LHC上标准模型之外新玻色子产生及其性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精确检验标准模型以及寻找超出标准模型的新物理是欧洲核子中心正在运行的大型强子对撞机(LHC)实验的重要物理目标。尽管粒子物理标准模型(Standard Model)在解释各类高能物理实验方面获得了巨大成功,但还是存在一些标准模型无法解释的问题,如中微子震荡、暗物质、正反物质不对称、等级问题、强CP问题等。现在普遍认为标准模型是更基本理论低能下的有效理论,大量的新物理模型被提出。标准模型预言的Higgs粒子的质量在电弱标度下的稳定性要求了TeV能标新物理的存在,暗物质的存在也为超出标准模型的新物理提供了明确的证据。各种新物理模型预言了新玻色子的存在,在LHC上研究各类新玻色子的产生及其性质,对于寻找标准模型之外的新物理,区分各类新物理模型有重要意义。
     超对称模型是一类已经被人们广泛研究的新物理理论,这一模型引入了与标准模型粒子相对应的超对称伴随子。基于精细调节的要求以及实验上对Higgs质量的限制,M.Perelstein等人给出了最小超对称模型参数空间所谓的“黄金区域”。在这一黄金区域中,sbottom(b1)粒子是sfermion中质量相对较轻的粒子。我们在LHC上研究了b1b1*对的产生过程,当(?)=14TeV时,质量为550GeV的sbottom的产生截面可以达到214fb不同于其它参数空间中常见的b1→bχ10衰变模式,黄金区域中的sbottom粒子主要衰变到χ1t和t1W-。我们选取了4jets+1lepton+ET末态作为LHC上探测sbottom粒子的信号。通过选择合理的运动学限制条件,我们的研究结果表明在100fb-1积分亮度的条件下,(?)=14TeV时,LHC上发现sbottom信号的显著度可以达到5-6σ。
     新物理模型对于标准模型规范对称群的扩充,引入了另一类TeV能标下的新规范玻色子W'(?)、Z'。我们研究了各类模型中可能存在的W'WH三粒子相互作用,发现只有左右对称模型中预言了W'RWH右手型相互作用,而其它模型中预言的相互作用都是W'LWH左手型相互作用。我们研究了LHC上W'粒子的产生过程,在W'的质量阈值附近,HW伴随产生过程的截面有显著的提高。大型强子对撞机上pp→W'→HW→bblv过程产生的末态带电轻子的角分布可以用来区分W'RWH和W'LWH相互作用。为了压低具有相同末态信号的标准模型背景过程,我们利用信号过程中各中间态的共振峰作为限制条件挑选信号。利用带电轻子在W玻色子质心系中的运动方向与末态系统的运动方向之间的夹角,我们定义了新的前后不对称度AFB。在质心系能量为14TeV的大型强子对撞机上,WR'和WL'产生过程的前后不对称度分别为0.03和-0.07。
     寻找Higgs粒子是大型强子对撞机的重要物理目标。双Higgs二重态模型预言了带电Higgs粒子(H±)的存在。由于存在大量的QCD背景过程,在LHC上利用强子衰变道寻找带电Higgs粒子一直存在困难。我们研究了大型强子对撞机上H±粒子的产生与衰变过程。研究结果表明利用pp→W±H(?)l+ET+bbjj过程,在mH±≥500GeV的质量范围内,通过H±→tb(bt)强子衰变道,可能探测到W+H(?)伴随产生过程。我们比较了W±H(?)与W±W'(?)伴随产生过程,发现H±、W'(?)粒子衰变产生的b-jet的角分布可以用于区分带电标量粒子和矢量粒子。
Testing the standard model (SM) precisely and searching for the new physics beyond standard model are the driving forces behind the undergoing experiments at CERN the large hadron collider (LHC). Although the standard model of particle is extremely successful in explanation of the high energy experiments, there are remain-ing problems not well understood, such as neutrino oscillation, dark matter, matter-antimatter asymmetry, hierarchy problem, strong CP problem etc. It is commonly believed that the SM can only be a low energy effective theory of a more fundamental theory, thus various new physics models have been proposed. The stabilization of the Higgs mass at the electroweak scale requires the introduction of new physics at TeV scale. The existence of dark matter also provides an unambiguous evidence of new physics beyond the standard model. New physics models predict the existence of new bosons beyond the standard model. Probing the production of new boson and its prop-erty at LHC is meaningful to confirm the new physics beyond the SM and to identify different new physics models.
     Supersymmetric model has been a widely studied new physics model, which pre-dicts the existence of the superpartners corresponding to the SM particles. Fine-tuning and experimental Higgs mass bound point to a "golden region" in the minimal super-symmetric standard model (MSSM) parameter space proposed by M. Perelstein and C. Spethmann. The lighter sbottom (b1) particle is a light sfermion in this golden region. We study the sbottom pair production at LHC. With (?)=14TeV, the cross section for sbottom pair production reaches214fb for550GeV sbottom. The sbottom in the golden region, differing from the conventional decay modes b1→bχ10, mainly decays to χ1-t and t1W-. We choose the final state of4jets+1lepton+ET as the sbottom production signature at the LHC. with setting the reasonable kinematical cuts, one can find that a significant level of5-6σ could be reached for the lighter sbottom discovery at the LHC with100fb-1integrated luminosity.
     Other TeV-scale bosons W'±and Z' particles are introduced by the extension of the SM gauge groups. We study the W'W H interaction in the new physics models. It is found that the existence of W'RW H interaction in left-right symmetric model, while the W'LW H interaction can be found in the other new physics models. We investigate the W' production process at the LHC. The W H production rates have been enhanced around the region of (?)~mw'. The angular distribution of charged lepton can be used to distinguish W'RW H from W'LW H in the pp→HW→bblv process at the LHC. In order to suppress the standard model backgrounds, we set the intermediate resonance constraints to highlight the signal process. We define a new type forward-backward asymmetry AFB relating to the angle between the direction of the charged lepton in the W rest frame and that of the final system. We find that AFB can reach0.03(-0.07) for W'R (W'L) production at(?)=14TeV.
     Searching for Higgs particle is one of the most important goals at the LHC. The two Higgs doublet model predicts the existence of charged Higgs particles. The in-vestigation of charged Higgs boson through its hadronic decay is always a tough issue for suffering from large QCD backgrounds at the LHC. We investigate the production and decay process of the charged Higgs particle. It shows that heavier than500GeV charged Higgs associated with W boson production can be found via pp→W±H(?)→l+ET+bbjj process at the LHC with its hadronic decay channel H±→tb(bt). Com-paring the production process of W±H(?) with that of W±W'(?) at the LHC, one can find the angular distribution of the b-jet decayed from H±and W'±can be used to identify the charged scalar from vector bosons.
引文
[1]J. C. Pati and A. Salam, Phys. Rev. D10,275 (1974).
    [2]R. N. Mohapatra and J. C. Pati, Phys. Rev. D11,566 (1975).
    [3]R. N. Mohapatra and J. C. Pati, Phys. Rev. D11,2558 (1975).
    [4]G. Senjanovic and R. N. Mohapatra, Phys. Rev. D12,1502 (1975).
    [5]R. W. Robinett and J. L. Rosner, Phys. Rev. D25,3036 (1982).
    [6]R. W. Robinett and J. L. Rosner, Phys. Rev. D26,2396 (1982).
    [7]J. Wess and B. Zumino, Phys. Lett. B49,52 (1974).
    [8]H. E. Haber and G. L. Kane, Phys. Rept.117,75 (1985).
    [9]O. Klein, Z. Phys.37,895 (1926).
    [10]N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B429,263 (1998), arXiv:hep-ph/9803315.
    [11]L. Randall and R. Sundrum, Phys. Rev. Lett.83,4690 (1999), arXiv:hep-th/9906064.
    [12]P. H. Frampton, P. Q. Hung, and M. Sher, Phys. Rept.330,263 (2000), arXiv:hep-ph/9903387.
    [13]G. D. Kribs, T. Plehn, M. Spannowsky, and T. M. P. Tait, Phys. Rev. D76, 075016 (2007), arXiv:0706.3718 [hep-ph].
    [14]W.-S. Hou, A. Soni, and H. Steger, Phys. Lett. B192,441 (1987).
    [15]T. D. Lee, Phys. Rev. D8,1226 (1973).
    [16]T. D. Lee, Phys. Rept.9,143 (1974).
    [17]S. Weinberg, Phys. Rev. Lett.37,657 (1976).
    [18]S. L. Glashow and S. Weinberg, Phys. Rev. D15,1958 (1977).
    [19]N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys. Lett. B513,232 (2001), arXiv:hep-ph/0105239.
    [20]N. Arkani-Hamed et al., JHEP 08,021 (2002), arXiv:hep-ph/0206020.
    [21]M. J. Strassler and K. M. Zurek, Phys. Lett. B651,374 (2007), arXiv:hep-ph/0604261
    [22]T. Han, Z. Si, K. M. Zurek, and M. J. Strassler, JHEP 07,008 (2008), arXiv:0712.2041 [hep-ph].
    [23]M. I. Gresham and M. B. Wise, Phys.Rev. D76,075003 (2007), arXiv:0706.0909 [hep-ph].
    [24]J. C. Pati and A. Salam, Phys. Lett. B58,333 (1975).
    [25]L. J. Hall and A. E. Nelson, Phys. Lett. B153,430 (1985).
    [26]G. Aad et al. (ATLAS Collaboration), Phys.Rev.Lett.107,272002 (2011), arXiv:1108.1582 [hep-ex].
    [27]S. Chatrchyan et al. (CMS Collaboration), CMS-PAS-EXO-11-024 (2011).
    [28]G. Aad et al. (ATLAS Collaboration), Phys.Lett. B708,37 (2012), arXiv:1108.6311 [hep-ex].
    [29]G. Aad et al. (ATLAS Collaboration), Phys.Lett. B710,67 (2012), arXiv:1109.6572 [hep-ex].
    [30]C.-N. Yang and R. L. Mills, Phys. Rev.96,191 (1954).
    [31]S. L. Glashow, Nucl. Phys.22,579 (1961).
    [32]S. Weinberg, Phys. Rev. Lett.19,1264 (1967).
    [33]S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D2,1285 (1970).
    [34]K. Nakamura et al. (Particle Data Group), J. Phys. G37,075021 (2010).
    [35]G. Aad et al. (ATLAS Collaboration), Phys.Lett. B710,49 (2012), arXiv:1202.1408 [hep-ex].
    [36]G. Aad et al. (ATLAS Collaboration), Phys.Rev.Lett.108,111803 (2012), arXiv:1202.1414 [hep-ex].
    [37]S. Chatrchyan et al. (CMS Collaboration), (2012), arXiv:1202.1488 [hep-ex].
    [38]S. Chatrchyan et al. (CMS Collaboration), (2012), arXiv:1202.1487 [hep-ex].
    [39]P. Langacker, Phys. Rept.72,185 (1981).
    [40]J. Liu and L. Wolfenstein, Nucl. Phys. B289,1 (1987).
    [41]Y. L. Wu and L. Wolfenstein, Phys. Rev. Lett.73,1762 (1994), arXiv:hep-ph/9409421.
    [42]L. Wolfenstein and Y. L. Wu, Phys. Rev. Lett.73,2809 (1994), arXiv:hep-ph/9410253.
    [43]L. J. Hall and S. Weinberg, Phys. Rev. D48,979 (1993), arXiv:hep-ph/9303241
    [44]J. E. Kim, Phys. Rept.150,1 (1987).
    [45]R. D. Peccei and H. R. Quinn, Phys. Rev. Lett.38,1440 (1977).
    [46]J. F. Gunion and H. E. Haber, Phys.Rev. D67,075019 (2003), arXiv:hep-ph/0207010 [hep-ph].
    [47]M. Aoki, S. Kanemura, K. Tsumura, and K. Yagyu, Phys.Rev. D80,015017 (2009), arXiv:0902.4665 [hep-ph].
    [48]G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher, et al., (2011), arXiv:1106.0034 [hep-ph].
    [49]P. Ferreira and J. P. Silva, Eur.Phys.J. C69,45 (2010), arXiv:1001.0574 [hep-ph]
    [50]I. F. Ginzburg and M. Krawczyk, Phys. Rev. D72,115013 (2005), arXiv.hep-ph/0408011
    [51]S. Bejar, J. Guasch, and J. Sola, Nucl. Phys. B600,21 (2001), arXiv:hep-ph/0011091
    [52]C.-S. Huang, W. Liao, Q.-S. Yan, and S.-H. Zhu, Phys. Rev. D63,114021 (2001), arXiv:hep-ph/0006250.
    [53]H. E. Logan and U. Nierste, Nucl. Phys. B586,39 (2000), arXiv:hep-ph/0004139.
    [54]M. J. G. Veltman, Acta Phys. Polon. B8,475 (1977).
    [55]P. Fayet, Nucl. Phys. B90,104 (1975).
    [56]P. Fayet, Phys. Lett. B64,159 (1976).
    [57]K. Inoue, A. Kakuto, H. Komatsu, and S. Takeshita, Prog. Theor. Phys.68,927 (1982).
    [58]S. P. Martin, (1997), arXiv:hep-ph/9709356.
    [59]H. Nishino et al. (Super-Kamiokande), Phys. Rev. Lett.102,141801 (2009), arXiv:0903.0676 [hep-ex].
    [60]S. Dimopoulos and D. W. Sutter, Nucl. Phys. B452,496 (1995), arXiv:hep-ph/9504415.
    [61]A. Djouadi, Phys.Rept.459,1 (2008), arXiv:hep-ph/0503173 [hep-ph].
    [62]V. M. Abazov et al. (DO), Phys. Lett. B660,449 (2008), arXiv:0712.3805 [hep-ex].
    [63]V. M. Abazov et al. (DO), Phys. Lett. B665,1 (2008), arXiv:0803.2263 [hep-ex]
    [64]E. Eichten, I. Hinchliffe, K. D. Lane, and C. Quigg, Rev. Mod. Phys.56,579 (1984).
    [65]W. Beenakker, R. Hopker, M. Spira, and P. M. Zerwas, Nucl. Phys. B492,51 (1997), arXiv:hep-ph/9610490.
    [66]H. Baer, C. Kao, and X. Tata, Phys. Rev. D48,2978 (1993), arXiv:hep-ph/9306248.
    [67]J. L. Lopez, D. V. Nanopoulos, X. Wang, and A. Zichichi, Phys. Rev. D48,2062 (1993), arXiv:hep-ph/9211286.
    [68]H. Baer, C.-h. Chen, F. Paige, and X. Tata, Phys. Rev. D49,3283 (1994), arXiv:hep-ph/9311248.
    [69]Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett.81,1562 (1998), arXiv:hep-ex/9807003.
    [70]G. Barenboim, J. Bernabeu, J. Prades, and M. Raidal, Phys. Rev. D55,4213 (1997), arXiv:hep-ph/9611347.
    [71]L. Wolfenstein, Phys. Rev. D29,2130 (1984).
    [72]N. G. Deshpande, J. F. Gunion, B. Kayser, and F. I. Olness, Phys. Rev. D44, 837(1991).
    [73]J. Maalampi, A. Pietila, and M. Raidal, Phys. Rev. D48,4467 (1993).
    [74]V. D. Barger, J. F. Beacom, K.-m. Cheung, and T. Han, Phys. Rev. D50,6704 (1994), arXiv:hep-ph/9404335.
    [75]J. A. Coarasa Perez, A. Mendez, and J. Sola, Phys. Lett. B374,131 (1996), arXiv:hep-ph/9511297.
    [76]G. Barenboim, K. Huitu, J. Maalampi, and M. Raidal, Phys. Lett. B394,132 (1997), arXiv:hep-ph/9611362.
    [77]A. Djouadi, J. Ng, and T. Rizzo, (1995), arXiv:hep-ph/9504210 [hep-ph].
    [78]H. Czyz, P. Duka, and M. Zralek, Phys. Rev. D49,4941 (1994).
    [79]G. Beall, M. Bander, and A. Soni, Phys. Rev. Lett.48,848 (1982).
    [80]T. G. Rizzo, Phys. Rev. D50,3303 (1994), arXiv:hep-ph/9401319.
    [81]G. Barenboim, J. Bernabeu, and M. Raidal, Phys. Rev. Lett.80,4625 (1998), arXiv:hep-ph/9712349.
    [82]D. Graudenz, M. Spira, and P. M. Zerwas, Phys. Rev. Lett.70,1372 (1993).
    [83]S. Catani, D. de Florian, M. Grazzini, and P. Nason, JHEP 07,028 (2003), arXiv:hep-ph/0306211
    [84]A. Djouadi, Phys. Rept.457,1 (2008), arXiv:hep-ph/0503172.
    [85]Z. Kunszt, Z. Trocsanyi, and W. J. Stirling, Phys. Lett. B271,247 (1991).
    [86]T. Han and S. Willenbrock, Phys. Lett. B273,167 (1991).
    [87]G. Aad et al. (ATLAS Collaboration), (2012), arXiv:1204.2760 [hep-ex].
    [88]G. Aad et al. (ATLAS Collaboration), (2011), arXiv:1112.3832 [hep-ex].
    [89]M. Perelstein and C. Spethmann, JHEP 04,070 (2007), arXiv:hep-ph/0702038
    [90]R. Barate et al. (LEP Working Group for Higgs boson searches), Phys. Lett. B565,61 (2003), arXiv:hep-ex/0306033.
    [91]S. Schael et al. (ALEPH), Eur. Phys. J. C47,547 (2006), arXiv:hep-ex/0602042
    [92]B. C. Allanach, Comput. Phys. Commun.143,305 (2002), arXiv:hep-ph/0104145.
    [93]J. Alwall et al., JHEP 09,028 (2007), arXiv:0706.2334 [hep-ph].
    [94]T. Sjostrand, S. Mrenna, and P. Z. Skands, JHEP 05,026 (2006), arXiv:hep-ph/0603175.
    [95]http://physics.ucdavis.edu/conway/research/software/pgs/pgs4-general.html.
    [96]F. Caravaglios, M. L. Mangano, M. Moretti, and R. Pittau, Nucl. Phys. B539, 215 (1999), arXiv:hep-ph/9807570.
    [97]G. Aad et al. (The ATLAS Collaboration), (2009), arXiv:0901.0512 [hep-ex].
    [98]M. Cacciari, S. Frixione, M. L. Mangano, P. Nason, and G. Ridolfi, JHEP 09, 127 (2008), arXiv:0804.2800 [hep-ph].
    [99]W. Bernreuther and Z.-G. Si, Nucl. Phys. B837,90 (2010), arXiv:1003.3926 [hep-ph].
    [100]W. Beenakker et al., JHEP 08,098 (2010), arXiv:1006.4771 [hep-ph].
    [101]A. Abulencia et al. (CDF), Phys. Rev. D75,091101 (2007), arXiv:hep-ex/0611022.
    [102]T. Aaltonen et al. (CDF), Phys. Rev. Lett.103,041801 (2009), arXiv:0902.3276 [hep-ex].
    [103]V. M. Abazov et al. (D0), Phys. Rev. Lett.100,031804 (2008), arXiv:0710.2966 [hep-ex].
    [104]K. Hsieh, K. Schmitz, J.-H. Yu, and C. P. Yuan, Phys. Rev. D82,035011 (2010), arXiv:1003.3482 [hep-ph].
    [105]P. Langacker and S. U. Sankar, Phys. Rev. D40,1569 (1989).
    [106]M. Czakon, J. Gluza, and M. Zralek, Phys. Lett. B458,355 (1999), arXiv:hep-ph/9904216.
    [107]G. Ecker and W. Grimus, Nucl. Phys. B258,328 (1985).
    [108]Y. Zhang, H. An, X. Ji, and R. N. Mohapatra, Phys. Rev. D76,091301 (2007), arXiv:0704.1662[hep-ph].
    [109]Y.-L. Wu and Y.-F. Zhou, Sci. China G51,1808 (2008), arXiv:0709.0042 [hep-ph].
    [110]A. Maiezza, M. Nemevsek, F. Nesti, and G. Senjanovic, Phys. Rev. D82, 055022 (2010), arXiv:1005.5160 [hep-ph].
    [111]Y. Zhang, H. An, X. Ji, and R. N. Mohapatra, Nucl. Phys. B802,247 (2008), arXiv:0712.4218 [hep-ph].
    [112]S.-Z. Wang, S.-Z. Jiang, F.-J. Ge, and Q. Wang, JHEP 06,107 (2008), arXiv:0805.0643 [hep-ph].
    [113]S.-Z. Wang, F.-J. Ge, and Q. Wang, Phys. Lett. B662,375 (2008).
    [114]J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam, Phys. Rev. Lett. 100,242001 (2008), arXiv:0802.2470 [hep-ph].
    [115]A. Del Fabbro and D. Treleani, Phys. Rev. D61,077502 (2000), arXiv:hep-ph/9911358.
    [116]A. Stange, W. J. Marciano, and S. Willenbrock, Phys. Rev. D50,4491 (1994), arXiv:hep-ph/9404247.
    [117]S. L. Glashow, D. V. Nanopoulos, and A. Yildiz, Phys. Rev. D18,1724 (1978).
    [118]R. Kleiss, Z. Kunszt, and W. J. Stirling, Phys. Lett. B253,269 (1991).
    [119]J. Pumplin et al., JHEP 07,012 (2002), arXiv:hep-ph/0201195.
    [120]S. Gopalakrishna, T. Han, I. Lewis, Z.-g. Si, and Y.-F. Zhou, Phys. Rev. D82, 115020 (2010), arXiv:1008.3508 [hep-ph].
    [121]ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Col-laboration, LEP Higgs Working Group for Higgs boson searches (2001), arXiv:hep-ex/0107031.
    [122]J. L. Hewett, Phys. Rev. Lett.70,1045 (1993), arXiv:hep-ph/9211256.
    [123]V. D. Barger, M. S. Berger, and R. J. N. Phillips, Phys. Rev. Lett.70,1368 (1993), arXiv:hep-ph/9211260.
    [124]D. Bowser-Chao, K.-m. Cheung, and W.-Y. Keung, Phys. Rev. D59,115006 (1999), arXiv:hep-ph/9811235.
    [125]R. M. Barnett, H. E. Haber, and D. E. Soper, Nucl. Phys. B306,697 (1988).
    [126]A. C. Bawa, C. S. Kim, and A. D. Martin, Z. Phys. C47,75 (1990).
    [127]F. Borzumati, J.-L. Kneur, and N. Polonsky, Phys. Rev. D60,115011 (1999), arXiv:hep-ph/9905443.
    [128]. Miller, D. J., S. Moretti, D. P. Roy, and W. J. Stirling, Phys. Rev. D61,055011 (2000), arXiv:hep-ph/9906230.
    [129]Y. Tachikawa, JHEP 02,050 (2004), arXiv:hep-th/0401184.
    [130]M. Beccaria, G. Macorini, L. Panizzi, F. M. Renard, and C. Verzegnassi, Phys. Rev. D80,053011 (2009), arXiv:0908.1332 [hep-ph].
    [131]S. Yang and Q.-S. Yan, JHEP 02,074 (2012), arXiv:1111.4530 [hep-ph].
    [132]D. A. Dicus, J. L. Hewett, C. Kao, and T. G. Rizzo, Phys. Rev. D40,787 (1989).
    [133]A. A. Barrientos Bendezu and B. A. Kniehl, Phys. Rev. D59,015009 (1999), arXiv:hep-ph/9807480.
    [134]A. A. Barrientos Bendezu and B. A. Kniehl, Phys. Rev. D61,097701 (2000), arXiv:hep-ph/9909502.
    [135]A. A. Barrientos Bendezu and B. A. Kniehl, Phys. Rev. D63,015009 (2001), arXiv:hep-ph/0007336.
    [136]O. Brein, W. Hollik, and S. Kanemura, Phys. Rev. D63,095001 (2001), arXiv:hep-ph/0008308.
    [137]E. Asakawa, O. Brein, and S. Kanemura, Phys. Rev. D72,055017 (2005), arXiv:hep-ph/0506249.
    [138]D. Eriksson, S. Hesselbach, and J. Rathsman, Eur. Phys. J. C53,267 (2008), arXiv:hep-ph/0612198.
    [139]S.-S. Bao, Y. Tang, and Y.-L. Wu, Phys. Rev. D83,075006 (2011), arXiv:1011.1409[hep-ph].
    [140]A. Alves, E. R. Barreto, and A. G. Dias, Phys. Rev. D84,075013 (2011), arXiv:1105.4849 [hep-ph].
    [141]J. Zhao, C. S. Li, and Q. Li, Phys. Rev. D72,114008 (2005), arXiv:hep-ph/0509369.
    [142]J. Gao, C. S. Li, and Z. Li, Phys. Rev. D77,014032 (2008), arXiv:0710.0826 [hep-ph].
    [143]S. Moretti and K. Odagiri, Phys. Rev. D59,055008 (1999), arXiv:hep-ph/9809244.
    [144]A. Djouadi, J. Kalinowski, and M. Spira, Comput. Phys. Commun.108,56 (1998), arXiv:hep-ph/9704448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700