2000,287(2):252-260.
    [7] CHATTOPADHYAY A. Exploring membrane organization and dynamics bythe wavelength-selective fluorescence approach[J]. Chemistry and Physics ofLipids,2003,122(1-2):3-17.
    [8] BECHINGER B, RUYSSCHAERT J M, GOORMAGHTIGH E. Membranehelix orientation from linear dichroism of infrared attenuated total reflectionspectra[J]. Biophysical Journal,1999,76(1Pt1):552-563.
    [9] TORRECILLAS A, MARTINEZ-SENAC M M, GOORMAGHTIGH E, et al.Modulation of the membrane orientation and secondary structure of theC-terminal domains of Bak and Bcl-2by lipids[J]. Biochemistry,2005,44(32):10796-10809.
    [10] GOORMAGHTIGH E, RAUSSENS V, RUYSSCHAERT J M. Attenuatedtotal reflection infrared spectroscopy of proteins and lipids in biologicalmembranes[J]. Biochimica et Biophysica Acta,1999,1422(2):105-185.
    [11] LIU M, MAO X, YE C, et al. Improved WATERGATE pulse sequences forsolvent suppression in NMR spectroscopy[J]. Journal of Magnetic Resonance,1998,132(1):125-129.
    [12] GODDARD T, KNELLER D. Sparky3NMR software[J]. University ofCalifornia, San Francisco,2001.
    [13] WUTHRICH K. NMR of proteins and nucleic acids[M]. Wiley,1986.
    [14] G NTERT P, MUMENTHALER C, W THRICH K. Torsion angle dynamics forNMR structure calculation with the new program D1[J]. Journal of MolecularBiology,1997,273(1):283-298.
    [15] PEARLMAN D A, CASE D A, CALDWELL J W, et al. AMBER, a package ofcomputer programs for applying molecular mechanics, normal mode analysis,molecular dynamics and free energy calculations to simulate the structural andenergetic properties of molecules[J]. Computer Physics Communications,1995,91(1):1-41.
    [16] CORNELL W D, CIEPLAK P, BAYLY C I, et al. A second generation forcefield for the simulation of proteins, nucleic acids, and organic molecules[J].Journal of the American Chemical Society,1995,117(19):5179-5197.
    [17] CASE D A, PEARLMAN D A, CALDWELL J W, et al. AMBER7[J].University of California, San Francisco,2002.
    [18] LASKOWSKI R A, RULLMANN J A C, MACARTHUR M W, et al. AQUAand PROCHECK-NMR: programs for checking the quality of protein structuressolved by NMR[J]. Journal of Biomolecular NMR,1996,8(4):477-486.
    [19] KORADI R, BILLETER M, W THRICH K. MOLMOL: a program for displayand analysis of macromolecular structures[J]. Journal of molecular graphics,1996,14(1):51-55.
    [20] CHO C, URQUIDI J, SINGH S, et al. Thermal offset viscosities of liquid H2O,D2O, and T2O[J]. The Journal of Physical Chemistry B,1999,103(11):1991-1994.
    [21] EISENBERG D, KAUZMANN W. The structure and properties of water,Clarendon[M]. Oxford.1969.
    [22] PERKINS S J. Protein volumes and hydration effects[J]. European Journal ofBiochemistry,1986,157(1):169-180.
    [23] FIORONI M, BURGER K, MARK A E, et al. Model of1,1,1,3,3,3-hexafluoro-propan-2-ol for molecular dynamics simulations[J]. The Journalof Physical Chemistry B,2001,105(44):10967-10975.
    [24] CANTOR C R, SCHIMMEL P R. Biophysical chemistry: techniques for thestudy of biological structure and function[M]. WH Freeman&co,1980.
    [25] YAO S, HOWLETT G J, NORTON R S. Peptide self-association in aqueoustrifluoroethanol monitored by pulsed field gradient NMR diffusionmeasurements[J]. Journal of Biomolecular NMR,2000,16(2):109-119.
    [26] MILLIGAN D L, KOSHLAND D. Site-directed cross-linking. Establishing thedimeric structure of the aspartate receptor of bacterial chemotaxis[J]. Journal ofBiological Chemistry,1988,263(13):6268-6275.
    [27] KU ERKA N, TRISTRAM-NAGLE S, NAGLE J F. Structure of fullyhydrated fluid phase lipid bilayers with monounsaturated chains[J]. Journal ofMembrane Biology,2006,208(3):193-202.
    [28] WOLBER P, HUDSON B. An analytic solution to the F rster energy transferproblem in two dimensions[J]. Biophysical Journal,1979,28(2):197-210.
    [1]祁艾红,吴健民.铜代谢及其相关基因的研究[J].国际遗传学杂志,2006,29(5):356-359.
    [2]于海林,姜燕,赵亮, et al.卵巢癌细胞中hCTR1的表达与细胞对顺铂耐药的相关研究[J].肿瘤,2009,29(10):934-939.
    [3] ISHIDA S, LEE J, THIELE D J, et al. Uptake of the anticancer drug cisplatinmediated by the copper transporter Ctr1in yeast and mammals[J]. Proceedingsof the National Academy of Sciences,2002,99(22):14298-14302.
    [4] SAMIMI G, SAFAEI R, KATANO K, et al. Increased expression of the copperefflux transporter ATP7A mediates resistance to cisplatin, carboplatin, andoxaliplatin in ovarian cancer cells[J]. Clinical cancer research,2004,10(14):4661-4669.
    [5] KOMATSU M, SUMIZAWA T, MUTOH M, et al. Copper-transporting P-typeadenosine triphosphatase (ATP7B) is associated with cisplatin resistance[J].Cancer Research,2000,60(5):1312-1316.
    [6] ZHOU B, GITSCHIER J. hCTR1: a human gene for copper uptake identifiedby complementation in yeast[J]. Proceedings of the National Academy ofSciences of the United States of America,1997,94(14):7481-7486.
    [7] SONG I S, SAVARAJ N, SIDDIK Z H, et al. Role of human copper transporterCtr1in the transport of platinum-based antitumor agents in cisplatin-sensitiveand cisplatin-resistant cells[J]. Molecular Cancer Therapeutics,2004,3(12):1543-1549.
    [8] ALLER S G, UNGER V M. Projection structure of the human coppertransporter CTR1at6-resolution reveals a compact trimer with a novelchannel-like architecture[J]. Proceedings of the National Academy of Sciencesof the United States of America,2006,103(10):3627-3632.
    [9] SCHUSHAN M, BARKAN Y, HALILOGLU T, et al. C-trace model of thetransmembrane domain of human copper transporter1, motion and functionalimplications[J]. Proceedings of the National Academy of Sciences,2010,107(24):10908-10913.
    [10] DE FEO C J, ALLER S G, SILUVAI G S, et al. Three-dimensional structure ofthe human copper transporter hCTR1[J]. Proceedings of the National Academyof Sciences of the United States of America,2009,106(11):4237-4242.
    [11] SREERAMA N, WOODY R W. Estimation of protein secondary structure fromcircular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTRmethods with an expanded reference set[J]. Analytical Biochemistry,2000,287(2):252-260.
    [12] HONG D P, HOSHINO M, KUBOI R, et al. Clustering of fluorine-substitutedalcohols as a factor responsible for their marked effects on proteins andpeptides[J]. Journal of the American Chemical Society,1999,121(37):8427-8433.
    [13] JOHNSTON J M, COOK G A, TOMICH J M, et al. Conformation andenvironment of channel-forming peptides: a simulation study[J]. BiophysicalJournal,2006,90(6):1855-1864.
    [14] XUE R, WANG S, WANG C, et al. HFIP-induced structures and assemblies ofthe peptides from the transmembrane domain4of membrane protein Nramp1[J].Biopolymers,2006,84(3):329-339.
    [15] CHAGOLLA D P, GERIG J T. Conformations of Betanova in aqueoustrifluoroethanol[J]. Biopolymers,2010,93(10):893-903.
    [16] SUBASINGHAGE A P, CONLON J M, HEWAGE C M. Conformationalanalysis of the broad-spectrum antibacterial peptide, ranatuerin-2CSa:Identification of a full length helix–turn–helix motif[J]. Biochimica etBiophysica Acta (BBA)-Proteins&Proteomics,2008,1784(6):924-929.
    [17] SUBASINGHAGE A P, GREEN B D, FLATT P R, et al. Metabolic andstructural properties of human obestatin {1–23} and two fragment peptides[J].Peptides,2010,31(9):1697-1705.
    [18] RONGA L, PALLADINO P, SAVIANO G, et al. Structural characterization ofa neurotoxic threonine‐rich peptide corresponding to the human prion protein2‐helical180–195segment, and comparison with full‐length2‐helix‐derivedpeptides[J]. Journal of Peptide Science,2008,14(10):1096-1102.
    [19] CRANDALL Y M, BRUCH M D. Characterization of the structure anddynamics of mastoparan‐X during folding in aqueous TFE by CD and NMRspectroscopy[J]. Biopolymers,2008,89(3):197-209.
    [20] WUTHRICH K. NMR of proteins and nucleic acids[M]. Wiley,1986.
    [21] G NTERT P, MUMENTHALER C, W THRICH K. Torsion angle dynamics forNMR structure calculation with the new program D1[J]. Journal of MolecularBiology,1997,273(1):283-298.
    [22] KORADI R, BILLETER M, W THRICH K. MOLMOL: a program for displayand analysis of macromolecular structures[J]. Journal of molecular graphics,1996,14(1):51-55.
    [23] LASKOWSKI R A, RULLMANN J A C, MACARTHUR M W, et al. AQUAand PROCHECK-NMR: programs for checking the quality of protein structuressolved by NMR[J]. Journal of Biomolecular NMR,1996,8(4):477-486.
    [24] OPELLA S J, KIM Y, MCDONNELL P. Experimental nuclear magneticresonance studies of membrane proteins[J]. Methods in Enzymology,1994,239:536-560.
    [25] DE FEO C J, MOOTIEN S, UNGER V M. Tryptophan scanning analysis of themembrane domain of CTR-copper transporters[J]. Journal of MembraneBiology,2010,234(2):113-123.
    [26] EPAND R M. The amphipathic helix[M]. CRC,1993.
    [27] BECHINGER B. Structure and functions of channel-forming peptides:magainins, cecropins, melittin and alamethicin[J]. Journal of MembraneBiology,1997,156(3):197-211.
    [28] SAHIN-TOTH M, DUNTEN R L, GONZALEZ A, et al. Functionalinteractions between putative intramembrane charged residues in the lactosepermease of Escherichia coli[J]. Proceedings of the National Academy ofSciences,1992,89(21):10547-10551.
    [29] THOMPSON A N, POSSON D J, PARSA P V, et al. Molecular mechanism ofpH sensing in KcsA potassium channels[J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2008,105(19):6900-6905.
    [30] ALLER S G, UNGER V M. Projection structure of the human coppertransporter CTR1at6-A resolution reveals a compact trimer with a novelchannel-like architecture[J]. Proceedings of the National Academy of Sciencesof the United States of America,2006,103(10):3627-3632.
    [31] MACKENZIE K R, PRESTEGARD J H, ENGELMAN D M. Atransmembrane helix dimer: structure and implications[J]. Science,1997,276(5309):131-133.
    [32] BURKHARD P, STETEFELD J, STRELKOV S V. Coiled coils: a highlyversatile protein folding motif[J]. Trends Cell Biol,2001,11(2):82-88.
    [1] WALLIN E, VON HEIJNE G. Genome-wide analysis of integral membraneproteins from eubacterial, archaean, and eukaryotic organisms[J]. ProteinScience,1998,7(4):1029-1038.
    [2] GUDZ T I, SCHNEIDER T E, HAAS T A, et al. Myelin proteolipid proteinforms a complex with integrins and may participate in integrin receptorsignaling in oligodendrocytes[J]. The Journal of neuroscience,2002,22(17):7398-7407.
    [3] DIAZ R S, MONREAL J, LUCAS M. Calcium movements mediated byproteolipid protein and nucleotides in liposomes prepared with the endogenouslipids from brain white matter[J]. Journal of Neurochemistry,1990,55(4):1304-1309.
    [4] KITAGAWA K, SINOWAY M P, YANG C, et al. A proteolipid protein genefamily: expression in sharks and rays and possible evolution from an ancestralgene encoding a pore-forming polypeptide[J]. Neuron,1993,11(3):433-448.
    [5] CREIGHTON T E. Proteins: structures and molecular properties[M]. WHFreeman,1993.
    [6] SITTE H H, FARHAN H, JAVITCH J A. Sodium-dependent neurotransmittertransporters: oligomerization as a determinant of transporter function andtrafficking[J]. Molecular interventions,2004,4(1):38-47.
    [7] FARHAN H, FREISSMUTH M, SITTE H. Oligomerization ofneurotransmitter transporters: a ticket from the endoplasmic reticulum to theplasma membrane[J]. Neurotransmitter Transporters,2006:233-249.
    [8] SELKOE D J. Folding proteins in fatal ways[J]. Nature,2003,426(6968):900-904.
    [9] THOMAS P J, QU B H, PEDERSEN P L. Defective protein folding as a basisof human disease[J]. Trends in Biochemical Sciences,1995,20(11):456-459.
    [10] DOBSON C M. The structural basis of protein folding and its links with humandisease[J]. Philosophical Transactions of the Royal Society of London Series B:Biological Sciences,2001,356(1406):133-145.
    [11] PENKE B, DATKI Z, HET NYI C, et al. Molecular pathomechanisms ofAlzheimer's disease[J]. Journal of Molecular Structure: THEOCHEM,2003,666:507-513.
    [12] TURNER P R, O‘CONNOR K, TATE W P, et al. Roles of amyloid precursorprotein and its fragments in regulating neural activity, plasticity and memory[J].Progress in neurobiology,2003,70(1):1-32.
    [13] GOLDSBURY C S, WIRTZ S, M LLER S A, et al. Studies on the in VitroAssembly of A [beta]1-40: Implications for the Search for A [beta] FibrilFormation Inhibitors[J]. Journal of Structural Biology,2000,130(2-3):217-231.
    [14] MACKENZIE K R. Folding and stability of alpha-helical integral membraneproteins[J]. Chem Rev,2006,106(5):1931-1977.
    [15] RATH A, JOHNSON R M, DEBER C M. Peptides as transmembrane segments:decrypting the determinants for helix–helix interactions in membraneproteins[J]. Peptide Science,2007,88(2):217-232.
    [16] ENGELMAN D M, CHEN Y, CHIN C N, et al. Membrane protein folding:beyond the two stage model[J]. FEBS Letters,2003,555(1):122-125.
    [17] LANGOSCH D, LINDNER E, GUREZKA R. In Vitro Selection ofSelf‐Interacting Transmembrane Segments‐‐Membrane ProteinsApproached from a Different Perspective[J]. IUBMB Life,2002,54(3):109-113.
    [18] CHAMBERLAIN A K, FAHAM S, YOHANNAN S, et al. Construction ofhelix-bundle membrane proteins[J]. Advances in Protein Chemistry,2003,63:19-46.
    [19] ARKIN I T. Structural aspects of oligomerization taking place between thetransmembrane [alpha]-helices of bitopic membrane proteins[J]. Biochimica etBiophysica Acta (BBA)-Biomembranes,2002,1565(2):347-363.
    [20] DOBSON C M. Protein misfolding, evolution and disease[J]. Trends inBiochemical Sciences,1999,24(9):329-332.
    [21] YOKOI H, KINOSHITA T, ZHANG S. Dynamic reassembly of peptideRADA16nanofiber scaffold[J]. Proceedings of the National Academy ofSciences of the United States of America,2005,102(24):8414-8419.
    [22] ALTIERI A S, HINTON D P, BYRD R A. Association of biomolecularsystems via pulsed field gradient NMR self-diffusion measurements[J]. Journalof the American Chemical Society,1995,117(28):7566-7567.
    [23] EILERS M, SHEKAR S C, SHIEH T, et al. Internal packing of helicalmembrane proteins[J]. Proceedings of the National Academy of Sciences of theUnited States of America,2000,97(11):5796-5801.
    [24] ALLER S G, UNGER V M. Projection structure of the human coppertransporter CTR1at6-A resolution reveals a compact trimer with a novelchannel-like architecture[J]. Proceedings of the National Academy of Sciencesof the United States of America,2006,103(10):3627-3632.
    [25] DE FEO C J, ALLER S G, SILUVAI G S, et al. Three-dimensional structure ofthe human copper transporter hCTR1[J]. Proceedings of the National Academyof Sciences of the United States of America,2009,106(11):4237-4242.
    [26] LI E, YOU M, HRISTOVA K. Sodium dodecyl sulfate-polyacrylamide gelelectrophoresis and F rster resonance energy transfer suggest weak interactionsbetween fibroblast growth factor receptor3(FGFR3) transmembrane domainsin the absence of extracellular domains and ligands[J]. Biochemistry,2005,44(1):352-360.
    [27] LEMMON M, FLANAGAN J M, HUNT J F, et al. Glycophorin A dimerizationis driven by specific interactions between transmembrane alpha-helices[J].Journal of Biological Chemistry,1992,267(11):7683-7689.
    [28] NAARMANN N, BILGI ER B, MENG H, et al. Fluorinated Interfaces DriveSelf‐Association of Transmembrane Helices in Lipid Bilayers[J].Angewandte Chemie International Edition,2006,45(16):2588-2591.
    [29] EISSES J F, KAPLAN J H. Molecular characterization of hCTR1, the humancopper uptake protein[J]. Journal of Biological Chemistry,2002,277(32):29162-29171.
    [30] WOLBER P, HUDSON B. An analytic solution to the F rster energy transferproblem in two dimensions[J]. Biophysical Journal,1979,28(2):197-210.
    [31] KU ERKA N, TRISTRAM-NAGLE S, NAGLE J F. Structure of fullyhydrated fluid phase lipid bilayers with monounsaturated chains[J]. Journal ofMembrane Biology,2006,208(3):193-202.
    [1] CHATTOPADHYAY A, RAWAT S S, GREATHOUSE D V, et al. Role oftryptophan residues in gramicidin channel organization and function[J].Biophysical Journal,2008,95(1):166-175.
    [2] GALBRAITH T P, WALLACE B A. Phospholipid chain length alters theequilibrium between pore and channel forms of gramicidin[J]. FaradayDiscussions,1999,111(0):159-164.
    [3] RIEGLER J, MOHWALD H. Elastic interactions of photosynthetic reactioncenter proteins affecting phase transitions and protein distributions[J].Biophysical Journal,1986,49(6):1111-1118.
    [4] LEWIS B A, ENGELMAN D M. Bacteriorhodopsin remains dispersed in fluidphospholipid bilayers over a wide range of bilayer thicknesses[J]. Journal ofMolecular Biology,1983,166(2):203-210.
    [5] REN J, LEW S, WANG J, et al. Control of the transmembrane orientation andinterhelical interactions within membranes by hydrophobic helix length[J].Biochemistry,1999,38(18):5905-5912.
    [6] GAMBIN Y, REFFAY M, SIERECKI E, et al. Variation of the lateral mobilityof transmembrane peptides with hydrophobic mismatch[J]. Journal of PhysicalChemistry B,2010,114(10):3559-3566.
    [7] RAMADURAI S, HOLT A, SCHAFER L V, et al. Influence of hydrophobicmismatch and amino acid composition on the lateral diffusion oftransmembrane peptides[J]. Biophysical Journal,2010,99(5):1447-1454.
    [8] SPEROTTO M M, MOURITSEN O G. Lipid enrichment and selectivity ofintegral membrane proteins in two-component lipid bilayers[J]. Europeanbiophysics journal,1993,22(5):323-328.
    [9] PEROZO E, KLODA A, CORTES D M, et al. Physical principles underlyingthe transduction of bilayer deformation forces during mechanosensitive channelgating[J]. Nat Struct Biol,2002,9(9):696-703.
    [10] MARTINAC B, HAMILL O P. Gramicidin A channels switch between stretchactivation and stretch inactivation depending on bilayer thickness[J].Proceedings of the National Academy of Sciences,2002,99(7):4308-4312.
    [11] JOHANNSSON A, SMITH G, METCALFE J. The effect of bilayer thicknesson the activity of (Na++K+)-ATPase[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes,1981,641(2):416-421.
    [12] CAFFREY M, FEIGENSON G W. Fluorescence quenching of modelmembranes.3. Relationship between calcium adenosinetriphosphatase enzymeactivity and the affinity of the protein for phosphatidylcholines with differentacyl chain characteristics[J]. Biochemistry,1981,20(7):1949-1961.
    [13] EAST J M, LEE A G. Lipid selectivity of the calcium and magnesium iondependent adenosinetriphosphatase, studied with fluorescence quenching by abrominated phospholipid[J]. Biochemistry,1982,21(17):4144-4151.
    [14] BALDWIN P A, HUBBELL W L. Effects of lipid environment on thelight-induced conformational changes of rhodopsin.2. Roles of lipid chainlength, unsaturation, and phase state[J]. Biochemistry,1985,24(11):2633-2639.
    [15] MONTECUCCO C, SMITH G A, DABBENI-SALA F, et al. Bilayer thicknessand enzymatic activity in the mitochondrial cytochrome c oxidase and ATPasecomplex[J]. FEBS Letters,1982,144(1):145-148.
    [16] BRETSCHER M S, MUNRO S. Cholesterol and the Golgi apparatus[J].Science,1993,261(5126):1280-1281.
    [17] SCHMIDT U, WEISS M. Hydrophobic mismatch-induced clustering as aprimer for protein sorting in the secretory pathway[J]. Biophysical Chemistry,2010,151(1):34-38.
    [18] PELHAM H R, MUNRO S. Sorting of membrane proteins in the secretorypathway[J]. Cell,1993,75(4):603-605.
    [19] WEBB R J, EAST J M, SHARMA R P, et al. Hydrophobic mismatch and theincorporation of peptides into lipid bilayers: a possible mechanism for retentionin the Golgi[J]. Biochemistry,1998,37(2):673-679.
    [20] MOREIN S, KILLIAN J A, SPEROTTO M M. Characterization of thethermotropic behavior and lateral organization of lipid-peptide mixtures by acombined experimental and theoretical approach: effects of hydrophobicmismatch and role of flanking residues[J]. Biophysical Journal,2002,82(3):1405-1417.
    [21] KILLIAN J A, SALEMINK I, DE PLANQUE M R, et al. Induction ofnonbilayer structures in diacylphosphatidylcholine model membranes bytransmembrane alpha-helical peptides: importance of hydrophobic mismatchand proposed role of tryptophans[J]. Biochemistry,1996,35(3):1037-1045.
    [22] PARK S H, OPELLA S J. Tilt angle of a trans-membrane helix is determinedby hydrophobic mismatch[J]. Journal of Molecular Biology,2005,350(2):310-318.
    [23] SPARR E, ASH W L, NAZAROV P V, et al. Self-association oftransmembrane alpha-helices in model membranes: importance of helixorientation and role of hydrophobic mismatch[J]. Journal of BiologicalChemistry,2005,280(47):39324-39331.
    [24] YEAGLE P L, BENNETT M, LEMA TRE V, et al. Transmembrane helices ofmembrane proteins may flex to satisfy hydrophobic mismatch[J]. Biochimica etBiophysica Acta (BBA)-Biomembranes,2007,1768(3):530-537.
    [25] DE PLANQUE M R, GOORMAGHTIGH E, GREATHOUSE D V, et al.Sensitivity of single membrane-spanning alpha-helical peptides to hydrophobicmismatch with a lipid bilayer: effects on backbone structure, orientation, andextent of membrane incorporation[J]. Biochemistry,2001,40(16):5000-5010.
    [26] QI H, YANG L, XUE R, et al. The third and fourth transmembrane domains ofSlc11a1: Comparison of their structures and positioning in phospholipid modelmembranes[J]. Peptide Science,2009,92(1):52-64.
    [27] HOLT A, KOEHORST R, RUTTERS-MEIJNEKE T, et al. Tilt and rotationangles of a transmembrane model peptide as studied by fluorescencespectroscopy[J]. Biophysical Journal,2009,97(8):2258-2266.
    [28] BECHINGER B, RUYSSCHAERT J M, GOORMAGHTIGH E. Membranehelix orientation from linear dichroism of infrared attenuated total reflectionspectra[J]. Biophysical Journal,1999,76(1):552-563.
    [29] GOORMAGHTIGH E, RAUSSENS V, RUYSSCHAERT J M. Attenuatedtotal reflection infrared spectroscopy of proteins and lipids in biologicalmembranes[J]. Biochimica et Biophysica Acta-Reviews on Biomembranes,1999,1422(2):105-186.
    [30] DING F X, XIE H, ARSHAVA B, et al. ATR-FTIR study of the structure andorientation of transmembrane domains of the Saccharomyces cerevisiae-mating factor receptor in phospholipids[J]. Biochemistry,2001,40(30):8945-8954.
    [31] TORRECILLAS A, MART NEZ-SENAC M M, GOORMAGHTIGH E, et al.Modulation of the membrane orientation and secondary structure of theC-terminal domains of Bak and Bcl-2by lipids[J]. Biochemistry,2005,44(32):10796-10809.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700