直接甲酸燃料电池用Pd/C催化剂制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决当前世界面临的能源短缺和环境污染两大难题,直接甲酸燃料电池以其具有燃料来源广、能量转化率高、低污染、储存和运输方便等优点,在便携式电源、电动机车和野外电站等领域具有广阔的应用前景,已经得到了世界范围的关注和重视。但是,电极电催化剂的活性较低及高昂的价格仍是阻碍燃料电池商业化发展的关键问题之一。提高催化剂活性、降低贵金属用量是推动燃料电池商业化发展的重要途径。本论文采用简单的制备工艺制备了高性能的Pd/C催化剂及纳米Pd薄膜复合催化剂,并对甲酸在催化剂上的氧化性能影响因素进行了研究。主要研究进展如下:
     (1)采用无任何保护剂或表面活性剂的方法制备高度分散的纳米Pd/C催化剂。通过氨络合[PdCl4]2-离子并在微波加热的条件下直接形成[Pd(NH3)4]2+络合物,没有产生沉淀。通过[Pd(NH3)4]2+与载体表面带负电荷的基团相互作用来控制Pd催化剂制备过程中颗粒粒径,并采用氢气还原法还原Pd/C催化剂。氢气固相还原法中,吸附在载体表面的[Pd(NH3)4]2+还原过程中不易迁移,原位还原成Pd颗粒,粒径较小,200℃还原温度下的Pd/C催化剂颗粒平均粒径为1.3nm,600℃时为2.2nm。同时还尝试采用液体还原法还原Pd/C催化剂。但由于Pd离子因为浓度的改变或者溶液中Pd离子还原过程中会发生迁移,从而合成的Pd颗粒粒径比氢气固相还原法大,液相还原法制备的Pd/C催化剂颗粒平均粒径为4.7nm。
     (2)甲酸在Pd/C催化剂上电氧化的活化能研究。正电势方向扫描,甲酸在Pd/C催化剂氧化的活化能随电势增大而逐渐减小,而负电势扫描过程中,甲酸氧化的活化能扫电势增大而增大。因为在负电势扫描过程中,Pd/C催化剂上氧化物对甲酸的氧化有一定的促进作用。H2SO4电解质中的甲酸氧化活化能比HClO4高,因为H2SO4为吸附型电解质,吸附在催化剂表面上的电解质会降低催化剂的性能。电解质的浓度对甲酸在Pd/C催化剂上氧化活化能影响很小。
     (3)pH对Pd/C催化剂甲酸氧化性能的影响研究。循环伏安和计时安培法测试显示在pH2到pH6的范围内,Pd/C催化剂对甲酸氧化电催化性能随着pH的升高而增大,大概在0.30V vs SCE左右,Pd/C催化剂的甲酸电催化氧化性能达到最大。Pd/C催化剂的耐久性随着电解质pH的增大而增强,这主因为要pH越小,酸性越大,对催化剂和载体的腐蚀越大,加剧了Pd催化剂和载体表面的氧化,使载体上的催化剂颗粒更容易迁移、氧化和长大。研究结果显示:HCOO为甲酸氧化过程中活性物质,甲酸在Pd催化剂上是通过“甲酸根途径”被氧化成CO2,甲酸氧化性能随着pH增大而增大。
     (4)Pd纳米薄膜电催化剂的制备及对甲酸氧化性能的研究。我们在carbon nanoparticle-chitosan host films中原位合成Pd纳米颗粒,并在不同电极上测试了Pd催化剂的性能。本研究中我们发现壳聚糖网络有利Pd颗粒的合成。通过电化学测试发现,合成的复合Pd纳米薄膜催化剂有很好的甲酸氧化性能。同时还研究了溶液pH和动力学液体的条件下对甲酸氧化的性能的影响,提出了由于电极中生成的CO2气泡而增加的阻抗效应为主要因素限制催化剂的性能的理论。
To solve the problems of energy shortage and environmental pollution in the world, the direct formic acid fuel cell were paid much attention and investigated widely.They havewide applications in the portable equipment,electric car and field power etc.due to thelow-pollution,abundant sources,high energy efficiency,the easy storage and transportation of the fuel.However,the low electrochemical activity and high cost of the electrocatalysts are still the key issues hindering the commercial application of fuel cell.Therefore,the improvement of the electrocatalytic activity of the electrocatalysts and the decrease of the loading mass of noble metals are the effective routes for the commercial application of fuel cells. In this thesis, we prepared highly activity Pd/C catalyst and Pd nanoparticle catalysts within carbon nanoparticle-chitosan host films using simple mehtods and study the effect of pH on the Pd/C performance.Also the activation activity energies for formic acid oxidation were studied by electrochemical measures.The main progress of this paper is summarized as follows.
     (1) An simple synthesis for highly dispersed and active Pd/C catalyst for formic acid electro-oxidation. we report an experimentally simple process to prepare highly dispersed Pd/C catalyst without the use of any stabilizing agent. The [Pd(NH3)4]2+ ion is synthesized with gentle heating in aqueous ammonia solution without formation of Pd(OH)x complex intermediates. The adsorbed [Pd(NH3)4]2+ on the surface of carbon is reduced in situ to Pd nanoparticles by NaBFH4 and H2.The Pd/C catalyst using H2 as reduciton has better formic acid oxidation than the Pd/C catalyst reduced by NaBH4 because t average size of Pd/C catalyst reduced by H2 are smaller than Pd/C catalyst reduced by NaBFH4. The average size of Pd/C catalyst reduced by H2 are 1.3nm at 200℃and 2.2nm at 600℃. The average size of Pd/C catalyst reduced by NaBH4 is 4.7nm.
     (2) Electrochemical determination fo activation energies for formic acid oxidation o on Pd/C catalyst in acidic electrolytes. The activation energies for formic acid oxidation o on Pd/C catalys decrease with potential increase at positive-going potential scan.And The activation energies for formic acid oxidation o on Pd/C catalys increase with potential increase at negative-going potential scan. The activation energies for formic acid oxidation o on Pd/C catalys are higher in H2SO4 than that in HCO4 because of adsorption characteristics of H2SO4.
     (3) Study on pH effect on the Pd/C catalyst for formic acid oxidation. Cyclic voltammograms and Chronoamperometry measurements show that activation energies for formic acid oxidation o on Pd/C catalyst increase with pH increase in acidic electrolytes.The stability of Pd/C catalyst increase with pH increase in in acidic electrolytes because the Pd/C catalysts were oxidied easily at low pH values. We think the formate is a reactive intermediate in the formic acid oxidation and the formic acid is oxidized throught "formate path".
     (4) Growth and Characterization of Palladium Electrocatalyst in a Carbon Nanoparticle-Chitosan Host for Formic Acid Oxidation. It has been shown that Pd nanoparticle catalysts are reproducibly formed within carbon nanoparticle-chitosan host films and on different types of substrate electrodes. These nanocomposite catalyst films can be applied to different types of electrodes and they are highly active for the oxidation of formic acid. The effect of the solution pH and hydrodynamic flow were investigated and a localized resistance effect introduced by CO2 gas bubble formation has been proposed as dominating factor in limiting the catalyst turn over at high current densities.
引文
[1]衣宝廉.燃料电池:原理·技术·应用.北京:化学工业出版社,2003
    [2]X. Wang, I.-M. Hsing, P.L. Yue, Electrochemical characterization of binary carbon supported electrode in polymer electrolyte fuel cells, J. Power Sources,2001,96:282-287
    [3]X. Cheng, B. Yi, M. Han, Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells, J. Power Sources,1999,79:75-81.
    [4]黄镇江编著,刘凤君改编,燃料电池及其应用,2005,电子工业出版社
    [5]黄倬,屠海令,张冀强,詹锋编著,质子交换膜燃料电池的研究开发与应用,2000,冶金工业出版社
    [6]刘凤君编著,高效环保的燃料电池发电系统及其应用,2005,机械工业出版社
    [7]EG&G Technical Services,Inc.,Science Application International Corporation. Fuel Cell Handbook(Sixth Edition).U.S.Department of Energy(DOE).2002.11
    [8]Grove W R.On voltaic series and the combination of gases by platinum. London and Ediburgh Philosophical Magazine and Journal of Science, series,1839, (14):127-130
    [9]Mond L., Langer C.A new form of gas battery. Proceedings of the Royal Society of London,1989,(46):296-304
    [10]Bacon F. T. Fuel Cell:Past, present and Future. Electrochim Acta,1969(14):569-585
    [11]Fuel Cell Basics. http://americanhistory.si.edu/fuelcells/bascs.htm
    [12]关于燃料电池发电技术调研报告。http://www.paperpaper.cn/gx/HTML/gx 209.html
    [13]Andrekus D.J., Bloom I. and Polzin E.G., Fuel Cell Testing at Argone National Laboratory. IEE Vehicular Technology Laboratory Conference,2002,3:6-9
    [14]Carrette L,Friedrich K A,Stimming U.Fuel cells-fundamentals and applications. Fuel cell,2001,1:5-39
    [15]Urban P M,Funke A,Muller J T,et al.Catalytic processes in solid polymer electrolyte fuel cell systems.Applied Catalysis A:General,2001,211:459-470.
    [16]Chunshan S.Fuel processing for low-temperature and high-temperature fuel cells challenges,and opportunities for sustainable development in the 21st century.Catalysis Today,2002,77:17-49
    [17]Appleby A.J. Issues in Fuel Cell Commercialization. J. Power Sources.1996,58:153-176
    [18]Prater K.B. Polymer Electrolyte Fuel Fells-a Review of Recent Developments. J. Power Sources.1994,51:129-144
    [19]Voss H., Huff J. Portable Fuel Cell Power Generator. J. Power Sources.1997, 65:155-158
    [20]Dufour A. U. Fuel Cells:a New Contributor to Stationary Power, J. Power Sources.1998, 71:19-25
    [21]Prater K. B. Solid Polymer Fuel Cells for Transport and Stationary Applications. J. Power Sources.1996,61:105-109
    [22]Weiner S. A. Fuel Cell Stationary Power Business Development. J. Power Sources.1998, 71:61-64
    [23]Joon K. Fuel Cells:a 21st Century Power System. J. Power Sources.1998,71:12-18
    [24]Borronibird C. E. Fuel Cell Commercialization Issues for Light-Duty Vehicle Applications. J. Power Sources.1996,61:33-48
    [25]Klaiber T. Fuel Cells for Transport:Can the Promise Be Full Filled? Technical Reqirements and Demands from Customers. J. Power Sources.1996,61:61-69
    [26]Miyake Y., Akiyama Y., Hamada A., et al. Status of Fuel Cells R&D Activities at Sanyo. J. Power Sources.1996,61:155-160
    [27]Glenn D. Direct Fuel Cell Power Plants:the Final Steps to Commercialization.J. Power Sources.1996,61:79-85
    [28]Watanabe Y, Matsumoto M., Takasu K. The Market for Utility-Scale Fuel Cell Plants. J. Power Sources.1996,61:53-59
    [29]L. Carrette, A. Friedrich and U. Stimming, Fuel Cells:Principles, Types, Fuels, and Applications,ChemPhysChem,2000,1,162-193.
    [30]U. B. Demirci, Direct liquid-feed fuel cells:Thermodynamic and environmental concerns,J. Power Sources,2007,169,239-246.
    [31]S. Uhm, N. Toh, Y. D. Kim and J. Lee, ChemPhysChem,2008,9,1425.
    [32]J. Lipkowski and P. N. Ross, Electrocatalysis, Wiley-VCH,1998.
    [33]S. Enthaler, Carbon Dioxide-The Hydrogen-Storage Material of the Future? ChemSusChem, 2008,1,801-804.
    [34]C. M. Miesse, W. S. Jung, K.-J. Jeong, J. K. Lee, J. Lee, J. Han, S. P. Yoon, S. W. Nam, T.-H. Lim and S.-A. Hong, Direct formic acid fuel cell portable power system for the operation of a laptop computer,J. Power Sources,2006,162,532-540.
    [35]A.S. Arico, S. Srinivasan, V. Antonucci, DMFCs:from fundamental aspects to technology development, Fuel Cells 1 (2001) 133-161.
    [36]U.B. Demirci, Direct borohydride fuel cell:Main issues met by the membrane-electrodes-assembly and potential solutions.J. Power Sources 172 (2007) 676-687.
    [37]S.Q. Song, V. Maragou, P. Tsiakaras, How Far Are Direct Alcohol Fuel Cells From Our Energy Future? J. Fuel Cell Sci. Technol.4 (2007) 203-208.
    [38]V. Neburchilov, J. Martin, H.J.Wang, J.J. Zhang, A review of polymer electrolyte membranes for direct methanol fuel cells,J. Power Sources 169 (2007) 221-238.
    [39]Y.W. Rhee, S.Y. Ha, R.I. Masel, Crossover of formic acid through Nafion((R)) membranes,J. Power Sources 117 (2003) 35-38.
    [40]X.Wang, J.M. Hu, I.M. Hsing, Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafion(?) membrane,J. Electroanal. Chem.562 (2004) 73-80.
    [41]S. Ha, R. Larsen, Y. Zhu, R.I. Masel, Fuel Cells 4 (2004) 337.
    [42]S. Uhm, H. J. Leec and J. Lee, Understanding underlying processes in formic acid fuel cells, Phys. Chem. Chem. Phys.11(2009) 9326-9336
    [43]A. Capon, R. Parsons, The oxidation of formic acid at noble metal electrodes:I. Review of previous work. J. Electroanal. Chem.44 (1973) 1-7.
    [44]A. Capon and R.Parsons,The oxidation of formic acid at noble metal electrodes Part Ⅲ.Intermediates and mechanism on platinum electrodes.Journal of the Electrochemical Society 45(1973)205-231.
    [45]A. Wieckowski and J.Sobkowski, Comparative study of adsorption and oxidation of formic acid and methanol on platinized electrodes in acidic solution.Journal of the Electrochemical Society 63(1975)365-377.
    [46]B. Beden, A. Bewick and C. Lamy, A study by electrochemically modulated infrared reflectance spectroscopy of the electrosorption of formic acid at a platinum electrode, J. Electroanal. Chem.,1983,148,147-160.
    [47]K. Kunimatsu, Infrared spectroscopic study of methanol and formic acid adsorbates on a platinum electrode:Part Ⅰ. Comparison of the infrared absorption intensities of linear CO(a) derived from CO, CH3OH and HCOOH,J. Electroanal. Chem.,1986,213,149-157.
    [48]S.C. Chang, L.-W.H. Leung, M.J. Weaver, Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy:electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces, J. Phys. Chem. B,94(1990) 6013-6021.
    [49]S. Park, Y. Xie, M.J. Weaver, Electrocatalytic Pathways on Carbon-Supported Platinum Nanoparticles:Comparison of Particle-Size-Dependent Rates of Methanol, Formic Acid, and Formaldehyde Electrooxidation.Langmuir 18 (2002) 5792-5798.
    [50]S. Wilhelm, W. Vielstich, H.W. Buschmann, T. Iwasita, Direct proof of hydrogen in the methanol adsorbate at platinum-an ECTDMS study,J.Electroanal. Chem.229 (1987) 377-384.
    [51]T.D. Jarvi, E.M. Stuve, in:J. Lipkovski, P.N. Ross (Eds.),Electrocatalysis, Wiley-VCH, Weinheim,1998.
    [52]N.M. Markovic, P.N. Rorr Jr.,Surface science studies of model fuel cell electrocatalysts,Surf. Sci. Rep.45 (2002) 117-229.
    [53]M.F. Mrozek, H. Luo, M.J. Weaver, Formic Acid Electrooxidation on Platinum-Group Metals:Is Adsorbed Carbon Monoxide Solely a Catalytic Poison?,Langmuir 16 (2000)8463-8469.
    [54]C. Lamy, J.M. Leger, Electrocatalytic oxidation of small organic molecules at platinum single crystals, J. Chim. Phys.88 (1991) 1649-1671.
    [55]R. R. Adzic, M. D. Spasojevic and A. R. Despic, Electrocatalysis by foreign metal monolayers Oxidation of formic acid on palladium, J. Electroanal.Chem.,92 (1978) 31-43.
    [56]A. Capon and R. Parsons, The oxidation of formic acid on noble metal electrodes:II. A comparison of the behaviour of pure electrodes,J. Electroanal. Chem.,44(1973)239-254.
    [57]A. Miki, S. Ye and M. Osawa, Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions,Chem. Commun., 14(2002)1500-1501.
    [58]M. Osawa, Dynamic Processes in Electrochemical Reactions Studied by Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS), Bull. Chem. Soc. Jpn.,70(1997)2861-2800.
    [59]M. Osawa, Surface-Enhanced Infrared Absorption,Top.Appl. Phys.,2001,81
    [60]S. Pronkin, M. Hara and T. Wandlowski, Electrocatalytic properties of Au(111)-Pd quasi-single-crystal film electrodes as probed by ATR-SEIRAS, Russ. J. Electrochem., 42(2006)-1177-1192.
    [61]G. Samjeske' and M. Osawa, Current Oscillations during Formic Acid Oxidation on a Pt Electrode:Insight into the Mechanism by Time-Resolved IR Spectroscopy,Angew. Chem., Int. Ed.,44(2005)5694-5698.
    [62]G. Sameske', A. Miki, S. Ye, A. Yamakata,Y. Mukouyama, H. Okamoto and M. Osawa, Potential Oscillations in Galvanostatic Electrooxidation of Formic Acid on Platinum:A Time-Resolved Surface-Enhanced Infrared Study,J. Phys. Chem. B,109(2005)23509-23516.
    [63]G. Samjeske', A. Miki, S. Ye and M. Osawa, Mechanistic Study of Electrocatalytic Oxidation of Formic Acid at Platinum in Acidic Solution by Time-Resolved Surface-Enhanced Infrared Absorption Spectroscopy,J. Phys. Chem. B 110(2006) 16559-16566.
    [64]L. Q. Luo and M. Futamata, Competitive adsorption of water and CO on Pd modified Pt electrode from CH3OH solution, Electrochem. Commun.,8 (2006) 231-237.
    [65]Y. X. Chen, M. Heinen, Z. Jusys and R. B. Behm, Kinetics and Mechanism of the Electrooxidation of Formic Acid-Spectroelectrochemical Studies in a Flow Cell,Angew. Chem.,Int. Ed.,2006,45,981-985.
    [66]Y. X. Chen, M. Heinen, Z. Jusys and R. J. Behm, Bridge-Bonded Formate:Active Intermediate or Spectator Species in Formic Acid Oxidation on a Pt Film Electrode?, Langmuir,22(2006) 10399-10408.
    [67]P. Waszczuk, T.M. Barnard, C. Rice, R.I. Masel, A. Wieckowski, A nanoparticle catalyst with superior activity for electrooxidation of formic acid,Electrochem. Commun.4 (2002) 599-603.
    [68]C. Rice, S. Ha, R.I. Masel, A. Wieckowski, Catalysts for direct formic acid fuel cells,J. Power Sources 115 (2003) 229-235.
    [69]J.H. Choi, K.J. Jeong, Y. Dong, J. Han, T.H. Lim, J.S. Lee, Y.E. Sung, Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells,J. Power Sources 163 (2006)71-75.
    [70]M. D. Obradovic, A. V. Tripkovic, et al. The origin of high activity of Pt-Au surfaces in the formic acid oxidation. Electrochimica Acta 55. (2009) 204-209.
    [71]E. Herrero, A. Fernandez-Vega, J.M. Feliu, A. Aldez, Poison formation reaction from formic acid and methanol on Pt(111) electrodes modified by irreversibly adsorbed Bi and As,J. Electroanal. Chem.350(1993) 73-88.
    [72]T.D. Jarvi, E.M. Stuve, in:J. Lipkovski, P.N. Ross (Eds.), Electrocatalysis, Wiley-VCH, 1998, p.75.
    [73]M. Neurock, M. Janik, A. Wieckowski, A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt,Faraday Discuss.140 (2009) 363-378.
    [74]A. Cuesta, M. Escudero, B. Lanova, H. Baltruschat, Cyclic Voltammetry, FTIRS, and DEMS Study of the Electrooxidation of Carbon Monoxide, Formic Acid, and Methanol on Cyanide-Modified Pt(111) Electrodes, Langmuir 25 (2009) 6500-6507.
    [75]X. Xia, T. Iwasita, Influence of underpotential deposited lead upon the oxidation of formic acid in perchloric acid at platinum electrodes J. Electrochem. Soc.140 (1993) 2559-2565.
    [76]M.D. Macia, E. Herrero, J.M. Feliu, Formic acid oxidation on Bi---Pt(111) electrode in perchloric acid media. A kinetic study,J. Electroanal. Chem.554 (2003) 25-34.
    [77]S. Ha, R. Larsen, Y. Zhu, R.I. Masel, Fuel Cells 4 (2004) 337.
    [78]Y.M. Zhu, Z. Khan, R.I. Masel, The behavior of palladium catalysts in direct formic acid fuel cells,J. Power Sources 139 (2005) 15-20.
    [79]L. A. Gugliotti, D. L. Feldheim, B. E. Eaton, RNA-Mediated Metal-Metal Bond Formation in the Synthesis of Hexagonal Palladium Nanoparticles, Science 304 (2004) 850-852.
    [80]Y. Xiong, J. Chen, B. Wiley, Y. Xia, Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size, J. Am. Chem. Soc.127 (2005) 7332-7333.
    [81]S. Ha, R. Larsen, R.I. Masel, Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells, J. Power Sources 144 (2005) 28-34.
    [82]R. Larsen, S. Ha, J. Zakzeski, R.I. Masel, Unusually active palladium-based catalysts for the electrooxidation of formic acid,J. Power Sources 157 (2006) 78-84.
    [83]Z.L. Liu, L. Hong, M.P. Tham, T.H. Lim, H.X. Jiang, Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells,J. Power Sources 161 (2006)831-835.
    [84]L.L. Zhang, T.H. Lu, J.C. Bao, Y.W. Tang, C. Li, Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell,Electrochem. Commun.8 (2006)1625-1627.
    [85]L.L. Zhang, Y.W. Tang, J.C. Bao, T.H. Lu, C. Li, A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell,J. Power Sources 162 (2006) 177-179.
    [86]X.G. Li, I.M. Hsing, Electrooxidation of formic acid on carbon supported PtxPd1-x (x= 0-1) nanocatalysts,Electrochim. Acta 51 (2006) 3477-3483.
    [87]S.Y. Uhm, S.T. Chung, J.Y. Lee, Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell,Electrochem. Commun.9 (2007) 2027-2031.
    [1]杨南如,无机非金属材料测试方法,武汉理工大学出版社2003
    [2]刘粤惠,刘平安,x射线衍射分析原理与应用,化学工业出版社,2006
    [3]Zhaolin Liu, Bing Guo, Liang Hong, Tze Han Lim. Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation. Electrochemistry Communications 8 (2006) 83-90
    [4]John L. Haanl, Richard I. Masel. The influence of solution pH on rates of an electrocatalytic reaction:Formic acidelectrooxidation on platinum and palladium. Electrochimica Acta 54 (2009) 4073-4078
    [5]V. Mazumder and S. Sun. Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation. Journal of the American Chemical Society 131(2009) 4588-4589.
    [6]Z.L. Liu, L. Hong, M.P. Tham, T.H. Lim, H.X. Jiang, Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J. Power Sources,161 (2006) 831-835.
    [7]E. Antolini, F. Cardellini, Formation of carbon supported PtRu alloys:an XRD analysis J. Alloys Comp.315 (2001) 118-122.
    [8]V. Radmilovic, H.A. Gasteiger, P.N. Ross, Structure and chemical-composition of a supported Pt-Ru electrocatalyst for methanol oxidation,J. Catalysis 154 (1998) 98-106.
    [1]M. D. Obradovic, A. V. Tripkovic, S. L.Gojkovic, The origin of high activity of Pt-Au surfaces in the formic acid oxidation,Electrochim. Acta 55 (2009) 204-209.
    [2]L. Zhang, T. Lu, J. Bao, Y. Tang, C. Li,Preparation method of an ultra.ne carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell,Electrochem. Commun.8 (2006) 1625-1627.
    [3]X. Wang, J.M. Hu, I.M. Hsing,Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafion(?) membrane, J. Electroanal. Chem.562 (2004) 73-80.
    [4]J. Willsau, J. Heitbaum, Analysis of adsorbed intermediates and determination of surface potential shifts by dems,Electrochim. Acta 31 (1986) 943-948.
    [5]Rice C,Ha S,Masel R I,et al. Direct formic acid fuel cells. Journal of Power Source, 111(2002)83-89.
    [6]S. Ha, R. Larsen, Y. Zhu, R.I. Masel, Direct formic acid fuel cells,Fuel Cells 4 (2004) 337.
    [7]Y.W. Rhee, S.Y. Ha, R.I. Masel, Crossover of formic acid through Nafion membranes.J. Power Sources 117 (2003) 35-38.
    [8]M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors?,Chem. Rev.104 (2004) 4245-4269.
    [9]X.W. Yu, P.r G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC). Journal of Power Sources 182 (2008) 124-132
    [10]P.K. Babu, H.S. Kim, J.H. Chung, E. Oldfield, A. Wieckowski,Bonding and Motional Aspects of CO Adsorbed on the Surface of Pt Nanoparticles Decorated with Pd,J. Phys. Chem. B 108(2004) 20228-20232.
    [11]Z.L. Liu, L. Hong, M.P. Tham, T.H. Lim, H.X. Jiang, Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells,J. Power Sources 161 (2006)831-835.
    [12]W. P. Zhou, A.Lewera, R.Larsen, R. I.Masel, P. S. Bagus, A. Wieckowski, J. Phys. Chem. B 110(2006)13393-13398.
    [13]H. Meng, S. Sun, J.-P.Masse, J.-P. Dodelet, Electrosynthesis of Pd Single-Crystal Nanothorns and Their Application in the Oxidation of Formic Acid.Chem. Mater.20 (2008) 6998-7002.
    [14]H. Lee, S. E. Habas, G. A. Somorjai, P.Yang, Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid.J. Am. Chem. Soc. 130(2008)5406-5407.
    [15]R. K. Pandey, V. Lakshminarayanan, Electro-Oxidation of Formic Acid, Methanol, and Ethanol on Electrodeposited Pd-Polyaniline Nanofiber Films in Acidic and Alkaline Medium, J. Phys. Chem. C 113 (2009) 21596-21603.
    [16]W. Zhou, J. Y. Lee, Particle Size Effects in Pd-Catalyzed Electrooxidation of Formic Acid,J. Phys. Chem. C 112 (2008) 3789-3793.
    [17]L. A. Gugliotti, D. L. Feldheim, B. E. Eaton, RNA-Mediated Metal-Metal Bond Formation in the Synthesis of Hexagonal Palladium Nanoparticles,Science 304 (2004) 850-852.
    [18]Y. Xiong, J. Chen, B. Wiley, Y. Xia, Understanding the Role of Oxidative Etching in the Polyol Synthesis of Palladium Nanoparticles with Uniform Shape and Size. J. Am. Chem. Soc.127 (2005) 7332-7333.
    [19]H. Li, G. Sun, Q. Jiang, M. Zhu, S. Sun, Q. Xin, Preparation and characterization of Pd/C catalyst obtained in NH3-mediated polyol process, J. Power Sources 172 (2007) 641-649.
    [20]H. Li, G Sun, Q. Jiang, M. Zhu, S. Sun, Q. Xin, Synthesis of highly dispersed Pd/C electro-catalyst with high activity for formic acid oxidation,Electrochem. Commun.9 (2007) 1410-1415.
    [21]V. Mazumder, S. Sun, Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation,J. Am. Chem. Soc.131(2009) 4588-4589.
    [22]M. Baldauf, D. M.Kolb, Formic Acid Oxidation on Ultrathin Pd Films on Au(hlk) and Pt(hkl) Electrodes,J. Phys. Chem.100 (1996) 11375-11381.
    [23]E. Antolini, F. Cardellini, Formation of carbon supported PtRu alloys:an XRD analysis J. Alloys Comp.315 (2001) 118-122.
    [24]V. Radmilovic, H.A. Gasteiger, P.N. Ross, A Transient Kinetic Study of the Oscillating N2O Decomposition over Cu-ZSM-5,J. Catalysis 154 (1998) 98-106.
    [25]Y.Zhu, Y. Y.Kang, Z. Q.Zou, Q.Zhou, J. W. Zheng, B. J.Xia, H.Yang, A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid, Electrochem. Commun.10 (2008) 802-805.
    [1]D. Lovic, A.V. Tripkovic, S.L.J. Gojkovic, K.D. Popovic, D.V. Tripkovic, P. Olszewski and A. Kowal, Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. J. Electroanal. Chem.581 (2005)294-302.
    [2]X.Q. Huang, S.H. Tang, H.H. Zhang, Z.Y. Zhou, N.F. Zheng, Controlled Formation of Concave Tetrahedral/Trigonal Bipyramidal Palladium Nanocrystals. J. Am. Chem. Soc.,131 (2009)13916.
    [3]P. Waszczuk, T.M. Barnard, C. Rice, R.I. Masel and A. Wieckowski, A nanoparticle catalyst with superior activity for electrooxidation of formic acid, Electrochem. Commun.4 (2002) 599-603.
    [4]Z.L. Liu, L. Hong, M.P. Tham, T.H. Lim, H.X. Jiang, Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J. Power Sources,161 (2006) 831-835.
    [5]A. Capon and R.Parsons,The oxidation of formic acid at noble metal electrodes Part Ⅲ.Intermediates and mechanism on platinum electrodes.Journal of the Electrochemical Society 45(1973)205-231.
    [6]A. Wieckowski and J.Sobkowski, Comparative study of adsorption and oxidation of formic acid and methanol on platinized electrodes in acidic solution.Journal of the Electrochemical Society 63(1975)365-377.
    [7]W. Zhou and J. Y. Lee, Particle Size Effects in Pd-Catalyzed Electrooxidation of Formic Acid, J. Phys. Chem. C 112(2008)3789-3793.
    [8]K Nishimura, K Kunimatsu, K Machida J Electroanal Chem 260 (1989) 181.
    [9]Iwasaki S, Miki A, Ye S (2002) Abstract of the 2002 Fall Meeting of the Electrochemical Society of Japan 2M26
    [10]WP Zhou, A Lewera, R Larsen, Size Effects in Electronic and Catalytic Properties of Unsupported Palladium Nanoparticles in Electrooxidation of Formic Acid,J Phys Chem B 100 (2006)13393-13398
    [11]A.B. Anderson, R. A. Sidik, J. Narayanasamy and P. Shiller, Theoretical Calculation of Activation Energies for Pt+H+(aq)+e-(U)(?) Pt-H:Activation Energy-Based Symmetry Factors in the Marcus Normal and Inverted Regions, J. Phys. Chem. B 107(2003) 4618-4623.
    [12]A. B. Anderson, J. Roques, S. Mukerjee, V. S. Murthi, N. M. Markovic and V. Stamenkovic, Activation Energies for Oxygen Reduction on Platinum Alloys:Theory and Experiment, J. Phys. Chem. B 109(2005) 1198-1203
    [13]A. B. Anderson and Y. Cai, Calculation of the Tafel Plot for H2 Oxidation on Pt(100) from Potential-Dependent Activation Energies,J. Phys. Chem. B,108(2004)19917-19920.
    [14]J.L. Cohen, D. J. Volpe and H.D. Abruna, Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes, Phys. Chem. Chem. Phys.9(2007)49-77.
    [15]H.Miyake, T.Okada, G. Samjeske' and M. Osawa, Formic acid electrooxidation on Pd in acidic solutions studied by surfaceenhanced infrared absorption spectroscopy, Phys. Chem. Chem. Phys.10(2008)3662-3669.
    [16]Y. B. Vassiliev, V. S. Bagotzky and V. A. Gromyko, Kinetics and mechanism of the formation and reduction of oxide layers on platinum part I. Oxidation and reduction of platinum electrodes,J. Electroanal. Chem.178(1984)247-269.
    [17]M. Alsabet, M. Grden and G Jerkiewicz, Comprehensive study of the growth of thin oxide layers on Pt electrodes under well-defined temperature, potential, and time conditions,J. Electroanal. Chem.,589 (2006) 120-127.
    [18]B.E. Conway, Electrochemical oxide film formation at noble metals as a surface-chemical process,Prog. Surf. Sci.49 (1995) 331-452.
    [19]Y. Wang, X. Wu, B. Wu and Y. Gao, Application of normal pulse voltammetry to the kinetic study of formic acid oxidation on a carbon supported Pd electrocatalyst, Journal of Power Sources 189 (2009) 1020-1022.
    [20]R. Larsen, S.H.J. Zakzeski and R.I. Masel, Unusually active palladium-based catalysts for the electrooxidation of formic acid,J. Power Sources 157 (2006) 78-84.
    [21]W. Xu,Y. Gao, T. Lu,Y. Tang, B. Wu, Kinetic Study of Formic Acid Oxidation on Highly Dispersed Carbon Supported Pd-TiO2 Electrocatalyst, Catal Lett 130 (2009) 312-317.
    [1]Andrian S V,Meusinger J.Process analysis of a liquid-feed direct methanol fuel cell system. Journal of Power Sources,91(2000) 193-201.
    [2]Rice C,Ha S,Masel R I,et al. Direct formic acid fuel cells. Journal of Power Source, 111(2002)83-89.
    [3]S. Ha, R. Larsen, Y. Zhu, R.I. Masel, Fuel Cells 4 (2004) 337.
    [4]Y.W. Rhee, S.Y. Ha, R.I. Masel, Crossover of formic acid through Nafion membranes.J. Power Sources 117 (2003) 35-38.
    [5]X.Wang, J.M. Hu, I.M. Hsing, J. Electroanal. Chem.562 (2004) 73.
    [6]M. Winter, R.J. Brodd, Chem. Rev.104 (2004) 4245.
    [7]X.W. Yu, P.r G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC). Journal of Power Sources 182 (2008) 124-132
    [8]Ferrer, J. E. and L. Victori, Electro-oxidation of formic acid on the iridium electrode as a function of pH. Electrochimica Acta 38(1993) 1631-1636.
    [9]Kita, H., T. Katagiri, et al. Electrochemical oxidation of HCOONa on Pt in acidic solutions. Journal of Electroanalytical Chemistry 220 (1987) 125-138.
    [10]J.M.A.,Harmsen,L. Jelemensky, et al. Kinetic modeling for wet air oxidation of formic acid on a carbon supported platinum catalyst. Applied Catalysis A:General 165(1997) 499-509.
    [11]C. Lamy, J.M. Leger, J. Chim. Phys.88 (1991) 1649.
    [12]John L. Haanl, Richard I. Masel. The influence of solution pH on rates of an electrocatalytic reaction:Formic acidelectrooxidation on platinum and palladium. Electrochimica Acta 54 (2009) 4073-4078
    [13]Y.X. Chen, M. Heinen, Z. Jusys, R.J. Behm, Kinetics and Mechanism of the Electrooxidation of Formic Acid-Spectroelectrochemical Studies in a Flow Cell.Angew. Chem.,45(2006)981.
    [14]M. Neurock, M. Janik, A. Wieckowski, A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Disc.,140 (2009) 363.
    [15]Lovic, J. D., A. V. Tripkovic, et al. Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. Journal of Electroanalytical Chemistry 581(2005) 294-302.
    [16]N.M. Markovic, P.N. Ross, Surface science studies of model fuel cell electrocatalysts.Surface Science Reports 45 (2002) 117-229.
    [17]H. Kita, K. Shimazu, K. Kunimatsu, Electrochemical oxidation of CO on Pt in acidic and alkaline solutions:Part I. voltammetric study on the adsorbed species and effects of aging and Sn(IV) pretreatment. Journal of Electroanalytical Chemistry 241(1988) 163-179.
    [18]J. L. Cohen, D. J. Volpe and He' ctor D. Abru.Electrochemical determination of activation energies for methanoloxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys. Chem. Chem. Phys.,9(2007) 49-77.
    [19]H. Li, G. Sun, Q. Jiang, M. Zhu, S. Sun, Q. Xin, Synthesis of highly dispersed Pd/C electro-catalyst with high activity for formic acid oxidation.Electrochem. Commun.9 (2007) 1410-1415.
    [20]X.M. Wang and Y.Y. Xia. Synthesis, characterization and catalytic activity of an ultrafine Pd/C catalyst for formic acid electrooxidation. Electrochimica Acta 54(2009) 7525-7530.
    [21]Y.M. Zhu, Z. Khan, R.I. Masel, The behavior of palladium catalysts in direct formic acid fuel cells.J. Power Sources 139 (2005) 15-20.
    [22]V. Mazumderand S. Sun,Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation. Journal of the American Chemical Society 131(2009) 4588-4589.
    [23]Yange Suo and I-Ming Hsing, Size-controlled synthesis and impedance-based mechanistic understanding of Pd/C nanoparticles for formic acid oxidation. Electrochimica Acta 55 (2009)210-217.
    [24]X.X. Li, X.P. Qiu, H.P. Yuan, L.Q. Chen and W.T. Zhu, Size-effect on the activity of anodic catalysts in alcohol and CO electrooxidation. Journal of Power Sources 184 (2008) 353-360
    [25]S. Mukerjee and J. McBreen, Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts:an in situ XAS investigation, Journal of Electroanalytical Chemistry 448(1998)163-171.
    [26]J. Xie, D. L. Wood, K. L. More, P. Atanassov and R. L. Borup, Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions,J. Electrochem. Soc.152 (2005)A1011-A1020.
    [27]W. Zhou, J. Y. Lee, Particle Size Effects in Pd-Catalyzed Electrooxidation of Formic Acid, J. Phys. Chem. C 112 (2008) 3789-3793.
    [28]Y.Zhu, Y. Y.Kang, Z. Q.Zou, Q.Zhou, J. W. Zheng, B. J.Xia, H.Yang, A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid, Electrochem. Commun.10 (2008) 802-805.
    [29]N. Cheng, S. Mu, M. Pan, P. P Edwards, Improved lifetime of PEM fuel cell catalysts through polymer stabilization, Electrochem. Commun.11 (2009) 1610-1614.
    [30]D.A. Stevens J.R. Dahn, Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon 43 (2005) 179-188.
    [31]Capon, R. Parsons, The oxidation of formic acid at noble metal electrodes:I. Review of previous work. J. Electroanal. Chem.44 (1973) 1-7.
    [32]A.Capon and R.Parsons,The oxidation of formic acid at noble metal electrodes Part Ⅲ.Intermediates and mechanism on platinum electrodesJournal of the Electrochemical Society 45(1973)205-231.
    [33]M.F. Mrozek, H. Luo, M.J. Weaver, Formic Acid Electrooxidation on Platinum-Group Metals:Is Adsorbed Carbon Monoxide Solely a Catalytic Poison?,Langmuir 16 (2000)8463-8469.
    [34]C. Lamy, J.M. Leger, Electrocatalytic oxidation of small organic molecules at platinum single crystals, J. Chim. Phys.88 (1991) 1649-1671.
    [35]R. R. Adzic, M. D. Spasojevic and A. R. Despic, Electrocatalysis by foreign metal monolayers Oxidation of formic acid on palladium, J. Electroanal.Chem.,92 (1978) 31-43.
    [36]A. Capon and R. Parsons, The oxidation of formic acid on noble metal electrodes:Ⅱ. A comparison of the behaviour of pure electrodes,J. Electroanal. Chem.,44(1973)239-254.
    [37]A. Miki, S. Ye and M. Osawa, Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions,Chem. Commun., 14(2002)1500-1501.
    [38]M. Osawa, Dynamic Processes in Electrochemical Reactions Studied by Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS), Bull. Chem. Soc. Jpn.,70(1997)2861-2800.
    [39]M. Osawa, Surface-Enhanced Infrared Absorption,Top.Appl. Phys.,2001,81
    [1]Catalysis and Electrocatalysis at Nanoparticle Surfaces (Eds.:A. Wieckowski, E.R. Savinova, C.G. Vayenas), CRC Press, New York,2003.
    [2]E. Antolini, Palladium in fuel cell catalysis.Energ. Environ. Sci.,2 (2009) 915.
    [3]D. Astruc, F. Lu, J.R. Aranzaes, Nanoparticles as Recyclable Catalysts:The Frontier between Homogeneous and Heterogeneous Catalysis.Angew. Chem. Internat. Ed.44 (2005) 7852.
    [4]B.D. Adams, G.S. Wu, S. Nigrio, A.C. Chen, Facile Synthesis of Pd-Cd Nanostructures with High Capacity for Hydrogen Storage.J. Am. Chem. Soc.131 (2009) 6930.
    [5]F. Yang, D.K. Taggart, R.M. Penner, Fast, Sensitive Hydrogen Gas Detection Using Single Palladium Nanowires That Resist Fracture.Nanoletters,9 (2009) 2177.
    [6]X.Q. Huang, H.H. Zhang, C.Y. Guo, Z.Y. Zhou, N.F. Zheng, Simplifying the Creation of Hollow Metallic Nanostructures:One-Pot Synthesis of Hollow Palladium/Platinum Single-Crystalline Nanocubes.Angew. Chem. Inter. Ed.48 (2009) 4808.
    [7]N. Semagina, L. Kiwi-Minsker, Palladium Nanohexagons and Nanospheres in Selective Alkyne Hydrogenation.Catal. Lett.,127 (2009) 334.
    [8]Z.Y. Bai, L. Yang, L. Li, J. Lv, K. Wang, J. Zhang, A Facile Preparation of Hollow Palladium Nanosphere Catalysts for Direct Formic Acid Fuel Cell. J. Phys. Chem. C,113 (2009) 10568.
    [9]Z.L. Liu, X.H. Zhang, Carbon-supported PdSn nanoparticles as catalysts for formic acid oxidation.Electrochem. Commun.,11 (2009) 1667.
    [10]N. Dimitratos, J.A. Lopez-Sanchez, J.M. Anthonykutty, G. Brett, A.F. Carley, R.C. Tiruvalam, A.A. Herzing, C.J. Kiely, D.W. Knight, G.J. Hutchings, Oxidation of glycerol using gold-palladium alloy-supported nanocrystals. Phys. Chem. Chem. Phys.,11 (2009) 4952.
    [11]M. Ruta, N. Semagina, L. Kiwi-Minsker, Monodispersed Pd Nanoparticles for Acetylene Selective Hydrogenation:Particle Size and Support Effects J. Phys. Chem. C,112 (2008) 13635.
    [12]K.M.K. Yu, C.M.Y. Yeung, D. Thompsett, S.C. Tsang, Aerogel-Coated Metal Nanoparticle Colloids as Novel Entities for the Synthesis of Defined Supported Metal Catalysts.J. Phys. Chem. B,107(2003)4515.
    [13]S.G. Kwon, T. Hyeon, Colloidal Chemical Synthesis and Formation Kinetics of Uniformly Sized Nanocrystals of Metals, Oxides, and Chalcogenides.Acc. Chem. Res.,41 (2008) 1696.
    [14]B.D. Adams, G.S. Wu, S. Nigrio, A.C. Chen, Facile Synthesis of Pd-Cd Nanostructures with High Capacity for Hydrogen Storage J. Am. Chem. Soc.,131 (2009) 6930.
    [15]X.Q. Huang, S.H. Tang, H.H. Zhang, Z.Y. Zhou, N.F. Zheng, Controlled Formation of Concave Tetrahedral/Trigonal Bipyramidal Palladium Nanocrystals. J. Am. Chem. Soc.,131 (2009) 13916.
    [16]Z.L. Liu, L. Hong, M.P. Tham, T.H. Lim, H.X. Jiang, Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J. Power Sources,161 (2006) 831.
    [17]G.G. Wildgoose, C.E. Banks, R.G. Compton, Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes:Methods and Applications. Small,2 (2006) 182.
    [18]L. Rassaei, M. Sillanpaa, F. Marken, Modified carbon nanoparticle-chitosan film electrodes: Physisorption versus chemisorption.Electrochim. Acta,53 (2008) 5732.
    [19]L. Rassaei, M.J. Bonne, M. Sillanpaa, F. Marken, Binding site control in a layer-by-layer deposited chitosan-carbon nanoparticle film electrode.New J. Chem.,32 (2008) 1253.
    [20]D. Parajuli, K. Hirota K, Recovery of palladium using chemically modified cedar wood powder. J. Coll. Interfac. Sci.,338 (2009) 371.
    [21]Electrocatalysis (Eds.:J. Lipkowski, P.N. Ross), Wiley-VCH, New York,1998, p.65.
    [22]S.D. Han, J.H. Choi, S.Y. Noh, K. Park, S.K. Yoon, Y.W. Rhee, Performance characterization of direct formic acid fuel cell using porous carbon-supported palladium anode catalysts. Korean J. Chem. Engineer.,26 (2009) 1040.
    [23]M.A. Rigsby, W.P. Zhou, A. Lewera, H.T. Duong,,P.S. Bagus, W. Jaegermann,R. Hunger, A. Wieckowski, Experiment and Theory of Fuel Cell Catalysis:Methanol and Formic Acid Decomposition on Nanoparticle Pt/Ru.J. Phys. Chem. C,112 (2008) 15595.
    [24]Y.X. Chen, M. Heinen, Z. Jusys, R.J. Behm, Kinetics and Mechanism of the Electrooxidation of Formic Acid-Spectroelectrochemical Studies in a Flow Cell.Angew. Chem.,45 (2006) 981.
    [25]M. Neurock, M. Janik, A. Wieckowski, A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Disc.,140 (2009) 363.
    [26]S.M. MacDonald, J.D. Watkins, Y. Gu, K. Yunus, A.C. Fisher, G. Shul, M. Opallo, F. Marken, Electrochemical processes at a flowing organic solventlaqueous electrolyte phase boundary.Electrochem. Commun.,9 (2007) 2105.
    [27]Understanding Voltammetry, R.G. Compton, C.E. Banks, World Scientific, London,2007, p.308.
    [28]Electrochemistry at Solid Electrodes, R.N. Adams, Marcel Dekker, New York,1969, p.219.
    [29]Electrochemical Methods, A.J. Bard, L.R. Faulkner, Wiley, New York,2001, p.341.
    [30]L. Vidal, A. Chisvert, A. Canals, E. Psillakis, A. Lapkin, F. Acosta, K.J. Edler, J.A. Holdaway, F. Marken, Chemically surface-modified carbon nanoparticle carrier for phenolic pollutants:Extraction and electrochemical determination of benzophenone-3 and triclosan. Anal. Chim. Acta,616 (2008) 28.
    [31]L. Rassaei, M. Sillanpaa, K.J. Edler, F. Marken, Electrochemically Active Mercury Nanodroplets Trapped in a Carbon Nanoparticle-Chitosan Matrix. Electroanalysis,21 (2009) 261.
    [32]C.L. Schauer, M.S. Chen, R.R. Price, P.E. Schoen and F.S. Ligler, Colored Thin Films for Specific Metal Ion Detection Environm. Sci. Technol.,38 (2004) 4409.
    [33]L. Guczi, A. Beck, A. Horvath, Z. Koppany, G. Stefler, K. Frey, I. Sajo, O. Geszti, D. Bazin, J. Lynch, AuPd bimetallic nanoparticles on TiO2:XRD, TEM, in situ EXAFS studies and catalytic activity in CO oxidation. J. Molecular Catal. A-Chem.,204 (2003) 545.
    [34]S.D. Yang, X.G. Zhang, H.Y. Mi, X.G. Ye, Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid.J. Power Sources,175 (2008) 26.
    [35]W. Zhou, J.Y. Lee, Particle Size Effects in Pd-Catalyzed Electrooxidation of Formic Acid.J. Phys. Chem. C,112 (2008) 3789.
    [36]L. Meng, J. Jin, G.X. Yang, T.H. Lu, H. Zhang, C.X. Cai, Nonenzymatic Electrochemical Detection of Glucose Based on Palladium Single-Walled Carbon Nanotube Hybrid Nanostructures. Anal. Chem.,81 (2009) 7271.
    [37]J.L. Haan, R.I. Masel, The Influence of Solution pH on Rates of an Electrocatalytic Reaction Unexpected Findings for Formic Acid Electrooxidation on Platinum and Palladium. Electrochim. Acta,54 (2009) 4073.
    [38]Electroanalytical Methods, F. Scholz, Springer,2005, p.64.
    [39]Self-diffusion in electrolyte solutions, R. Mills, V.M.M. Lobo, Elsevier, Amsterdam,1989.
    [40]CRC Handbook of Chemistry and Physics, (Ed.:D.R. Lide), CRC Press, London,1993.
    [41]R. Farajzadeh, P.L.J. Zitha, J. Bruining, Enhanced Mass Transfer of CO2 into Water: Experiment and Modeling.Indust. Engineer. Chem. Res.,48 (2009) 6423.
    [42]Solubility of Gases in Liquids, P.G.T. Fogg, W. Gerrard, Wiley, New York,1991, p.281.
    [43]H. Wang, C.W. Xu, F.L. Cheng, S.P. Jiang, Pd nanowire arrays as electrocatalysts for ethanol electrooxidation.Electrochem. Commun.,9 (2007) 1212.
    [44]E. Sin, S.S. Yi, Y.S. Lee, Chitosan-g-mPEG-supported palladium (0) catalyst for Suzuki cross-coupling reaction in water.J. Mol. Catal. A-Chem.,315 (2010) 99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700