黄土对典型重金属离子吸附解吸特性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来工业迅速发展的同时也给环境带来了许多负面的影响,各种重金属污染事件保持高发态势,引起了社会各界的高度重视。本文以土体与地下水重金属污染评价与防治为背景,系统地分析了多种因素影响下(土水比、反应时间、溶质浓度、温度、pH、竞争离子)黄土对环境中存在的典型重金属离子的吸附特性及机理;已基本建立了黄土对重金属离子单一吸附及竞争吸附的研究框架;探讨了解吸助剂NTA、 EDTA对重金属从黄土中解吸的机理,得到了一系列有意义的结论。
     1)探讨了土水比、反应时间、温度、溶质浓度等不同条件下黄土对重金属离子的吸附特性及机理。增加土水比会增加重金属的吸附效率,实验结果结合等温模型分析可知重金属Pb(Ⅱ)、Cu(Ⅱ)、 Cr(Ⅲ)吸附性能最优;重金属在黄土上的吸附随时间变化表现两阶段吸附模式,第一阶段重金属吸附量快速增长,第二阶段是吸附量缓慢增长直至平衡阶段,吸附特性都非常符合伪二级动力学模型;吸附前后的黄土X光衍射光谱和傅里叶红外光谱分析表明黄土中的矿物成分和有机质对重金属的吸附起了重要作用。
     2)对重金属吸附至关重要的溶液酸碱环境进行了探讨,随着pH的升高,黄土对重金属的吸附量也越来越多。黄土对Cu(Ⅱ)、 Zn(Ⅱ)、 Pb(Ⅱ)、 Cr(Ⅲ)四种重金属的专性吸附能力较强,在pH<6时已经基本完全吸附,Cd(Ⅱ)、 Ni(Ⅱ)、 Mn(Ⅱ)在强碱性条件下生成部分沉淀才能从溶液中完全去除。
     3)二元系统中重金属离子相互竞争、相互对抗导致吸附等温曲线极不规则,黄土对重金属离子表现出明显的选择吸附特性,对Pb(Ⅱ)、CU(Ⅱ)、Cr(Ⅲ)的吸附最优,其次Zn(Ⅱ)、 Cd(Ⅱ),而Ni(Ⅱ)、 Mn(Ⅱ)吸附最弱,重金属在黄土上吸附的选择顺序为:Cr(Ⅲ)> Pb(Ⅱ)> Cu(Ⅱ)> Zn(Ⅱ)> Cd(Ⅱ)> Ni(Ⅱ)> Mn(Ⅱ)。这种选择顺序主要与重金属本身的特性和黄土上的矿物组成及有机质含量相关,黄土上的各种矿物成分(如石英、云母、蛭石、铁矿石等)对重金属吸附发挥了重要作用;由于黄土天然pH为碱性,在此条件下重金属易水解,因此重金属选择吸附顺序与重金属自身的水解常数、水合离子半径也相关。
     4)离子浓度越大,重金属离子之间的竞争吸附效应越显著;在酸性环境中重金属离子之间相互竞争、相互抑制的情况比较明显,在碱性环境中,随pH的增大,离子之间相互竞争作用减弱。与单一重金属离子吸附的pH效应相比,在竞争吸附时,Pb(Ⅱ)、CU(Ⅱ)的pH吸附锋面不同程度右移,Zn(Ⅱ)在单系统中无吸附锋面现象,而在竞争过程中会出现明显的pH吸附锋面;Cr(Ⅲ)的竞争能力最强,pH锋面没有明显变化,Cd(Ⅱ)的竞争能力最弱,主要与黄土上的非专性吸附位结合,导致吸附极不稳定。
     5)NTA、 EDTA可使黄土上负载的Pb(Ⅱ)、 Cu(Ⅱ)、 Cd(Ⅱ)、 Zn(Ⅱ)释放到溶液中,然而NTA和EDTA对Cr(Ⅲ)的解吸没有任何促进作用,反而促进其再次吸附在黄土上。EDTA与金属形成的络合物通常比NTA形成的金属络合物要稳定,EDTA对重金属的解吸效果普遍优于NTA对重金属的解吸效果。配体与二价、三价重金属形成配合物时参与配位的原子数不同,导致二价重金属与络合剂形成类配体络合物、三价重金属与络合剂形成类金属络合物,这两种不同的络合物特性导致Pb(Ⅱ)、 Cu(Ⅱ)、 Cd(Ⅱ)、 Zn(Ⅱ)被解吸而Cr(Ⅲ)再次吸附。
The rapid development of modern industry has brought many negative effects to living environment in recent years, and frequent incidents of heavy metal contamination has aroused broad interest of people around the world. Based on the pollution assessment and remediation of contaminated soil and groundwater, a series of laboratory experiments have been conducted to study the sorption behavior and mechanism of typical heavy metals on loess soil in single system and binary system, in addition, desorption behavior of heavy metals from contaminated loess soil by means of two comlexing agents (i.e., nitrilotriacetic acid trisodium salt monohydrate (NTA) and ethylenediamine tetraacetic acid disodium salt (EDTA)) has been studied. The main fruits are listed in the following:
     1) Soil-solid ratio, reaction time, temperature and solute concentration have significant effect on the sorption of heavy metals on loess soil. The sorption efficiency of heavy metals will be increased by increasing soil-solid ratio, and loess soil has shown best affinity for Pb(Ⅱ), Cu(Ⅱ) and Cr(Ⅲ), complete removal of these three ions needing less loess soil dosage than other metals. The kinetics of heavy metals on loess soil are consistent with pseudo-second order kinetics, and the variation of sorption with reaction time has been found to follow two stages, i.e., first stage with rapid increasing sorption amount and second stage with slow increasing sorption amount till reaching equilibrium. Analysis of X-ray diffraction spectrum and Fourier infra-red spectrum of loess soil before and after loading with heavy metals reveal that various minerals and organic matters contribute a lot to the sorption of heavy metals.
     2) The pH value of solution is a critical factor for heavy metal sorption, and the sorption amount will increase by increasing the solution pH. Nearly complete removal of Cu(Ⅱ), Zn(Ⅱ), Pb(Ⅱ) and Cr(Ⅲ) can be achieved at pH<6, while, complete removal of Cd(II), Ni(II) and Mn(Ⅱ) only occurring under strong alkaline condition owing to part of precipitation.
     3) The mutual competition and antagonism effect of heavy metals in binary system results in the irregularity of sorption isotherm curves, most cureves not following the four sorption isotherm types (i.e., H, L, S and C shaped curves). The sorption capacities of Pb(Ⅱ), Cu(Ⅱ) and Cr(Ⅲ) are best of all, followed by Zn(Ⅱ) and Cd(Ⅱ), finally Ni(Ⅱ) and Mn(Ⅱ). The heavy metal sorption on loess soil follows the sequence of Cr(Ⅲ)> Pb(Ⅱ)> Cu(Ⅱ)> Zn(Ⅱ)> Cd(Ⅱ)> Ni(Ⅱ)> Mn(Ⅱ), which determined mainly by the mineral constituents and organic matters in loess and properties of heavy metals. The minerals (i.e., quartz, mica, vermiculite, goethite and so on) have played important roles in sorption process. Heavy metals can hydrolyze under alkaline natural pH conditions, so hydrolysis constants and hydrated ion radii also have great effect on the sorption of heavy metals on loess soil.
     4) The competition effect between heavy metals can be enlarged by increasing the concentration of heavy metal ions, and obivious mutual inhibition can be found under acid condition, while the competition effect will decrease with increasing pH under alkaline condition. Comparing with individual sorption of heavy metals, the pH edges of Pb(Ⅱ) and Cu(Ⅱ) show right shift of different extent in binary system, the sorption of Zn(Ⅱ) showing distinct pH edge different from that in single system. The pH edge of Cr(Ⅲ) sorption in binary system indicates that Cr(Ⅲ) has the best competition sorption capacity. Cd(II) has the worst competition sorption capacity because of formantion of unstable nonspecific out-sphere complexes on loess soil.
     5) NTA and EDTA can facilitate the release of Pb(Ⅱ), Cu(Ⅱ), Cd(Ⅱ) and Zn(Ⅱ) from contaminated loess soil, in reverse, both has no effect on removing Cr(Ⅲ) from loess soil but help resorption of Cr(Ⅲ) on loess soil. The desorption efficiencies of heavy metals using EDTA has been found better than that using NTA because that EDTA-metal complexes are usually stable than NTA-metal complexes. The different numbers of coordination bonds lead to formation of ligand-like complexes and metal-like complexes respectively when organic ligands react with divalent and trivalent havy metas, and these two complexes has different properties which result in the release of divalent ions and resorption of trivalent ions.
引文
Abollino O., Aceto M., Malandrino M., Sarzanini C, Mentasti E. Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Research 2003,37: 1619-1627.
    Abumaizar R.J., Smith E.H. Heavy metal contaminants removal by soil washing. Journal of Hazardous Materials 1999,70B-.71-86.
    Akar T., Ozcan A.S., Tunali S., Ozcan A. Biosorption of a textile dye (Acid Blue 40) by cone biomass of Thuja orientalis:Estimation of equilibrium, thermodynamic and kinetic parameters. Bioresource Technology 2008,99(8):3057-3065.
    Allen S.J., Gan Q., Matthews R., Johnson P.A. Kinetic modeling of the adsorption of basic dyes by kudzu. Journal of Colloid and Interface Science 2005,286(1):101-109.
    Angove M.J., Johnson B.B., Wells J.D. Adsorption of cadmium(II) on kaolinite, Colloid Surf. A:Physicochem. Eng. Aspects 1997,126:137-147.
    Atanassova I. Competitive effect of copper, zinc, cadmium and nickel on ion adsorption and desorption by soil clays. Water, Air, and Soil Pollution 1999,113:115-125.
    Azizian S. Kinetic models of sorption:a theoretical analysis. Journal of Colloid and Interface Science 2004,276(1):47-52.
    Bhattacharyya K.G., Sen S. Gupta, Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium. Appl. Clay Sci.2008,41:1-9.
    Bhattacharyya K.G., Gupta S.S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite:A review. Advances in Colloid and Interface Science 2008, 140:114-131.
    Bibak A. Competitive sorption of copper, nickel, and zinc by an Oxisol, Communications in Soil Science and Plant Analysis 1997,28(11-12):927-937.
    Biswas M., Masuda J.D., Mitra S. Hydrothermal synthesis, crystal structure and magnetic properties of a new one-dimensional polymer. Struct. Chem.2007,18:9-13.
    Boujelben N., Bouzid J., Elouear Z. Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions:Study in single and binary systems. J. Hazard. Mater.2009,163:376-382.
    Bonten L.T.C., Groenenberg J.E., Weng L., van Riemsdijk W.H. Use of speciation and complexation models to estimate heavy metal sorption in soils. Geoderma 2008,146: 303-310.
    Bradl H.B. Adsorption of heavy metal ions on soils and soils constituents, J. Colloid Interf. Sci. 2004,277:1-18.
    Brown G.A., Elliott H.A. Influence of electrolytes on EDTA extraction of Pb from polluted soil. Water, Air, and Soil Pollution 1992,62:157-165.
    Carvalho W.A., Vignado C., Fontana J. Ni(II) removal from aqueous effluents by silylated clays. J. Hazard. Mater.2008,153:1240-1247.
    Cerqueira B., Covelo E.F., Andrade L., Vega F.A. The influence of soil properties on the individual and competitive sorption and desorption of Cu and Cd. Geoderma 2011,162: 20-26.
    Chang P.P., Wang X.K., Yu S.M., Wu W.S. Sorption of Ni(II) on Na-rectorite from aqueous solution:Effect of pH, ionic strength and temperature. Colloid. Surf. A-Physicochem. Eng. Asp.2007,302:75-81.
    Chattopadhyay S., Dutta A., Ray S. Municipal solid waste management in Kolkata, India-A review. Waste Management 2009,29:1449-1458.
    CosKun M., Steinnes E., Viladimirovna M. Heavy metal pollution of surface soil in the Thrace region, Turkey. Environmental Monitoring and Assessment 2006,119:545-556.
    Covelo E.F., Andrade M.L., Vega F.A. Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics. Journal of Colloid and Interface Science 2004a,280:1-8.
    Covelo E.F., Andrade Couce M.L., Vega F.A. Competitive Adsorption and Desorption of Cadmium, Chromium, Copper, Nickel, Lead, and Zinc by Humic Umbrisols, Communications in Soil Science and Plant Analysis 2004b,35(19-20):2709-2729.
    Covelo E.F., Vega F.A., Andrade M.L. Competitive sorption and desorption of heavy metals by individual soil components. Journal of Hazardous Materials 2007a,140:308-315.
    Covelo E.F., Vega F.A., Andrade M.L. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils. I. Selectivity sequences. Journal of Hazardous Materials 2007b, 147:852-861.
    Dal Bosco S.M., Jimenez R.S., Vignado C., et al. Removal of Mn(Ⅱ) and Cd(Ⅱ) from wastewaters by natural and modified clays. Adsorption 2006,12(2):133-146.
    Dean J.A. Lange's Handbook of Chemistry. McGraw-Hill Professional,1998.
    Doula M.K. Removal of Mn2+ ions from drinking water by using clinoptilolite and a clinoptilolite-Fe oxide system. Water Research 2006,40(17):3167-3176.
    Do. D.D. Adsorption analysis:Equilibria and Kinetics. Imperical college press, London,1998.
    Dijkstra, J., Meeussen, J., Comans, R. Leaching of heavy metals from contaminated soils:an experimental and modeling study. Environ. Sci. Technol.2004,38:4390-4395.
    Elzinga E.J., Sparks D.L. Reaction condition effects on nickel sorption mechanisms in illite-water suspensions. Soil Sci. Soc. Am. J.2001,65:94-101.
    Elliot H.A., Liberati M.R. Huang C.P. Competitive adsorption of heavy metals by soils. J. Environ. Qual.1986,15 (3):214-219.
    Escarre J., Lefebvre C., Raboyeau S., Dossantos A., Gruber W., Marel J.C.C., Frerot H., Noret N., Mahieu S., Collin C., van Oort F. Heavy Metal Concentration Survey in Soils and Plants of the Les Malines Mining District (Southern France):Implications for Soil Restoration. Water, Air, and Soil Pollution 2011,216(1-4):485-504.
    Faulstich H., Stournaras C. Trialkyl lead in rain in the Black Forest. Nature 1986,319:17.
    Febrianto J, Kosasih A.N., Sunarso J., Ju Y, Indraswati N, Ismadji S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent:A summary of recent studies. Journal of Hazardous Materials 2009,162(2-3):616-645.
    Flogeac K., Guillon E., Aplincourt M. Competitive sorption of metal ions onto a north-eastern France soil. Isotherms and XAFS studies. Geoderma 2007,139:180-189.
    Giles C.H., Smith D., Huitson A. A general treatment and classification of the solute sorption isotherms. I. Theoretical. Journal of Colloid and Interface Science 1974,47(3):755-765.
    Gode F., Pehlivan E. Adsorption of Cr(III) ions by Turkish brown coals. Fuel Processing Technology 2005,86:875-884.
    Gomes P.C., Fontes M.P.F., da Silva A.G., de S. Mendonca E., Netto A.R. Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Sci. Soc. Am. J.2001, 65:1115-1121.
    Gray C.W., McLaren R.G., Roberts A.H.C., Condron L.M. Solubility, sorption and desorption of native and added cadmium in relation to properties of soils in New Zealand. European Journal of Soil Science 1999,50:127-137.
    Gupta B.Sen, Curran M., Hasan S., Ghosh T.K. Adsorption characteristics of Cu and Ni on Irish peat moss. J. Environ. Manage 2009,90:954-960.
    Gupta. S.S., Bhattacharyya K.G. Kinetics of adsorption of metal ions on inorganic materials:A review. Advances in Colloid and Interface Science 2011,162:39-58.
    Hallberg K.B., Johnson D.B. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors. Science of The Total Environment 2005, 338(1-2):115-124.
    Hinz C. Description of sorption data with isotherm equations. Geoderma 2001,99:225-243.
    Hong J., Pintauro P.N. Desorption-complexation-dissolution characteristics of adsorbed cadmium from kaolin by chelators. Water, Air, and Soil Pollution 1996a,86:35-50.
    Hong J., Pintauro P.N. Selective removal of heavy metals from contaminated kaolin by chelators. Water, Air, and Soil Pollution 1996b,87:73-91.
    Howard J.L., Shu J. Sequential extraction analysis of heavy metals using a chelating agent (NTA) to counteract resorption. Environmental Pollution 1996,91(1):89-96.
    Ho Y.S., McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research.2000,34(3):735-742.
    Ho Y.S., McKay G. Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Safety and Environmental Protection 1998,76(2):183-191.
    Hsu P.H. Aluminum oxides and oxyhydroxides. In J.B. Dixon and S.B. Weed. (ed.) Minerals in soil environments. ASA and SSSA, Madison, WI.1989,331-378.
    Ismael I.S., Abd EI-Rahman M.K., Hassan M.S. Influence of vibration grinding and calcination on the physico-chemical properties of Egyptian kaolinite, Miner. Petrol.1999, 67:45-57.
    Jalali M., Moharrami S. Competitive adsorption of trace elements in calcareous soils of western Iran. Geoderma 2007,140:156-163.
    Kalavathy M.H., Karthikeyan T., Rajgopal S., Miranda L.R. Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. Journal of Colloid and Interface Science 2005,292(2):354-362.
    Kasassi A., Rakimbei P., Karagiannidis A. Soil contamination by heavy metals:Measurements from a closed unlined landfill. Bioresource Technology.2008,99:8578-8584.
    Kaya A., Oren A.H. Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous Materials B 2005,125:183-189.
    Kilislioglu A., Bilgin B. Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin. Appl. Radiat. Isot.2003,58:155-160.
    La Russa M.F., Barone G., Mazzoleni P., Pezzino A., Crupi V., Majolino D. Characterisation and differentiation of pigments employed on the facade of "Noto's Valley monuments (Sicily), Appl. Phys.2008, A 92:185-190.
    Lee S.M., Tiwari D., Choi K.M., et al. Removal of Mn(II) from Aqueous Solutions Using Manganese-Coated Sand Samples. Journal of Chemical and Engineering Data 2009,54(6): 1823-1828.
    Liang J., Xu R.K., Jiang X., Wang Y., Zhao A.Z., Tan W.F. Effect of arsenate on adsorption of Cd(II) by two variable charge soils, Chemosphere 2007,67:1949-1955.
    Limousin G., Gaudet J.P., Charlet L., Szenknect S., Barthes V., Krimissa M. Sorption isotherms:A review on physical bases, modeling and measurement. Applied Geochemistry 2007,22:249-275.
    Li Z.Z., Tang X.W., Chen Y.M., Wang Y. Sorption behavior and mechanism of Pb(Ⅱ) on Chinese loess. J. Environ. Eng.-ASCE 2009a,135:58-67.
    Li Z., Tang X., Chen Y., Wang Y. Behaviour and mechanism of enhanced phosphate sorption on loess modified with metals:equilibrium study. Journal of Chemical Technology and Biotechnology 2009,84(4):595-603.
    Li Z.Z., Imaizumi S., Katsumi T., et al. Manganese removal from aqueous solution using a thermally decomposed leaf. Journal of Hazardous Materials 2010,177(1-3):501-507.
    Matheickal J.T., Yu Q.M., Woodburn G.M. Biosorption of cadmium(Ⅱ) from aqueous solutions by pre-treated biomass of marine alga DurvillAea potatorum, Water Res.1999, 33:335-342.
    Mattigod S.V., Rai D., Felmy A.R., Rao L.F. Solubility and solubility product of crystalline Ni(OH)2. J. Solution Chem.1997,26:391-403.
    McBride M.B. Environmental Chemistry of Soils. Oxford University Press, New York,1994.
    McKay G., Ho Y.S., Ng J.C.Y. Biosorption of Copper from Waste Waters:A Review, Separation and Purification Reviews 1999,28(1):87-125.
    Naidu R., Bolan N.S., Kookana R.S., Tiller K.G. Ionic strength and pH effects on surface charge and Cd sorption characteristics of soils, J. Soil Sci.1994,45:419-429.
    Neilson J.W., Artiola J.F., Maier R.M. Characterization of Lead Removal from Contaminated Soils by Nontoxic Soil-Washing Agents. J. Environ. Qual.2003,32:899-908.
    Nightingale Jr. E.R. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem.1959,63(9):1381-1387.
    Nowack B., Sigg L. Adsorption of EDTA and metal-EDTA complexes onto goethite. Journal of Colloid and Interface Science 1996,177:106-121.
    Oviedo C。, Rodriguez J. EDTA:The chelating agent under environmental scrutiny. Quim. Nova.2003,26(6):901-905.
    Ozcan A., Oncii E. M., Ozcan A.S. Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite. Colloid. Surf. A-Physicochem. Eng. Asp.2006,277:90-97.
    Pardo M.T. Sorption of lead, copper, zinc, and cadmium by soils:effect of nitriloacetic acid on metal retention. Communications in Soil Science and Plant Analysis 2000,31(1-2):31-40.
    Paulo C. Gomes, Mauricio P. F. Fontes, Aderbal G. da Silva, Eduardo de S. Mendonca, and Andre R. Netto. Selectivity Sequence and Competitive Adsorption of Heavy Metals by Brazilian Soils. Soil Sci. Soc. Am. J.2001,65:1115-1121.
    Peacock C.L., Sherman D.M. Surface complexationmodel for multisiteadsorption of copper(II) onto kaolinite. Geochimica et Cosmochimica Acta.2005,69(15):3733-3745.
    Peld M., Tonsuaadu K., Bender V. Sorption and desorption of Cd2+ and Zn2+ ions in Apatite-aqueous systems. Environ. Sci. Technol.2004,38:5626-5631.
    Phillips I. R. Copper, Lead, Cadmium, and Zinc Sorption By Waterlogged and Air-Dry Soil, Journal of Soil Contamination 1999,8(3):343-364.
    Plazinski W., Rudzinski W., Plazinska A. Theoretical models of sorption kinetics including a surface reaction mechanism:A review. Advances in Colloid and Interface Science 2009, 152:2-13.
    Rao G.P.C., Satyaveni S., Ramesh A., Murthy K.S.N., Choudary N.V. Sorption of cadmium and zinc from aqueous solutions eolite 4A, zeolite 13X and bentonite, J. Environ. Manag. 2006,81:265-272.
    Rawlins B.G., Lister T.R., Mackenzie A.C. Trace-metal pollution of soils in northern England. Environmental Geology 2002,42:612-620.
    Ritter C.J., Rinefierd S.M. Natural Background and Pollution Levels of Some Heavy Metals in Soils from the Area of Dayton, Ohio. Environmental Geology.1983,5(2):73-78.
    Roberts D.R., Scheidegger A.M., Sparks D.L. Kinetics of mixed Ni-Al precipitate formation on a soil clay fraction. Environ. Sci. Technol 1999,33:3749-3754.
    Saha U. K., Taniguchi S., Sakurai K. Simultaneous Adsorption of Cadmium, Zinc, and Lead on Hydroxyaluminum-and Hydroxyaluminosilicate-Montmorillonite Complexes. Soil Sci. Soc. Am. J.2001,66:117-128.
    Sari A., Tuzen M., Soylak M. Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. Journal of Hazardous Materials 2007,144:41-46.
    Scheidegger A.M., Lamble G.M., Sparks D.L. Investigation of Ni sorption on pyrophyllite:an XAFS study. Environ. Sci. Technol.1996,30:548-554.
    Schwertmann U., Taylor R.M. J.B. Dixon and S.B. Weed (ed.) Minerals in soil environments. ASA and SSSA, Madison, WI. Iron oxides.1989,379-438.
    Serrano S., Garrido F., Campbell C.G., Garcia-Gonzalez M.T. Competitive sorption of cadmium and lead in acid soils of Central Spain. Geoderma 2005,124:91-104.
    Shirvani M., Kalbasi M., Shariatmadari H., Nourbakhsh F., Najafi B. Sorption-desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions:Isotherm hysteresis. Chemosphere 2006,65:2178-2184.
    Shuman L.A. Effects of nitriloacetic acid on metal adsorption isotherms for two soils. Soil Sci. 1995,160:92-100.
    Singh S.P., Ma L.Q., Harris W.G. Heavy metal interactions with phosphatic clay:Sorption and desorption behavior. Journal of Environmental Quality 2001,30(6):1961-1968.
    Smaoui H., Guermazi H., Agnel S., Mlik Y., Toureille A. Structural changes in epoxy resin polymer after heating and their influence on space charges, Polym. Int.2003,52: 1287-1293.
    Sparks D.L. Environmental soil chemistry. Academic press:San Diego,2003.
    Sposito G. The Chemistry of Soils. Oxford University Press, New York,1989.
    Srivastava P., Singh B., Angove M. Competitive adsorption behavior of heavy metals on kaolinite. J. Colloid Interface Sci.2005,290:28-38.
    Sun Y, Zhou Q., Xie X., Liu R. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of Hazardous Materials 2010,174(1-3):455-462.
    Tang X.W., Li Z.Z., Chen Y.M. Behaviour and mechanism of Zn(II) adsorption on Chinese loess at dilute slurry concentrations, J. Chem. Technol. Biotechnol.2008a,83:673-682.
    Tang X.W., Li Z.Z., Chen Y.M., Wang Y. Removal of Cu(II) from aqueous solution by adsorption on Chinese Quarternary loess:Kinetics and equilibrium studies, J. Environ. Sci. Heal. A 2008b,43 (7):779-791.
    Tang X., Li Z., Chen Y. Adsorption behavior of Zn(II) on calcinated Chinese loess. Journal of Hazardous Materials 2009,161(2-3):824-834.
    Taffarel S.R., Rubio J. Removal of Mn(2+) from aqueous solution by manganese oxide coated zeolite. Minerals Engineering 2010,23(14):1131-1138.
    Tantemsapya N., Wirojanagud W., Promlao C. Contamination of Heavy Metals from Landfill Leachate.11th International Conference on Diffuse Pollution, Belo Horizonte, Brazil. 2007,26-31 August.
    Thomas E. Biodegradation of Metal-Complexing Aminopolycarboxylic Acids. Journal of Bioscience and Bioengineering 2001 92(2):89-97.
    Tokunaga S. Soil pollution:State-of the art in Japan and soil washing process. Clean Technology 1996,2(2):126-139.
    Ucer A., Uyanik A., Aygun S.F. Adsorption of Cu(Ⅱ), Cd(Ⅱ), Zn(Ⅱ), Mn(Ⅱ) and Fe(Ⅲ) ions by tannic acid immobilised activated carbon. Separation and Purification Technology 2006, 47(3):113-118.
    Verner J.F., Ramsey M.H. Heavy metal contamination of soils around a Pb-Zn smelter in Bukowno. Poland. Applied Geochemistry,1996,11(1-2):11-16.
    Vidal M., Santos M.J., Abrao T., Rodriguez J., Rigol A. Modeling competitive metal sorption in a mineral soil. Geoderma 2009,149:189-198.
    Vijayaraghavan K., Padmesh T.V.N., Palanivelu K., Velan M. Biosorption of nickel(Ⅱ) ions onto Sargassum wightii:application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials 2006,133 B:304-308.
    Volkov A.G., Paula S., Deamer D.W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochemistry and Bioenergetics 1997,42:153-160.
    Wang X.S., Ren J.J., Lu H.J., Zhu L., Liu F., Zhang Q.Q., Xie J. Removal of Ni(Ⅱ) from aqueous solutions by nanoscale magnetite. Clean:Soil Air Water 2010,38:1131-1136.
    Wong J.W.C., Li K.L., Zhou L.X., Selvam A. The sorption of Cd and Zn by different soils in the presence of dissolved organic matter from sludge. Geoderma 2007,137:310-317.
    Yavuz O., Altunkaynak Y., Guzel F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research 2003,37(4):948-952.
    Yee N. Experimental studies of adsorption in bacteria-water-rock systems:implications for heavy metal transport in the subsurface, Ph.D. Dissertation, University of Notre Dame, Indiana,2001.
    Zhang Y.100 Years of Pb deposition and transport in soils in Champaign, Illinois, U.S.A. Water, Air, and Soil Pollution 2003,146:197-210.
    Zhou L.M., Wang Y.P., Liu Z.R., Huang Q.W. Characteristics of equilibrium, kinetics studies for adsorption of Hg(Ⅱ), Cu(Ⅱ), and Ni(Ⅱ) ions by thiourea-modified magnetic chitosan microspheres. J. Hazard. Mater.2009,161:995-1002.
    Zhu J., Cozzolino V., Pigna M., Huang Q., Caporale A. G., Violante A. Sorption of Cu, Pb and Cr on Na-montmorillonite:Competition and effect of major elements. Chemosphere 2011,84:484-489.
    Zhu J., Pigna M., Cozzolino V., Caporale A.G., Violante A. Competitive sorption of copper(Ⅱ), chromium(Ⅲ) and lead(Ⅱ) on ferrihydrite and two organomineral complexes. Geoderma 2010,159:409-416.
    Zhu S.J., Hou H.B., Xue Y.J. Kinetic and isothermal studies of lead ion adsorption onto bentonite. Appl. Clay Sci.2008,40:171-178.
    陈云敏,施建勇,朱伟,詹良通.中国环境岩土工程的进展.第十一届全国土力学及岩土工程学术会议论文集,兰州,2011.8.16-19.
    郭伟,赵仁鑫,张君,包玉英,王宏,杨明,孙小丽,金帆.内蒙古包头铁矿区土壤重金属污染特征及其评价.环境科学,2011,32(10):3099-3105.
    林啸,刘敏,侯立军,许世远,常静.上海城市土壤和地表灰尘重金属污染现状及评价.中国环境科学,2007,27(5):613-618.
    卢瑛,龚子同,张甘霖,张波.南京城市土壤重金属含量及其影响因素.应用生态学报,2004,15(1):123-126.
    李胤,毛义伟,周立晨,曹丹,刘益宁,王天厚.上海世博会规划区域城市土壤重金属调查及评价研究.土壤通报,2009,40(4):926-931.
    李永华,王五一,杨林生,李海蓉.湘西多金属矿区汞铅污染土壤的环境质量.环境科 学,2005,26(5):187-191.
    邵学新,吴明,蒋科毅.西溪湿地土壤重金属分布特征及其生态风险评价.湿地科学,2007,5(3):253-259.
    滕葳,柳琪,李倩,柳亦博.重金属污染对农产品的危害与风险评估.化学工业出版社,北京,2010.
    王云,魏复盛等.土壤环境元素化学.中国环境科学出版社,北京,1993.
    文启忠.中国黄土地球化学.科学出版社:北京,1989.
    郑洪汉.黄土高原黄土-古土壤的矿物组成及其环境意义.地球化学23(增刊),1994:113-123.
    张永新,曲永新.黄土高原马兰黄土粘土矿物的定量研究.地质论评.50(5),2004:530-537.
    储彬彬,罗立强.南京栖霞山铅锌矿地区土壤重金属污染评价.岩矿测试,2010,29(1):5-8.
    中国环境监测总站.中国土壤元素背景值.中国环境科学出版社,北京,1990.
    中华人民共和国环境保护部,中华人民共和国国家统计局,中华人民共和国农业部.第一次全国污染源普查公报,2010.2.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700