2-羟基-3-烯丙氧基丙基淀粉醚的温敏性能及其衍生物pH敏感性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计以烯丙基缩水甘油醚(AGE)为疏水化试剂,通过调节淀粉衍生物的亲水亲油平衡制备温敏性淀粉。在制备2-羟基-3-烯丙氧基丙基淀粉醚中,探索了该反应体系中溶剂水的用量、碱的用量、反应温度以及反应时间对反应的影响,其最佳条件为:碱用量n(NaOH):n(AGU)为0.7,水用量m(H20):m(AGU)为2.5:1,反应温度70℃和反应时间为5h。利用IR>1H-NMR等分析手段对产物的结构进行表征以及取代度(DS)的计算。对不同取代度的2-羟基-3-烯丙氧基丙基淀粉醚(HAPS)进行了温敏性能测试,发现当取代度达到0.91以上,制备的产物具有很好的温敏性能。考察了取代度、AGE浓度以及盐浓度对HAPS温敏性的影响,发现随着取代度,产物浓度以及盐浓度提高,可以降低HAPS的临界溶解温度(LCST)。认为LCST能够通过改变DS进行有效地调整。通过荧光分析法测定HAPS能形成稳定胶束,发现随着取代度的提高临界胶束浓度随之降低。
     淀粉链上接枝2-羟基-3-烯丙氧基丙基不仅赋予淀粉衍生物温敏性能,由于烯丙基的引入,为淀粉衍生物的进一步功能化奠定了基础。本文进一步设计利用巯基乙胺盐酸盐与HAPS进行thiol-ene点化学反应,通过引入弱碱性氨基制备具有pH敏感性的2-羟基-3-(3’-氨乙硫基丙氧基)丙基淀粉醚(以下简称HAEPS)。通过酸碱滴定测定其pKa值以及计算不同pH条件下的离子化度。发现HAEPS的pKa值随着氨基取代度的提高而增大。通过动态光散射(DLS)考察了在不同pH条件下HAEPS的粒径变化以及Zeta电位变化,发现随着pH的增加由于去离子化后HAEPS侧链疏水性增强,导致粒径不断下降。当pHpKa时Zeta电位迅速下降,说明pKa是HAEPS在水溶液中分散稳定性的一个标尺。最后通过表面张力以及荧光测试的进一步证实,在碱性条件下HAEPS能够聚集形成胶束结构。
In this study, temperature-responsive2-hydroxy-3-allyloxypropyl starch (HAPS) was prepared using allyl glycidyl ether (AGE) as hydrophobic reagent. And the effects of solution dosage, base dose, reaction time and temperature were studied. Optimal conditions were explorered as following:n(AGE):n(AGU)=l:l, amount of solvent m(H20):m(AGU)=4:1, n(NaOH):n(AGU)=1.5:1, reaction time5h, reaction temperature70oC.IR and'H-NMR were used for characterization of HAPS and degree of substitution (DS) of AGE was also calculated. The property of HAPS with varying DS was analyzed and when DS is0.91or larger, the modified starch has temperature responsity in aqueous solution. Lower critical solution temperature (LCST) was measured by transmittance which is lower increasing DS. And the concentration of HAPS and salt make LCST lower. Results showed that LCST could be adjusted easily by changing DS. The critical micelle concentrations (CMC) of HAPS forming micelles was determined by the fluorescent spectra of pyrene, and found to be decreased against increase of DS.
     The introduction of allyl made the starch dervatives sensitive to temperature and was important for further functionlization.2-hydroxy-3-(3'-aminoethylthiopropoxy) propyl starch (HAEPS) was prepared through thiol-ene click reaction between HAPS and cysteamine hydrochloride.The pKa and degree of ionization of HAEPS were determined by base-acid titration and it was found that pKa value increased with the increase of the amino group.The size and zeta potential of HAEPS under different pH were measured. With pH increasing, the size decreased gradually which was caused by deionization of HAEPS and the long side chain turning hydrophobic and aggregation. If pHpKa, so pKa was used to determine the stability of HAEPS. Surface tentions and fluorescent spectra were also investigated at different pH for further proving the micellization behavior of HAEPS under alkaline solution (pH>9) by adjusting pH of the solution.
引文
[1]Liu C, Gan X, Chen Y. A novel pH-sensitive hydrogels for potential colon-specific drug delivery:Characterization and in vitro release studies[J]. Starch-Starke.2011, 63(8):503-511.
    [2]Abu-Lail N I, Kaholek M, Lamattina B, et al. Micro-cantilevers with end-grafted stimulus-responsive polymer brushes for actuation and sensing[J]. Sensors and Actuators B:Chemical.2006,114(1):371-378.
    [3]Yamato M, Konno C, Utsumi M, et al. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture[J]. Biomaterials.2002,23(2): 561-567.
    [4]Kojima C, Tsumura S, Harada A, et al. A Collagen-Mimic Dendrimer Capable of Controlled Release[J]. Journal of the American Chemical Society.2009,131(17):6052-6053.
    [5]Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery[J]. Advanced drug delivery reviews.2001,53(3):321-339.
    [6]Dimitrov I, Trzebicka B, Miiller A H E, et al. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities [J]. Progress in Polymer Science. 2007,32(11):1275-1343.
    [7]Wu C, Wang X. Globule-to-Coil Transition of a Single Horaopolymer Chain in Solution[J]. Physical Review Letters.1998,80(18):4092-4094.
    [8]Wang X, Qiu X, Wu C. Comparison of the Coil-to-Globule and the Globule-to-Coil Transitions of a Single Poly(N-isopropylacrylamide) Homopolymer Chain in Water[J]. Macroraolecules.1998,31(9):2972-2976.
    [9]Hashidzume A, Matsumoto A, Mori T, et al. Phase Behavior of Aqueous Solutions of Copolymers of N, N'-Diisopropylfumaramide and N-Isopropylacrylamide:Effect of the Density of Side Chains[J]. Langmuir.2012,28(13):5522-5526.
    [10]Moerkerke R, Koningsveld R, Berghmans H, et al. Phase Transitions in Swollen Networks[J]. Macromolecules.1995,28(4):1103-1107.
    [11]Meeussen F, Nies E, Berghmans H, et al. Phase behaviour of poly (N-viny l caprolactam) in water [J]. Polymer.2000,41(24):8597-8602.
    [12]Schafer-Soenen H, Moerkerke R, Berghmans 11, et al. Zero and Off-Zero Critical Concentrations in Systems Containing Polydisperse Polymerst with Very High Molar Masses.2. The System Water-Poly(vinyl methyl ether)[J]. Macromolecules.1997,30(3): 410-416.
    [13]Meyer D E, Chilkoti A. Quantification of the Effects of Chain Length and Concentration on the Thermal Behavior of Elastin-like Polypopt ides[J]. Biomacromolecules.2004,5(3): 846-851.
    [14]Nagapudi K, Brinkman W T, Leisen J E, et al. Photomediated Sol id-State Cross-Linking of an Elastin-imetic Recombinant Protein Polymer[J]. Macromolecules.2002,35(5): 1730-1737.
    [15]Nagarsekar A, Crissman J, Crissman M, et al. Genetic synthesis and characterization of pH-and temperature-sensitive silk-elastinlike protein block copolymers[Z]. Wiley Subscription Services, Inc., A Wiley Company,2002:62,195-203.
    [16]Convertine A J, Ayres N, Scales C W, et al. Facile, Controlled, Room-Temperature RAFT Polymerization of N-Isopropylacrylamidet[J]. Biomacromolecules.2004,5(4): 1177-1180.
    [17]Convertine A J, Lokitz B S, Vasileva Y, et al. Direct Synthesis of Thermally Responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA Triblock Copolymers via Aqueous, Room Temperature RAFT PolymerizationttJ]. Macromolecules.2006,39(5):1724-1730.
    [18]Otake K, Inomata H, Konno M, et al. Thermal analysis of the volume phase transition with N-isopropylacrylamide gels[J]. Macromolecules.1990,23(1):283-289.
    [19]Sun J, Peng Y, Chen Y, et al. Effect of Molecular Structure on Thermoresponsive Behaviors of Pyrrolidone-Based Water-Soluble Polymers[J]. Macromolecules.2010,43(9): 4041-4049.
    [20]Kokufuta E, Tanaka T, Ito S, et al. Thermo-sensitive Nn-propylacrylamide gels[J]. Phase Transitions:A Multinational Journal.1993,44(4):217-225.
    [21]Kawaguchi H, Hoshino F, Ohtsuka Y. Soap-free emulsion copolymerization of styrene with N-acryloylpyrrolidine and features of the resulting latices[J]. Die Makromolekulare Chemie, Rapid Communications.1986,7(3):109-114.
    [22]Xu J, Jiang X, Liu S. Synthesis of low-polydispersity poly (N-ethylmethylacrylamide) by controlled radical polymerizations and their thermal phase transition behavior [J]. Journal of Polymer Science Part A:Polymer Chemistry.2008,46(1):60-69.
    [23]Mori H, Iwaya H, Nagai A, et al. Controlled synthesis of thermoresponsive polymers derived from L-proline via RAFT polymerization[J]. Chemical communications.2005(38): 4872-4874.
    [24]Idziak I, Avoce D, Lessard D, et al. Thermosensitivity of aqueous solutions of poly (N, N-diethylacrylamide) [J]. Macromolecules.1999,32(4):1260-1263.
    [25]Mori H, Kato I, Matsuyama M, et al. RAFT polymerization of acrylamides containing proline and hydroxyproline moiety:Controlled synthesis of water-soluble and thermoresponsive polymers[J]. Macromolecules.2008,41(15):5604-5615.
    [26]Tiktopulo E I, Uversky V N, Lushchik V B, et al. " Domai” Coil-Globule Transition in Homopolymers[J]. Macromolecules.1995,28(22):7519-7524.
    [27]Lau A C W, Wu C. Thermally Sensitive and Biocompatible Poly(N-vinylcaprolactam): Synthesis and Characterization of High Molar Mass Linear Chains[J]. Macromolecules. 1999,32(3):581-584.
    [28]Laukkanen A, Valtola L, Winnik F M, el al. Formation of Colloidally Stable Phase Separated Poly(N-vinylcaprolactam) in Water:A Study by Dynamic Light Scattering, Microcaloriraetry, and Pressure Perturbation Calorimetry[J]. Macroraolecules.2004, 37(6):2268-2274.
    [29]Sun S, Wu P. Infrared Spectroscopic Insight into Hydration Behavior of Poly(N-vinylcaprolactam) in Water[J]. The Journal of Physical Chemistry B.2011, 115(40):11609-11618.
    [30]Uyama H, Kobayashi S. A novel thermo-sensitive polymer. Poly (2-iso-propyl-2-oxazoline)[J]. Chemistry Letters.1992,21(9):1643-1646.
    [31]Zhao J, Hoogenboom R, Van Assche G, et al. Demixing and Remixing Kinetics of Poly(2-isopropyl-2-oxazoline) (PIPOZ) Aqueous Solutions Studied by Modulated Temperature Differential Scanning Calorimetry[J] Macroraolecules.2010,43(16): 6853-6860.
    [32]Saito S, Otsuka T. Dissolution of some polymers in aqueous solutions of urea, of its related compounds, and of tetraalkylammonium salts[J]. Journal of Colloid and Interface Science.1967,25(4):531-536.
    [33]Meeussen F, Bauwens Y, Moerkerke R, et al. Molecular complex formation in the system poly (vinyl methyl ether)/water[J]. Polymer.2000,41(10):3737-3743.
    [34]Prabaharan M, Mano J F. Stimuli-Responsive Hydrogels Based on Polysaccharides Incorporated with Thermo-Responsive Polymers as Novel Biomaterials[J]. Macromolecular bioscience.2006,6(12):991-1008.
    [35]Ju B, Yan D, Zhang S. Micelles self-assembled from thermoresponsive 2-hydroxy-3-butoxypropyl starches for drug delivery[J]. Carbohydrate Polymers.2011: 1404-1409.
    [36]Roy I, Gupta M N. Smart Polymeric Materials::Emerging Biochemical Applications [J]. Chemistry& biology.2003,10(12):1161-1171.
    [37]Weaver JVM, Adams D J. Synthesis and application of pH-responsive branched copolymer nanoparticles (PRBNs):a comparison with pH-responsive shell cross-linked micelles[J]. Soft Matter.2010,6(12):2575-2582.
    [38]Dai S, Ravi P, Tam K C. pH-Responsive polymers:synthesis, properties and applications[J]. Soft Matter.2008,4(3):435-449.
    [39]Weaver JVM, Williams R T, Royles B J L, et al. pH-Responsive branched polymer nanoparticles[J]. Soft Matter.2008,4(5):985-992.
    [40]Discher D E, Ortiz V, Srinivas G, et al. Emerging applications of polymersomes in delivery:From molecular dynamics to shrinkage of tumors[J]. Progress in Polymer Science.2007,32(8):838-857.
    [41]Blanazs A, Armes S P, Ryan A J. Self-Assembled Block Copolymer Aggregates:From Micelles to Vesicles and their Biological Applications[Z]. WILEY-VCH Verlag,2009:30, 267-277.
    [42]Lindman B. Amphiphilic block copolymers:self-assembly and applications[M]. Elsevier Science,2000.
    [43]Read E S, Armes S P. Recent advances in shell cross-linked micelles[J]. Chemical Communications.2007(29):3021-3035.
    [44]Discher D E, Eisenberg A. Polymer Vesicles [J]. Science.2002,297(5583):967-973.
    [45]Wittemann A, Azzara T, Eisenberg A. Biocompatible Polymer Vesicles from Biamphiphilic Triblock Copolymers and Their Interaction with Bovine Serum Albumin[J]. Langmuir.2007, 23(4):2224-2230.
    [46]Jiang X, Zhang G, Narain R, et al. Covalently stabilized temperature and pH responsive four-layer nanoparticles fabricated from surface'clickable'shell cross-linked micelles[J]. Soft Matter.2009,5(7):1530-1538.
    [47]Kubowicz S, Baussard J F, Lutz J F, et al. Multicompartment Micelles Formed by Self-Assembly of Linear ABC Triblock Copolymers in Aqueous Medium [J]. Angewandte Chemie International Edition.2005,44(33):5262-5265.
    [48]Popescu M, Tsitsilianis C, Papadakis C M, et al. Stimuli-Responsive Amphiphilic Polyelectrolyte Heptablock Copolymer Physical Hydrogels:An Unusual pH-Response[J]. Macromolecules.2012.
    [49]Mclean S C, Scholes C A, Smith T A, et al. Monitoring Supramolecular Self-Assembly using Time-Resolved Fluorescence Spectroscopy[J]. Australian Journal of Chemistry. 2011,64(6):825-832.
    [50]Keoshkerian B, Georges M, Quinlan M, et al. Polyacrylates and polydienes to high conversion by a stable free radical polymerization process:Use of reducing agents [J]. Macromolecules.1998,31 (21):7559-7561.
    [51]Butun V, Bennett C E, Vamvakaki M, et al. Selective betainisation of tertiary amine methacrylate block copolymers [J]. J. Mater. Chem.1997,7:1693-1695.
    [52]Kamachi M, Kurihara M, Stille J K. Synthesis of Block Polymers for Desalination Membranes. Preparation of Block Copolymers of 2-Vinylpyridine and Methacrylic Acid or Acrylic Acid[J]. Macromolecules.1972,5(2):161-167.
    [53]Creutz S, Jerome R. Effectiveness of Poly(vinylpyridine) Block Copolymers as Stabilizers of Aqueous Titanium Dioxide Dispersions of a High Solid Content[J]. Langmuir.1999,15(21):7145-7156.
    [54]Liu S, Armes S P. Polymeric Surfactants for the New Millennium:A pH-Responsive, Zwitterionic, Schizophrenic Diblock Copolymer[Z]. WILEY-VCH Verlag GmbH,2002:41, 1413-1416.
    [55]Bae Y, Fukushiraa S, Harada A, et al. Design of Environment-Sensitive Supramolecular Assemblies for Intracellular Drug Delivery:Polymeric Micelles that are Responsive to Intracellular pH Change[Z]. WILEY-VCH Verlag,2003:42,4640-4643.
    [56]Alhoranta A M, Lehtinen J K, Urtti A 0, et al. Cationic Amphiphilic Star and Linear Block Copolymers:Synthesis, Self-Assembly, and in Vitro Gene Transfection[J]. Biomacromolecules.2011,12(9):3213-3222.
    [57]Dou H, Jiang M, Peng H, et al. pH-Dependent Self-Assembly:Micellization and Micelle-Hollow-Sphere Transition of Cellulose-Based Copolymers[J]. Angewandte Chemie International Edition.2003,42(13):1516-1519.
    [58]Liu F, Eisenberg A. Preparation and pH Triggered Inversion of Vesicles from Poly(acrylic Acid)-block-Polystyrene-block-Poly(4-vinyl Pyridine) [J]. Journal of the American Chemical Society.2003,125(49):15059-15064.
    [59]Rodriguez-Hernandez J, Lecommandoux S. Reversible Inside-Out Micellization of pH-responsive and Water-Soluble Vesicles Based on Polypeptide Diblock Copolymers[J]. Journal of the American Chemical Society.2005,127(7):2026-2027.
    [60]Li M, Keller P. Stimuli-responsive polymer vesicles[J]. Soft Matter.2009,5(5): 927-937.
    [61]Decher G. Fuzzy Nanoassemblies:Toward Layered Polymeric Multicomposites [J]. Science. 1997,277(5330):1232-1237.
    [62]Van Cott K E, Guzy M, Neyman P, et al. Layer-By-Layer Deposition and Ordering of Low-Molecular-ffeight Dye Molecules for Second-Order Nonlinear Optics[Z]. WILEY-VCH Verlag,2002:41,3236-3238.
    [63]Lvov Y, Ariga K, Ichinose I, et al. Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption[J]. Journal of the American Chemical Society.1995,117(22):6117-6123.
    [64]Go D P, Hung A, Gras S L, et al. The use of a Short Peptide as a Building Block in the Layer-by-Layer Assembly of Biomolecules on Polymeric Surfaces[J]. The Journal of Physical Chemistry B.2011,116(3):1120-1133.
    [65]Wang Z S, Sasaki T, Muramatsu M, et al. Self-assembled multilayers of titania nanoparticles and nanosheets with polyelectrolyte[J]. Chemistry of materials.2003, 15(3):807-812.
    [66]吴涛,张希.自组装超薄膜:从纳米层状构筑到功能组装[J].高等学校化学学报.2001,22(6): 1057-1065.
    [67]Chaturbedy P, Jagadeesan D, Eswaramoorthy M. pH-Sensitive Breathing of Clay within the Polyelectrolyte Matrix[J]. ACS Nano.2010,4(10):5921-5929.
    [68]Donath E, Sukhorukov G B, Caruso F, et al. Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes [Z]. WILEY-VCH Verlag GmbH,1998:37, 2201-2205.
    [69]De Geest B G, Van Camp W, Du Prez F E, et al. Degradable Multilayer Films and Hollow Capsules via a 'Click' Strategy[Z]. WILEY-VCH Verlag,2008:29,1111-1118.
    [70]Pastoriza-Santos I, Scholer B, Caruso F. Core-Shell Colloids and Hollow Polyelectrolyte Capsules Based on Diazoresins[Z]. WILEY-VCH Verlag GmbH,2001:11, 122-128.
    [71]Teng X, Shchukin D G, Mohwald H. Encapsulation of Water-Immiscible Solvents in Polyglutamate/Polyelectrolyte Nanocontainers[Z]. WILEY-VCH Verlag,2007:17, 1273-1278.
    [72]Grigoriev D 0, Bukreeva T, Mohwald H, et al. New Method for Fabrication of Loaded Micro-and Nanocontainers:Emulsion Encapsulation by Polyelectrolyte Layer-by-Layer Deposition on the Liquid Core[J]. Langmuir.2007,24(3):999-1004.
    [73]Khapli S, Kim J R, Montclare J K, et al. Frozen cyclohexane-in-water emulsion as a sacrificial template for the synthesis of multilayered polyelectrolyte microcapsules[J]. Langmuir.2009,25(17):9728-9733.
    [74]Cao Z, Landfester K, Ziener U. Preparation of Dually, pH-and Thermo-Responsive Nanocapsules in Inverse Miniemulsion[J]. Langmuir.2011,28(2):1163-1168.
    [75]Esser-Kahn A P, Odom S A, Sottos N R, etal. Triggered Release from Polymer Capsules[J]. Macromolecules.2011,44(14):5539-5553.
    [76]Masoud H, Alexeev A. Controlled Release of Nanoparticles and Macromolecules from Responsive Microgel Capsules[J]. ACS Nano.2011,6(1):212-219.
    [77]Drachuk I, Shchepelina 0, Lisunova M, etal. pH-Responsive Layer-by-Layer Nanoshells for Direct Regulation of Cell Activity[J]. ACS Nano.2012.
    [78]Hu X, Ji J. Covalent Layer-by-Layer Assembly of Hyperbranched Polyether and Polyethyleneimine:Multilayer Films Providing Possibilities for Surface Functionalization and Local Drug DeliverytJ]. Biomacromolecules.2011,12(12): 4264-4271.
    [79]Nguyen P M, Zacharia N S, Verploegen E, et al. Extended Release Antibacterial Layer-by-Layer Films Incorporating Linear-Dendritic Block Copolymer Micelles[J]. Chemistry of Materials.2007,19(23):5524-5530.
    [80]Zacharia N S, Modestino M, Hammond P T. Factors Influencing the Interdiffusion of Weak Polycations in Multilayers[J]. Macromolecules.2007,40(26):9523-9528.
    [81]Zacharia N S, Delongchamp D M, Modestino M, etal. Controlling Diffusion and Exchange in Layer-by-Layer Assemblies[J]. Macromolecules.2007,40(5):1598-1603.
    [82]Plamper F A, Schmalz A, Penott-Chang E, et al. Synthesis and Characterization of Star-Shaped Poly (N,N-dimethylaminocthyl mothacrylate) and Its Quaternized Ammonium Salts[J]. Macromolecules.2007,40(16):5689-5697.
    [83]Plamper F A, WaltherA, Muller A H E, et al. Nanoblossoms:Light-Induced Confonnational Changes of Cat ionic Polyelectrolyte Stars in the Presence of Multivalent Counterions[J]. Nano Letters.2007,7(1):167-171.
    [84]Plamper FA, Becker H, Lanzendorfer M, et al. Synthesis, Characterization and Behavior in Aqueous Solution of Star-Shaped Poly (acrylic acid) [Z]. WILEY-VCH Verlag,2005:206, 1813-1825.
    [85]Choi I, Suntivich R, Plamper FA, et al. pH-Controlled Exponential and Linear Growing Modes of Layer-by-Layer Assemblies of Star Polyelectrolytes[J]. Journal of the American Chemical Society.2011,133(24):9592-9606.
    [86]Franca E F, Lins R D, Freitas L C G, et al. Characterization of Chitin and Chitosan Molecular Structure in Aqueous Solution[J]. Journal of Chemical Theory and Computation. 2008,4(12):2141-2149.
    [87]Murdoch C, Reeves K J, Hearnden V, et al. Internalization and biodistribution of polymersomes into oral squamous cell carcinoma cells in vitro and in vivo[J]. Nanomedicine.2010,5(7):1025-1036.
    [88]Hu Y, Ding Y, Ding D, et al. Hollow Chitosan/Poly(acrylic acid) Nanospheres as Drug CarrierstJ]. Biomacromolecules.2007,8(4):1069-1076.
    [89]Mulligan K, Jakubek Z J, Johnston L J. Supported Lipid Bilayers on Biocompatible Polysaccharide Multilayers[J]. Langmuir.2011,27(23):14352-14359.
    [90]Giannotti M I, Esteban 0, Oliva M, et al. pH-Responsive Polysaccharide-Based Polyelectrolyte Complexes As Nanocarriers for Lysosomal Delivery of Therapeutic Proteins[J]. Biomacromolecules.2011,12(7):2524-2533.
    [91]Gao W, Sha B, Zou W, et al. Cationic amylose-encapsulated bovine hemoglobin as a nanosized oxygen carrier[J]. Biomaterials.2011,32(35):9425-9433.
    [92]Green D W, Mann S, Oreffo R O C. Mineralized polysaccharide capsules as biomimetic microenvironments for cell, gene and growth factor delivery in tissue engineering[J]. Soft Matter.2006,2(9):732-737.
    [93]Le Corre D, Bras J, Dufresne A. Starch Nanoparticles:A Review[J]. Biomacromolecules. 2010,11(5):1139-1153.
    [94]Perez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules:A comprehensive review[J]. Starch-Starke.2010,62(8):389-420.
    [95]Ma X, JianR, Chang P R, et al. Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites[J]. Biomacromolecules.2008, 9(11):3314-3320.
    [96]Li C, Sun P, Yang C. Emulsion stabilized by starch nanocrystals[J]. Starch-Starke. 2012(DOT:10.1002/star.201100178).
    [97]Tharanathan R N. Starch-alue addition by modification[J]. Critical reviews in food science and nutrition.2005,45(5):371-384.
    [98]Besheer A, Hause G, Kressler J, et al. Hydrophobically modified hydroxyethyl starch: synthesis, characterization, and aqueous self-assembly into nano-sized polymeric micelles and vesicles[J]. Biomacromolecules.2007,8(2):359-367.
    [99]吴俊,李斌,谢笔钧.微细化淀粉干法疏水化改性条件及其改性机理研究[J].食品科学.2004,25(9):96-99.
    [100]Simi C, Emilia Abraham T. Hydrophobic grafted and cross-linked starch nanoparticles for drug deli very[J]. Bioprocess and Biosystems Engineering.2007,30(3):173-180.
    [101]Obermeier B, Frey H. Poly(ethylene glycol-co-allyl glycidyl ether)s:A PEG-Based Modular Synthetic Platform for Multiple Bioconjugation[J]. Bioconjugate Chemistry. 2011,22(3):436-444.
    [102]Sun B, Lai H, Wu P. Integrated Microdynamics Mechanism of the Thermal-Induced Phase Separation Behavior of Poly (vinyl methyl ether) Aqueous Solution[J]. The Journal of Physical Chemistry B.2011,115(6):1335-1346.
    [103]Von Hippel P H, Schleich T. Ion effects on the solution structure of biological macromolecules[J]. Accounts of Chemical Research.1969,2(9):257-265.
    [104]Liu X, Mu X, Liu Y, et al. Hyperbranched Polymers with Thermoresponsive Property Highly Sensitive to lons[J]. Langmuir.2012,28(10):4867-4876.
    [105]Slavin S, Khoshdel E, Haddleton DM. Biological surface modification by'thiol-ene' addition of polymers synthesised by catalytic chain transfer polymerisation (CCTP) [J]. Polymer Chemistry.2012.
    [106]Dondoni A. The Emergence of Thiol-Ene Coupling as a Click Process for Materials and Bioorganic Chemistry[Z]. WILEY-VCH Verlag,2008:47,8995-8997.
    [107]王志华,缪茜,黄毓礼.壳聚糖离解平衡常数的测定[J].北京化工大学学报.2002,29(1):85-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700