同步辐射圆二色光谱学研究生物大分子结构与功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要利用同步辐射真空紫外圆二色(SRCD)光谱学方法,结合动态光散射(DLS)、X射线晶体学以及原子力显微镜(AFM)等实验方法研究了溶液条件下生物大分子的结构与相变:(1)原发性痛风病人体内磷酸核糖焦磷酸合成酶1(PRS1)及其点突变体的溶液构象;(2)聚阴离子ATP对溶菌酶解折叠过程的影响;(3)丝素蛋白重链N端亲水区(Fib-H N domain)的结构与功能的关系。在二级结构分析的基础上,分别探讨了点突变导致PRS1超活性的机理、ATP促进溶菌酶形成淀粉样纤维的机制以及Fib-H N domain在自然纺丝过程中发挥的作用。
     1、点突变导致PRS1超活性的机理
     本工作表达纯化了PRS1及D52H、N114S、L129、D183H、A190V和H193Q六个致病点突变体,酶活性测试显示点突变导致酶活性显著升高。利用SRCD、DLS等方法研究了它们在结合底物、抑制物前后构象与聚集状态的变化。研究发现PRS1蛋白的活性形式并不依赖于其聚集态,但是底物ATP能够引起PRS1聚集成六聚体。抑制剂ADP结合位点位于六聚结合界面上,所以六聚的形成为ADP进行别构抑制调控提供了结构基础。这一复杂的酶活性调控机制使得酶催化活性处于正常水平。当PRS1发生点突变时,其聚集能力被显著弱化,有的点突变甚至导致聚集消失(比如N114S和L129I),这相应的弱化了ADP的别构调控能力。而且SRCD研究发现点突变导致蛋白底物结合构象改变,晶体结构分析揭示N114S底物结合构象的改变可能会破坏PO43-别构位点。所以点突变导致的底物结合构象的改变也许是酶超活性的另一个原因。这些因素一起导致酶出现超活性,最终引发痛风。
     2、ATP促进溶菌酶形成淀粉样纤维的机制
     利用AFM、SRCD、DSC等方法研究了聚阴离子ATP对溶菌酶溶液构象、解折叠过程以及淀粉样纤维形成的影响。研究发现ATP可以结合到溶菌酶上,而且ATP磷酸基团的强烈静电效应使得溶菌酶上暴露的色氨酸残基卷入更加疏水的环境,从而改变了蛋白质的二级结构。在升温解折叠过程中,色氨酸残基位置的改变降低了溶菌酶的热稳定性,导致了二级结构的非协同性展开,在50℃左右产生了一个含有相对丰富螺旋和较少β-片结构的部分展开中间体。DLS实验说明部分展开中间体相比于天然结构具有更强的聚集倾向。此外,ATP非特异性结合到伸展的多肽链上,屏蔽了相应的反应基团,抑制了溶菌酶展开过程的可逆性。因此ATP诱导的溶菌酶的不稳定和非协同性展开,是ATP促进溶菌酶形成纤维状结构的内在基础。同时也表明,相比于单体的富β-片中间体,淀粉样纤维片段的变性程度才是纤维形成的关键因素。
     3、Fib-H N domain (FN)的构象转变
     利用SRCD方法研究了四个不同长度的不含信号肽(1~21位残基)区域的FN片段,即FN(22-71)、FN(22-104)、FN(22-126)和FN(22-145),在不同溶液条件下发生的Coil-to-β构象转变,探讨了FN在丝纺织过程中的功能。结合AFM等实验手段,发现在能够形成β-片结构的溶液条件下,这些FN片段能够形成直径为50-100 nm的纳米球状或者纳米囊泡状结构,而且这些纳米球状结构可以互相融合形成不规则的网状结构。并且发现FN片段越长越容易发生构象转变和形成纳米球状结构。相比于丝素蛋白重链中大量的疏水重复区段,Fib-H N domain除了增加蛋白溶解度的功能外,可能扮演着一种感受器的角色,能够迅速感知周围环境改变的信号,从而引起整个丝素蛋白重链的构象变化。这些纳米球状结构的自组装可能作为一个种子启动整个丝素蛋白重链形成纳米原纤维,从而表现出家蚕丝纺织过程中重要的形态学特征。
This thesis presents the investigation on the structure and conformational transition of biomacromolecules in solution by synchrotron radiation circular dichroism (SRCD) spectroscopy, combined with X-ray crystallography, dynamic light scattering (DLS), atomic force microscopy (AFM), etc. It involves three different aspects:(1) Identifying point-mutations of human phosphoribosyl pyrophosphate synthetase 1 (PRS1) in cells of patients with primary gout; (2) Observing effects of ATP on the conformation and thermal unfolding of the hen egg white lysozyme (HEWL); and (3) Investigating the conformational transitions of beta sheet proteins: N domain of the silk fibroin heavy chain (Fib-H N domain). The secondary structure analysis for biomacromolecules presented in this thesis is helpful for understanding the structure-biofunction relationship, and additionally demonstrates the valuable applications of SRCD spectroscopy in the biological science.
     1. Mechanism of PRS1 superactivity caused by the point-mutations
     Some cases of point mutation of PRS1 have long been thought to cause PRS1 superactivity, which is one reason of primary gout. In this work, the differences in secondary structure and aggregation state between recombinant wild-type PRS1 and six point-mutations are studied by spectroscopy methods combining with the crystal structure analysis of wild-type PRS1. It is found that the activity of PRS1 does not depend on the subunit-aggregation that has been thought to be necessary for activated state; however, the substrate ATP can induce monomeric wild-type PRS1 to form hexamer which is the structural basis for the ADP binding. Under physiological conditions, the production of ADP downstream is a negative feedback inhibitor that controls the catalytic activity of PRS1 at the normal level. When point mutation occurs, the enzymatic activity dramatically increases, and the aggregation ability of PRS1 is greatly weakened or even lost. Furthermore, SRCD reveals that the point-mutations result in the alteration of ATP-binding conformation. Examination of the crystal structure of wild-type PRS1 indicates that the alteration of ATP-binding conformation can lead to the breakage of the PO43- binding site. Therefore, in the cases of point-mutants, these factors result in an increased concentration of the product PRPP in the patient, and may finally cause gout.
     2. ATP-induced instability, noncooperative melting and aggregation of HEWL
     To gain insight into the fibril formation mechanism of proteins, the synchrotron radiation circular dichroism, combined with tryptophan fluorescence, dynamic light scattering, and DSC, is used to investigate the conformational changes and thermal unfolding of the hen egg white lysozyme (HEWL) in the presence of ATP, ADP, AMP, and Mg2+-ATP complex. The results indicate that the ATP can bind to HEWL, and the strong electrostatic effect of ATP phosphate groups changes tryptophan residues into more hydrophobic environments, and alters the secondary structures of HEWL. This effect decreases the thermal stability of HEWL, induces a noncooperative melting of secondary structures in the unfolding process of HEWL, and sequentially produces a partially unfolded intermediate which contains relatively rich helical structures and lessβ-sheet structures. This study suggests that the extent of denaturation of the amyloidogenic fragments, rather than monomericβ-sheet enriched intermediate, is critical for the fibril formation of proteins.
     3. Conformational transitions of Fib-H N domain (FN)
     Four FN segments with different length are prepared for exploring the function of FN in silk spinning process. The SRCD spectroscopy and AFM are used to investigate the conformational and morphological changes of FN in different conditions. This study reveals that FN has the similar structure transition phenomena as regenerated silk functions. All four FN can form the nanoglobular structure with an average diameter dimension ranging from 50 to 100 nm providing that the second structure of the proteins is changed toβ-sheet. These nanoglobular can fuse into each other to form an irregular reticulation. Moreover, the longer FN segment is much easier to have conformational transition and to form the nanoglobular structure. All these results indicate that FN can involve in the silk spinning as a folding promoter instructing the fibroin structure transition.
引文
ALTMAN G H, DIAZ F, JAKUBA C, et al.2003. Silk-based biomaterials. Biomaterials [J],24: 401-416.
    ANCSIN J B 2003. Amyloidogenesis:historical and modern observations point to heparan sulfate proteoglycans as a major culprit. Amyloid [J],10:67-79.
    ANDERSON J P, STEPHENHASSARD M, MARTIN D C 1994. Structural Evolution of Genetically-Engineered Silklike Protein Polymers. Silk Polymers [J],544:137-147.
    ANFINRUD P, SCHOTTE F 2005. CHEMISTRY:X-ray Fingerprinting of Chemical Intermediates in Solution. Science [J],309:1192-1193.
    ARNAUDOV L N, DE VRIES R 2005. Thermally induced fibrillar aggregation of hen egg white lysozyme. Biophys J [J],88:515-526.
    ASAKURA T, OHGO K, ISHIDA T, et al.2005. Possible implications of serine and tyrosine residues and intermolecular interactions on the appearance of silk I structure of Bombyx mori silk fibroin-derived synthetic peptides:High-resolution C-13 cross-polarization/magic-angle spinning NMR study. Biomacromolecules [J],6:468-474.
    ASAKURA T, SUITA K, KAMEDA T, et al.2004. Structural role of tyrosine in Bombyx mori silk fibroin, studied by solid-state NMR and molecular mechanics on a model peptide prepared as silk I and II. Magnetic Resonance in Chemistry [J],42:258-266.
    ASHIDA J, OHGO K, ASAKURA T 2002. Determination of the torsion angles of alanine and glycine residues of Bombyx mori silk fibroin and the model peptides in the silk I and silk II forms using 2D spin diffusion solid-state NMR under off magic angle spinning. Journal of Physical Chemistry B [J],106:9434-9439.
    BECKER M A 1976. Patterns of phosphoribosylpyrophosphate and ribose-5-phosphate concentration and generation in fibroblasts from patients with gout and purine overproduction. The Journal of Clinical Investigation [J],57:308-318.
    BECKER M A, HEIDLER S A, BELL G I, et al.1990. Cloning of Cdnas for Human Phosphoribosylpyrophosphate Synthetase-1 and Synthetase-2 and X-Chromosome Localization of Prpsl and Prps2 Genes. Genomics [J],8:555-561.
    BECKER M A, KARI O. RAIVIO, BOHDAN BAKAY, et al.1980. Variant Human Phosphoribosylpyrophosphate Synthetase Altered in Regulatory and Catalytic Functions. Journal of Clinical Investigation [J],65:109-120.
    BECKER M A, SMITH P R, TAYLOR W, et al.1995. The Genetic and Functional Basis of Purine
    Nucleotide Feedback-Resistant Phosphoribosylpyrophosphate Synthetase Superactivity. Journal of Clinical Investigation [J],96:2133-2141.
    BECKER M A, TAYLOR W, SMITH P R, et al.1996. Overexpression of the normal phosphoribosylpyrophosphate synthetase 1 isoform underlies catalytic superactivity of human phosphoribosylpyrophosphate synthetase. Journal of Biological Chemistry [J],271: 19894-19899.
    BERGMANN M, NIEMANN C 1938. ON THE STRUCTURE OF SILK FIBROIN. Journal of Biological Chemistry [J],122:577-596.
    BOOTH D R, SUNDE M, BELLOTTI V, et al.1997. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature [J],385:787-793.
    CALAMAI M, KUMITA J R, MIFSUD J, et al.2006. Nature and significance of the interactions between amyloid fibrils and biological polyelectrolytes. Biochemistry [J],45:12806-12815.
    CASTILLO G M, LUKITO W, WIGHT T N, et al.1999. The sulfate moieties of glycosaminoglycans are critical for the enhancement of beta-amyloid protein fibril formation. Journal of Neurochemistry [J],72:1681-1687.
    CELEJ M S, MONTICH C G, FIDELIO G D 2003. Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Science [J],12:1496-1506.
    CHERNY D, HOYER W, SUBRAMANIAM V, et al.2004. Double-stranded DNA stimulates the fibrillation of alpha-synuclein in vitro and is associated with the mature fibrils:An electron microscopy study. Journal of Molecular Biology [J],344:929-938.
    COHLBERG J A, LI J, UVERSKY V N, et al.2002. Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from alpha-synuclein in vitro. Biochemistry [J],41: 1502-1511.
    DOBSON C M, EVANS P A, RADFORD S E 1994. Understanding How Proteins Fold-the Lysozyme Story So Far. Trends in Biochemical Sciences [J],19:31-37.
    DONOGHUE P C J, BENGTSON S, DONG X P, et al.2006. Synchrotron X-ray tomographic microscopy of fossil embryos. Nature [J],442:680-683.
    DUNKER A K, LAWSON J D, BROWN C J, et al.2001. Intrinsically disordered protein. Journal of Molecular Graphics & Modelling [J],19:26-59.
    ERIKSEN T A, KADZIOLA A, BENTSEN A K, et al.2000. Structural basis for the function of Bacillus subtilis phosphoribosylpyrophosphate synthetase. Nature Structural Biology [J],7: 303-308.
    ERIKSEN T A, KADZIOLA A, LARSEN S 2002. Binding of cations in Bacillus subtilis phosphoribosyldiphosphate synthetase and their role in catalysis. Protein Science [J],11: 271-279.
    EXLEY C 1997. ATP-promoted amyloidosis of an amyloid beta peptide. Neuroreport [J],8: 3411-3414.
    EXLEY C, KORCHAZHKINA O V 2001. Promotion of formation of amyloid fibrils by aluminium adenosine triphosphate (AlATP). J Inorg Biochem [J],84:215-224.
    FOX I H, KELLEY W N 1971. Human Phosphoribosylpyrophosphate Synthetase. DISTRIBUTION, PURIFICATION, AND PROPERTIES. Journal of Biological Chemistry [J],246:5739-5748.
    GARCIA-PAVIA P, TORRES R J, RIVERO M, et al.2003. Phosphoribosylpyrophosphate synthetase overactivity as a cause of uric acid overproduction in a young woman. Arthritis and Rheumatism [J],48:2036-2041.
    HAASS C, SELKOE D J 2007. Soluble protein oligomers in neurodegeneration:lessons from the Alzheimer's amyloid beta-peptide. Nature Reviews Molecular Cell Biology [J],8:101-112.
    HOVE-JENSEN B, BENTSEN A K K, HARLOW K W 2005. Catalytic residues Lys197 and Arg199 of Bacillus subtilis phosphoribosyl diphosphate synthase-Alanine-scanning mutagenesis of the flexible catalytic loop. Febs Journal [J],272:3631-3639.
    IKEMATSU M, TAKAOKA D, YASUDA M 2005. Odorant binding initially occurring at the central pocket in bovine odorant-binding protein. Biochemical and Biophysical Research Communications [J],333:1227-1233.
    JIMENEZ A, SANTOS M A, REVUELTA J L 2008. Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii. Bmc Biotechnology [J], 8:-.
    JIN H J, KAPLAN D L 2003. Mechanism of silk processing in insects and spiders. Nature [J],424: 1057-1061.
    K NIG S, HASCHE A, PALLAST S, et al.2008. Detection of ATP-Binding to Growth Factors. Journal of the American Society for Mass Spectrometry [J],19:91-95.
    KADZIOLA A, JEPSEN C H, JOHANSSON E, et al.2005. Novel class III phosphoribosyl diphosphate synthase:Structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii. Journal of Molecular Biology [J],354:815-828.
    KAGAN B L 2005. Amyloidosis and protein folding. Science [J],307:42-43.
    KALHOR H R, KAMIZI M, AKBARI J, et al.2009. Inhibition of Amyloid Formation by Ionic Liquids:Ionic Liquids Affecting Intermediate Oligomers. Biomacromolecules [J],10: 2468-2475.
    LAZO N D, DOWNING D T 1999. Crystalline regions of Bombyx mori silk fibroin may exhibit beta-turn and beta-helix conformations. Macromolecules [J],32:4700-4705.
    LI S, LU Y C, PENG B Z, et al.2007. Crystal structure of human phosphoribosylpyrophosphate synthetase 1 reveals a novel allosteric site. Biochemical Journal [J],401:39-47.
    LI X G, WU L Y, HUANG M R, et al.2008. Conformational transition and liquid crystalline state of regenerated silk fibroin in water. Biopolymers [J],89:497-505.
    MATAGNE A, CHUNG E W, BALL L J, et al.1998. The origin of the alpha-domain intermediate in the folding of hen lysozyme. J Mol Biol [J],277:997-1005.
    MATSUMOTO A, CHEN J, COLLETTE A L, et al.2006. Mechanisms of silk fibroin sol-gel transitions. Journal of Physical Chemistry B [J],110:21630-21638.
    MCPARLAND V J, KALVERDA A P, HOMANS S W, et al.2002. Structural properties of an amyloid precursor of beta(2)-microglobulin. Nature Structural Biology [J],9:326-331.
    MEYER L J, BECKER M A 1977. Human erythrocyte phosphoribosylpyrophosphate synthetase. Dependence of activity on state of subunit association. Journal of Biological Chemistry [J], 252:3919-3925.
    MILES A J, WALLACE B A 2006. Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chemical Society Reviews [J],35:39-51.
    MOREAU J W, WEBER P K, MARTIN M C, et al.2007. Extracellular proteins limit the dispersal of biogenic nanoparticles. Science [J],316:1600-1603.
    MOROZOVA-ROCHE L A, ZURDO J, SPENCER A, et al.2000. Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants. J Struct Biol [J],130:339-351.
    MORSHEDI D, GHASEMI A, EVINI M, et al.2008. Dramatic enhancement of lysozyme fibrillogenesis by ATP. FEBS Journal [J],275:194-194.
    MORSHEDI D, REZAEI-GHALEH N, EBRAHIM-HABIBI A, et al.2007. Inhibition of amyloid fibrillation of lysozyme by indole derivatives-possible mechanism of action. FEBS Journal [J],274:6415-6425.
    MOSS C X, TREE T I, WATTS C 2007. Reconstruction of a pathway of antigen processing and class II MHC peptide capture. EMBO Journal [J],26:2137-2147.
    NIRAULA T N, KONNO T, LI H, et al.2004. Pressure-dissociable reversible assembly of intrinsically denatured lysozyme is a precursor for amyloid fibrils. Proc Natl Acad Sci U S A [J],101:4089-4093.
    NYHAN W L 2005. Inherited hyperuricemic disorders. Hyperuricemic Syndromes:
    Pathophysiology and Therapy [J],147:22-34.
    PALMISANO D V, GROTHVASSELLI B, FARNSWORTH P N, et al.1995. Interaction of Atp and Lens Alpha-Crystallin Characterized by Equilibrium Binding-Studies and Intrinsic Tryptophan Fluorescence Spectroscopy. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology [J],1246:91-97.
    ROESSLER B J, NOSAL J M, SMITH P R, et al.1993. Human X-Linked Phosphoribosylpyrophosphate Synthetase Superactivity Is Associated with Distinct Point Mutations in the Prpsl Gene. Journal of Biological Chemistry [J],268:26476-26481.
    ROTH D G, SHELTON E, DEUEL T F 1974. Purification and Properties of Phosphoribosyl Pyrophosphate Synthetase from Rat Liver. Journal of Biological Chemistry [J],249:291-296.
    SASAHARA K, YAGI H, NAIKI H, et al.2007. Heat-induced conversion of beta(2)-microglobulin and hen egg-white lysozyme into amyloid fibrils. J Mol Biol [J],372: 981-991.
    SCHMID F X 1997. Optical spectroscopy to characterize protein conformation and conformational changes [M], Protein structure:A practical approach, second edn. IRL Press, Oxford:261-297.
    SCHOTTE F, LIM M, JACKSON T A, et al.2003. Watching a Protein as it Functions with 150-ps Time-Resolved X-ray Crystallography. Science [J],300:1944-1947.
    SHAO Z Z, VOLLRATH F 2002. Materials:Surprising strength of silkworm silk. Nature [J],418: 741-741.
    SRISAILAM S, WANG H M, KUMAR T K S, et al.2002. Amyloid-like fibril formation in an all beta-barrel protein involves the formation of partially structured intermediate(s). Journal of Biological Chemistry [J],277:19027-19036.
    SWITZER R L 1969. Regulation and Mechanism of Phosphoribosylpyrophosphate Synthetase. I. PURIFICATION AND PROPERTIES OF THE ENZYME FROM SALMONELLA TYPHIMURIUM. Journal of Biological Chemistry [J],244:2854-2863.
    TAIRA M, IIZASA T, SHIMADA H, et al.1990. A Human Testis-Specific Messenger-Rna for Phosphoribosylpyrophosphate Synthetase That Initiates from a Non-Aug Codon. Journal of Biological Chemistry [J],265:16491-16497.
    TANG H, LI W F, ZHANG X, et al.2007. The gene expression profile of Bombyx mori silkgland. Gene [J],396:369-372.
    TANG W Y, LI X W, ZHU Z Q, et al.2006. Expression, purification, crystallization and preliminary X-ray diffraction analysis of human phosphoribosyl pyrophosphate synthetase 1 (PRS1). Acta Crystallographica Section F-Structural Biology and Crystallization
    Communications [J],62:432-434.
    TAO Y, HUANG Y, GAO Z, et al.2009. Developing VUV spectroscopy for protein folding and material luminescence on beamline 4B8 at the Beijing Synchrotron Radiation Facility. Journal of Synchrotron Radiation [J],16:857-863.
    TAO Y, WALLACE B A 2009. SRCD2009. Synchrotron Radiation News [J],22:2-4.
    UVERSKY V N 2002. Natively unfolded proteins:A point where biology waits for physics. Protein Science [J],11:739-756.
    VALLUZZI R, JIN H J 2004. X-ray evidence for a "super"-secondary structure in silk fibers. Biomacromolecules [J],5:696-703.
    VARADARAJAN S, YATIN S, AKSENOVA M, et al.2000. Review:Alzheimer's Amyloid [beta]-Peptide-Associated Free Radical Oxidative Stress and Neurotoxicity. J Struct Biol [J], 130:184-208.
    WILLEMOES M, HOVEJENSEN B 1997. Binding of divalent magnesium by Escherichia coli phosphoribosyl diphosphate synthetase. Biochemistry [J],36:5078-5083.
    YAMADA H, NAKAO H, TAKASU Y, et al.2001. Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Materials Science & Engineering C-Biomimetic and Supramolecular Systems [J],14:41-46.
    YAMADA K, TSUBOI Y, ITAYA A 2003. AFM observation of silk fibroin on mica substrates: morphologies reflecting the secondary structures. Thin Solid Films [J],440:208-216.
    YAMANE T, UMEMURA K, NAKAZAWA Y, et al.2003. Molecular dynamics simulation of conformational change of poly(Ala-Gly) from silk I to silk Ⅱ in relation to fiber formation mechanism of Bombyx mori silk fibroin. Macromolecules [J],36:6766-6772.
    YAMAUCHI K, IMADA T, ASAKURA T 2005. Use of microcoil probehead for determination of the structure of oriented silk fibers by solid-state NMR. Journal of Physical Chemistry B [J], 109:17689-17692.
    YEO J H, LEE K G LEE Y W, et al.2003. Simple preparation and characteristics of silk fibroin microsphere. European Polymer Journal [J],39:1195-1199.
    ZHANG Y-Q 1998. Natural silk fibroin as a support for enzyme immobilization. Biotechnology Advances [J],16:961-971.
    ZHOU C-Z, CONFALONIERI F, MEDINA N, et al.2000. Fine organization of Bombyx mori fibroin heavy chain gene. Nucl. Acids Res. [J],28:2413-2419.
    ZOREF E, VRIES A D, SPERLING O 1975. Mutant feedback-resistant phosphoribosylpyrophosphate synthetase associated with purine overproduction and gout. Phosphoribosylpyrophosphate and purine metabolism in cultured fibroblasts. Journal of Clinical Investigation [J],56:1093-1099.
    中华人民共和国商务部 2007.茧丝绸行业“十一五”发展纲要[M].
    李龙,李奕仁 2001.加强蚕业科技投入确保我国在国际蚕丝业中的主导地位.中国蚕业[J],22:40-41.
    曾庆馀,肖征宇 2004.原发性痛风研究进展.中国药物与临床[J],4:415-417.
    张忠辉 2007.痛风与高尿酸血症的进展.重庆医学[J],36:985-988.
    黄君霆2 001.蚕丝纤维组成的研究.蚕桑通报[J],32:1-5.
    ALDEN R G, JOHNSON E, NAGARAJAN V, et al.1997. Calculations of spectroscopic properties of the LH2 bacteriochlorophyll-Protein antenna complex from Rhodopseudomonas acidophila. Journal of Physical Chemistry B [J],101:4667-4680.
    ANDERSSON L A, PETERSON J A 1995. Active-Site Analysis of Ferric P450 Enzymes-Hydrogen-Bonding Effects on the Circular-Dichroism Spectra. Biochemical and Biophysical Research Communications [J],211:389-395.
    ANDRADE M A, CHACON P, MERELO J J, et al.1993. Evaluation of Secondary Structure of Proteins from Uv Circular-Dichroism Spectra Using an Unsupervised Learning Neural-Network. Protein Engineering [J],6:383-390.
    BEROVA N., NAKANISHI K., WOODY R. W.2000. Circular Dichroism:Principles and Applications [M], Second edn. Wiley-VCH; New York.
    BOHM G, MUHR R, JAENICKE R 1992. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. [J],5:191-195.
    BOXER D H, ZHANG H, GOURLEY D G, et al.2004. Sensing of remote oxyanion binding at the DNA binding domain of the molybdate-dependent transcriptional regulator, ModE. Organic & Biomolecular Chemistry [J],2:2829-2837.
    BRAHMS S, BRAHMS J 1980. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. Journal of Molecular Biology [J],138:149-178.
    DOBSON C M 2004. Experimental investigation of protein folding and misfolding. Methods [J], 34:4-14.
    FRESKGARD P O, MARTENSSON L G, JONASSON P, et al.1994. Assignment of the Contribution of the Tryptophan Residues to the Circular-Dichroism Spectrum of Human Carbonic-Anhydrase.2. Biochemistry [J],33:14281-14288.
    GASTEIGER E, GATTIKER A, HOOGLAND C, et al.2003. ExPASy:the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research [J],31:3784-3788.
    GILBERT A T B, HIRST J D 2004. Charge-transfer transitions in protein circular dichroism spectra. Journal of Molecular Structure-Theochem [J],675:53-60.
    GREENFIELD N J 1996. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Analytical Biochemistry [J],235:1-10.
    GREENFIELD N J 2007a. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protocols [J],1:2527-2535.
    GREENFIELD N J 2007b. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protocols [J],1:2876-2890.
    GREENFIELD N J, FASMAN G D 1969. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry [J],8:4108-4116.
    HAUPT G W 1952. An alkaline solution of potassium chromate as a transmittancy standard in the ultraviolet. J. Res. Natl. Bur. Stand. [J],48:414-423.
    HENNESSEY J P, JOHNSON W C 1981. Information content in the circular dichroism of proteins. Biochemistry [J],20:1085-1094.
    HENNESSEY J P, JOHNSON W C 1982. Experimental errors and their effect on analyzing circular dichroism spectra of proteins. Analytical Biochemistry [J],125:177-188.
    HOPE J, SHEARMAN M S, BAXTER H C, et al.1996. Cytotoxicity of prion protein peptide (PrP106-126) differs in mechanism from the cytotoxic activity of the Alzheimer's disease amyloid peptide, A beta 25-35. Neurodegeneration [J],5:1-11.
    JEMTH P, GIANNI S, DAY R, et al.2004. Demonstration of a low-energy on-pathway intermediate in a fast-folding protein by kinetics, protein engineering, and simulation. Proceedings of the National Academy of Sciences of the United States of America [J],101: 6450-6455.
    JOHNSON W C 1999. Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins-Structure Function and Genetics [J],35:307-312.
    KELLY S M, JESS T J, PRICE N C 2005. How to study proteins by circular dichroism. Biochimica Et Biophysica Acta-Proteins and Proteomics [J],1751:119-139.
    KRITTANAI C, JOHNSON W C 1997. Correcting the circular dichroism spectra of peptides for contributions of absorbing side chains. Analytical Biochemistry [J],253:57-64.
    LEES J G, SMITH B R, WIEN F, et al.2004. CDtool-an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Analytical Biochemistry [J], 332:285-289.
    LOBLEY A, WHITMORE L, WALLACE B A 2002. DICHROWEB:an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics [J], 18:211-212.
    MANAVALAN P, JOHNSON W C 1987. Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Analytical Biochemistry [J],167: 76-85.
    MATSUO K, YONEHARA R, GEKKO K 2004. Secondary-structure analysis of proteins by
    vacuum-ultraviolet circular dichroism spectroscopy. Journal of Biochemistry [J],135: 405-411.
    MILES A J, WALLACE B A 2006. Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chemical Society Reviews [J],35:39-51.
    MILES A J, WIEN F, LEES J G, et al.2003. Calibration and standardisation of synchrotron radiation circular dichroism and conventional circular dichroism spectrophotometers. Spectroscopy-an International Journal [J],17:653-661.
    MILES A J, WIEN F, LEES J G, et al.2005. Calibration and standardisation of synchrotron radiation and conventional circular dichroism spectrometers. Part 2:Factors affecting magnitude and wavelength. Spectroscopy-an International Journal [J],19:43-51.
    NINA BEROVA, KOJI NAKANISHI, RORBERT W. WOODY 2000. Circular Dichroism: Principles and Applications [M], Second edn. Wiley-VCH; New York.
    PANDYA M J, CERASOLI E, JOSEPH A, et al.2004. Sequence and structural duality:Designing peptides to adopt two stable conformations. Journal of the American Chemical Society [J], 126:17016-17024.
    PERCZEL A, HOLLOSI M, TUSNDY G, et al.1991. Convex constraint analysis:a natural deconvolution of circular dichroism curves of proteins. Protein Eng. [J],4:669-679.
    PERCZEL A, PARK K, FASMAN G D 1992. Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm:A practical guide. Analytical Biochemistry [J], 203:83-93.
    PEREZ-IRATXETA C, ANDRADE-NAVARRO M A 2008. K2D2:estimation of protein secondary structure from circular dichroism spectra. Bmc Structural Biology [J],8:-.
    PROVENCHER S W, GLOECKNER J 1981. Estimation of globular protein secondary structure from circular dichroism. Biochemistry [J],20:33-37.
    RADFORD S E 2000. Protein folding:progress made and promises ahead. Trends in Biochemical Sciences [J],25:611-618.
    REED J, REED T A 1997. A set of constructed type spectra for the practical estimation of peptide secondary structure from circular dichroism. Analytical Biochemistry [J],254:36-40.
    SAVITZKY A, GOLAY M J E 1964. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry [J],36:1627-1639.
    SCHELLMAN J A 1975. Circular dichroism and optical rotation. Chemical Reviews [J],75: 323-331.
    SERRANO-ANDRES L, FULSCHER M P 1998. Theoretical study of the electronic spectroscopy
    of peptides. Ⅲ. Charge-transfer transitions in polypeptides. Journal of the American Chemical Society [J],120:10912-10920.
    SILVA R A G D, YASUI S C, KUBELKA J, et al.2002. Discriminating 3(10)-from alpha helices: Vibrational and electronic CD and IR absorption study of related Aib-containing oligopeptides. Biopolymers [J],65:229-243.
    SREERAMA N, VENYAMINOV S Y, WOODY R W 2000. Estimation of protein secondary structure from circular dichroism spectra:Inclusion of denatured proteins with native proteins in the analysis. Analytical Biochemistry [J],287:243-251.
    SREERAMA N, WOODY R W 1993. A Self-Consistent Method for the Analysis of Protein Secondary Structure from Circular-Dichroism. Analytical Biochemistry [J],209:32-44.
    SREERAMA N, WOODY R W 1994. Poly(Pro)Ii Helices in Globular-Proteins-Identification and Circular Dichroic Analysis. Biochemistry [J],33:10022-10025.
    SREERAMA N, WOODY R W 2000a. Analysis of protein CD spectra:Comparison of CONTIN, SELCON3, and CDSSTR methods in CDPro software. Biophysical Journal [J],78: 334a-334a.
    SREERAMA N, WOODY R W 2000b. Estimation of protein secondary structure from circular dichroism spectra:Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical Biochemistry [J],287:252-260.
    SREERAMA N, WOODY R W 2004a. Computation and analysis of protein circular dichroism spectra. Numerical Computer Methods, Pt D [J],383:318-351.
    SREERAMA N, WOODY R W 2004b. On the analysis of membrane protein circular dichroism spectra. Protein Science [J],13:100-112.
    TAO Y, HUANG Y, GAO Z, et al.2009. Developing VUV spectroscopy for protein folding and material luminescence on beamline 4B8 at the Beijing Synchrotron Radiation Facility. Journal of Synchrotron Radiation [J],16:857-863.
    TOUMADJE A, ALCORN S W, JOHNSON W C 1992. Extending Cd Spectra of Proteins to 168 Nm Improves the Analysis for Secondary Structures. Analytical Biochemistry [J],200: 321-331.
    UNNEBERG P, MERELO J J, CHACON P, et al.2001. SOMCD:Method for evaluating protein secondary structure from UV circular dichroism spectra. Proteins-Structure Function and Genetics [J],42:460-470.
    WALLACE B A 2000. Synchrotron radiation circular-dichroism spectroscopy as a tool for investigating protein structures. Journal of Synchrotron Radiation [J],7:289-295.
    WALLACE B A, JANES R W 2001. Synchrotron radiation circular dichroism spectroscopy of proteins:secondary structure, fold recognition and structural genomics. Current Opinion in Chemical Biology [J],5:567-571.
    WHITMORE L, WALLACE B A 2004. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research [J],32: W668-W673.
    WOODY A Y M, WOODY R W 2003. Individual tyrosine side-chain contributions to circular dichroism of ribonuclease. Biopolymers [J],72:500-513.
    WOODY R W 1996. Circular Dichroism and the Conformational Analysis of Biomolcules [M]//G. D. FASMAN. Plenum Press; New York.
    BECKER M A, SMITH P R, TAYLOR W, et al.1995. The Genetic and Functional Basis of Purine Nucleotide Feedback-Resistant Phosphoribosylpyrophosphate Synthetase Superactivity. Journal of Clinical Investigation [J],96:2133-2141.
    BECKER M A, TAYLOR W, SMITH P R, et al.1996. Overexpression of the normal phosphoribosylpyrophosphate synthetase 1 isoform underlies catalytic superactivity of human phosphoribosylpyrophosphate synthetase. Journal of Biological Chemistry [J],271: 19894-19899.
    BRAHMS S, BRAHMS J 1980. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. Journal of Molecular Biology [J],138:149-178.
    DELANO W L 2005. The case for open-source software in drug discovery. Drug Discovery Today [J],10:213-217.
    ERIKSEN T A, KADZIOLA A, BENTSEN A K, et al.2000. Structural basis for the function of Bacillus subtilis phosphoribosylpyrophosphate synthetase. Nature Structural Biology [J],7: 303-308.
    ERIKSEN T A, KADZIOLA A, LARSEN S 2002. Binding of cations in Bacillus subtilis phosphoribosyldiphosphate synthetase and their role in catalysis. Protein Science [J], 11: 271-279.
    GARCIA-PAVIA P, TORRES R J, RIVERO M, et al.2003. Phosphoribosylpyrophosphate synthetase overactivity as a cause of uric acid overproduction in a young woman. Arthritis and Rheumatism [J],48:2036-2041.
    GASTEIGER E, GATTIKER A, HOOGLAND C, et al.2003. ExPASy:the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research [J],31:3784-3788.
    HOVE-JENSEN B, BENTSEN A K K, HARLOW K W 2005. Catalytic residues Lys197 and Arg199 of Bacillus subtilis phosphoribosyl diphosphate synthase-Alanine-scanning mutagenesis of the flexible catalytic loop. Febs Journal [J],272:3631-3639.
    JIMENEZ A, SANTOS M A, REVUELTA J L 2008. Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii. Bmc Biotechnology [J], 8:-.
    KADZIOLA A, JEPSEN C H, JOHANSSON E, et al.2005. Novel class III phosphoribosyl diphosphate synthase:Structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii. Journal of Molecular Biology [J],354:815-828.
    LEE WHITMORE, B. A. WALLACE 2008. Protein secondary structure analyses from circular dichroism spectroscopy:Methods and reference databases. Biopolymers [J],89:392-400.
    LEES J G, SMITH B R, WIEN F, et al.2004. CDtool-an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Analytical Biochemistry [J], 332:285-289.
    LI S, LU Y C, PENG B Z, et al.2007. Crystal structure of human phosphoribosylpyrophosphate synthetase 1 reveals a novel allosteric site. Biochemical Journal [J],401:39-47.
    M. FERRARI, A. GIACOMELLO, C. SALERNO, et al.1978. A spectrophotometric assay for phosphoribosylpyrophosphate synthetase. Analytical Biochemistry [J],89:355-359.
    MANAVALAN P, JOHNSON W C 1983. Sensitivity of circular dichroism to protein tertiary structure class. Nature [J],305:831-832.
    MEYER L J, BECKER M A 1977. Human erythrocyte phosphoribosylpyrophosphate synthetase. Dependence of activity on state of subunit association. Journal of Biological Chemistry [J], 252:3919-3925.
    NYHAN W L 2005. Inherited hyperuricemic disorders. Hyperuricemic Syndromes: Pathophysiology and Therapy [J],147:22-34.
    ROESSLER B J, NOSAL J M, SMITH P R, et al.1993. Human X-Linked Phosphoribosylpyrophosphate Synthetase Superactivity Is Associated with Distinct Point Mutations in the Prpsl Gene. Journal of Biological Chemistry [J],268:26476-26481.
    SREERAMA N, VENYAMINOV S Y, WOODY R W 1999. Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy. Protein Science [J],8:370-380.
    TANG W Y, LI X W, ZHU Z Q, et al.2006. Expression, purification, crystallization and preliminary X-ray diffraction analysis of human phosphoribosyl pyrophosphate synthetase 1 (PRS1). Acta Crystallographica Section F-Structural Biology and Crystallization Communications [J],62:432-434.
    TAO Y, HUANG Y, GAO Z, et al.2009. Developing VUV spectroscopy for protein folding and material luminescence on beamline 4B8 at the Beijing Synchrotron Radiation Facility. Journal of Synchrotron Radiation [J],16:857-863.
    WILLEMOES M, HOVE-JENSEN B, LARSEN S 2000. Steady State Kinetic Model for the Binding of Substrates and Allosteric Effectors to Escherichia coli Phosphoribosyl-diphosphate Synthase [M]:35408-35412.
    WOLFGANG KABSCH C S 1983. Dictionary of protein secondary structure:Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers [J],22:2577-2637.
    ZOREF E, VRIES A D, SPERLING O 1975. Mutant feedback-resistant phosphoribosylpyrophosphate synthetase associated with purine overproduction and gout. Phosphoribosylpyrophosphate and purine metabolism in cultured fibroblasts. Journal of Clinical Investigation [J],56:1093-1099.
    AKINRIMISI E O, TS'O P O P 1964. Interactions of Purine with Proteins and Amino Acids*. Biochemistry [J],3:619-626.
    ARNAUDOV L N, DE VRIES R 2005. Thermally induced fibrillar aggregation of hen egg white lysozyme. Biophys J [J],88:515-526.
    CALAMAI M, KUMITA J R, MIFSUD J, et al.2006. Nature and significance of the interactions between amyloid fibrils and biological polyelectrolytes. Biochemistry [J],45:12806-12815.
    DOBSON C M, EVANS P A, RADFORD S E 1994. Understanding How Proteins Fold-the Lysozyme Story So Far. Trends in Biochemical Sciences [J],19:31-37.
    ELEFTHERIOU M, GERMAIN R S, ROYYURU A K, et al.2006. Thermal Denaturing of Mutant Lysozyme with Both the OPLSAA and the CHARMM Force Fields. Journal of the American Chemical Society [J],128:13388-13395.
    ESPOSITO A, COMEZ L, CINELLI S, et al.2009. Influence of Glycerol on the Structure and Thermal Stability of Lysozyme:A Dynamic Light Scattering and Circular Dichroism Study. The Journal of Physical Chemistry B [J],113:16420-16424.
    EXLEY C, KORCHAZHKINA O V 2001. Promotion of formation of amyloid fibrils by aluminium adenosine triphosphate (AlATP). J Inorg Biochem [J],84:215-224.
    FANDRICH M, FORGE V, BUDER K, et al.2003. Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments. Proc Natl Acad Sci U S A [J],100: 15463-15468.
    FRARE E, POLVERINO DE LAURETO P, ZURDO J, et al.2004. A highly amyloidogenic region of hen lysozyme. J Mol Biol [J],340:1153-1165.
    GASTEIGER E, GATTIKER A, HOOGLAND C, et al.2003. ExPASy:the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research [J],31:3784-3788.
    GREENFIELD N J 2007. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protocols [J],1:2527-2535.
    IKEMATSU M, TAKAOKA D, YASUDA M 2005. Odorant binding initially occurring at the central pocket in bovine odorant-binding protein. Biochemical and Biophysical Research Communications [J],333:1227-1233.
    KALHOR H R, KAMIZI M, AKBARI J, et al.2009. Inhibition of Amyloid Formation by Ionic Liquids:Ionic Liquids Affecting Intermediate Oligomers. Biomacromolecules [J],10: 2468-2475.
    KAR K, KISHORE N 2007. Enhancement of thermal stability and inhibition of protein aggregation by osmolytic effect of hydroxyproline. Biopolymers [J],87:339-351.
    KLEIN-SEETHARAMAN J, OIKAWA M, GRIMSHAW S B, et al.2002. Long-range interactions within a nonnative protein. Science [J],295:1719-1722.
    LAURENTS D V, BALDWIN R L 1997. Characterization of the unfolding pathway of hen egg white lysozyme. Biochemistry [J],36:1496-1504.
    LEES J G, SMITH B R, WIEN F, et al.2004. CDtool-an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Analytical Biochemistry [J], 332:285-289.
    MATAGNE A, CHUNG E W, BALL L J, et al.1998. The origin of the alpha-domain intermediate in the folding of hen lysozyme. J Mol Biol [J],277:997-1005.
    MITRA L, SMOLIN N, RAVINDRA R, et al.2006. Pressure perturbation calorimetric studies of the solvation properties and the thermal unfolding of proteins in solution-experiments and theoretical interpretation. Physical Chemistry Chemical Physics [J],8:1249-1265.
    MORSHEDI D, GHASEMI A, EVINI M, et al.2008. Dramatic enhancement of lysozyme fibrillogenesis by ATP. FEBS Journal [J],275:194-194.
    MOSS C X, TREE T I, WATTS C 2007. Reconstruction of a pathway of antigen processing and class II MHC peptide capture. EMBO Journal [J],26:2137-2147.
    PALMISANO D V, GROTHVASSELLI B, FARNSWORTH P N, et al.1995. Interaction of Atp and Lens Alpha-Crystallin Characterized by Equilibrium Binding-Studies and Intrinsic Tryptophan Fluorescence Spectroscopy. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology [J],1246:91-97.
    PERCZEL A, HOLLOSI M, TUSNADY G, et al.1991. Convex Constraint Analysis-a Natural Deconvolution of Circular-Dichroism Curves of Proteins. Protein Engineering [J],4: 669-679.
    PRIVALOV P L 1980. Scanning microcalorimeters for studying macromolecules. Pure and Applied Chemistry [J],52:479-497.
    SCHMID F X 1997. Optical spectroscopy to characterize protein conformation and conformational changes [M], Protein structure:A practical approach, second edn. IRL Press, Oxford:261-297.
    SWADESH J K, MUI P W, SCHERAGA H A 1987. Thermodynamics of the quenching of tyrosyl fluorescence by dithiothreitol. Biochemistry [J],26:5761-5769.
    TAO Y, HUANG Y, GAO Z, et al.2009. Developing VUV spectroscopy for protein folding and material luminescence on beamline 4B8 at the Beijing Synchrotron Radiation Facility. Journal of Synchrotron Radiation [J],16:857-863.
    WALLIMANN P, KENNEDY R J, MILLER J S, et al.2003. Dual Wavelength Parametric Test of Two-State Models for Circular Dichroism Spectra of Helical Polypeptides:Anomalous Dichroic Properties of Alanine-Rich Peptides. Journal of the American Chemical Society [J], 125:1203-1220.
    WIMLEY W C, WHITE S H 2004. Reversible Unfolding of [beta]-Sheets in Membranes:A Calorimetric Study. Journal of Molecular Biology [J],342:703-711.
    YANG J J, PITKEATHLY M, RADFORD S E 1994. Far-Uv Circular-Dichroism Reveals a Conformational Switch in a Peptide Fragment from the Beta-Sheet of Hen Lysozyme. Biochemistry [J],33:7345-7353.
    ALCANTAR N A, AYDIL E S, ISRAELACHVILI J N 2000. Polyethylene glycol-coated biocompatible surfaces. Journal of Biomedical Materials Research [J],51:343-351.
    GREENFIELD N J 2007. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protocols [J],1:2527-2535.
    HO S P, DEGRADO W F 1987. Design of a 4-helix bundle protein:synthesis of peptides which self-associate into a helical protein. Journal of the American Chemical Society [J],109: 6751-6758.
    HUANG L, APKARIAN R P, CHAIKOF E L 2001a. High-resolution analysis of engineered type I collagen nanofibers by electron microscopy. Scanning [J],23:372-375.
    HUANG L, NAGAPUDI K, APKARIAN R P, et al.2001b. Engineered collagen-PEO nanofibers and fabrics. Journal of Biomaterials Science-Polymer Edition [J],12:979-993.
    IIZUKA E, YANG J T 1966. Optical rotatory dispersion and circular dichroism of the beta-form of silk fibroin in solution. Proceedings of the National Academy of Sciences of the United States of America [J],55:1175-1182.
    INOUE S, TANAKA K, TANAKA H, et al.2004. Assembly of the silk fibroin elementary unit in endoplasmic reticulum and a role of L-chain for protection of alpha1,2-mannose residues in N-linked oligosaccharide chains of fibrohexamerin/P25. Eur J Biochem [J],271:356-366.
    JIN H J, FRIDRIKH S V, RUTLEDGE G C, et al.2002. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules [J],3:1233-1239.
    JIN H J, KAPLAN D L 2003a. Mechanism of silk processing in insects and spiders. Nature [J], 424:1057-1061.
    JIN H J, KAPLAN D L 2003b. Mechanism of silk processing in insects and spiders. Nature [J], 424:1057-1061.
    KERKAM K, VINEY C, KAPLAN D, et al.1991. Liquid Crystallinity of Natural Silk Secretions. Nature [J],349:596-598.
    LEES J G, SMITH B R, WIEN F, et al.2004. CDtool-an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Analytical Biochemistry [J], 332:285-289.
    LI X G, WU L Y, HUANG M R, et al.2008. Conformational transition and liquid crystalline state of regenerated silk fibroin in water. Biopolymers [J],89:497-505.
    MITA K, ICHIMURA S, JAMES T C 1994. Highly Repetitive Structure and Its Organization of the Silk Fibroin Gene. Journal of Molecular Evolution [J],38:583-592.
    PERCZEL A, HOLLOSI M, TUSNADY G, et al.1991. Convex Constraint Analysis-a Natural Deconvolution of Circular-Dichroism Curves of Proteins. Protein Engineering [J],4: 669-679.
    PEREZ-RIGUEIRO J, VINEY C, LLORCA J, et al.2000. Mechanical properties of single-brin silkworm silk. Journal of Applied Polymer Science [J],75:1270-1277.
    POZA P, PEREZ-RIGUEIRO J, ELICES M, et al.2002. Fractographic analysis of silkworm and spider silk. Engineering Fracture Mechanics [J],69:1035-1048.
    PUTTHANARAT S, STRIBECK N, FOSSEY S A, et al.2000. Investigation of the nanofibrils of silk fibers. Polymer [J],41:7735-7747.
    SIRICHAISIT J, BROOKES V L, YOUNG R J, et al.2003. Analyis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy. Biomacromolecules [J],4:387-394.
    TAKEI F, KIKUCHI Y, KIKUCHI A, et al.1987. Further evidence for importance of the subunit combination of silk fibroin in its efficient secretion from the posterior silk gland cells. J Cell Biol [J],105:175-180.
    TAO Y, HUANG Y, GAO Z, et al.2009. Developing VUV spectroscopy for protein folding and material luminescence on beamline 4B8 at the Beijing Synchrotron Radiation Facility. Journal of Synchrotron Radiation [J],16:857-863.
    VOLLRATH F, KNIGHT D P 2001. Liquid crystalline spinning of spider silk. Nature [J],410: 541-548.
    WANG S P, GUO T Q, GUO X Y, et al.2006. In vivo analysis of fibroin heavy chain signal peptide of silkworm Bombyx mori using recombinant baculovirus as vector. Biochemical and Biophysical Research Communications [J],341:1203-1210.
    WILSON D, VALLUZZI R, KAPLAN D 2000. Conformational transitions in model silk peptides. Biophysical Journal [J],78:2690-2701.
    YONEMURA N, MITA K, TAMURA T, et al.2009. Conservation of silk genes in Trichoptera and Lepidoptera. J Mol Evol [J],68:641-653.
    ZHOU C Z, CONFALONIERI F, JACQUET M, et al.2001a. Silk fibroin:structural implications of a remarkable amino acid sequence. Proteins [J],44:119-122.
    ZHOU C Z, CONFALONIERI F, JACQUET M, et al.2001b. Silk fibroin:Structural implications of a remarkable amino acid sequence. Proteins-Structure Function and Genetics [J],44: 119-122.
    ZHOU C Z, CONFALONIERI F, MEDINA N, et al.2000. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res [J],28:2413-2419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700