酪氨酸高压在线荧光光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
了解氨基酸在海水中的分布不仅对海洋中碳、氮的地球化学循环过程有着重要意义,还可以探索蛋白质/氨基酸在海洋生物食物链中的循环,从而阐明沉积物中蛋白质物质的来源,为进一步研究海相沉积物中氨基酸与无机矿床成因关系等提供必要的基础资料。
     海水氨基酸最常用的检测方法是利用氨基酸自动分析仪自动分析,检测时要求样品必须是低离子浓度,因此在进行检测分析之前必须对海水样品进行脱盐、富集等预处理。该过程耗时又费力,且放置和处理时间过长也会因样品中微生物消耗等原因造成结果可信度的下降。荧光法因其无需对海水样品进行预处理等过程而广泛地应用于海水荧光性物质的研究。荧光物质的荧光效应不仅与其自身的结构有关,而且与物质所处的环境有关,如在不同的静水压力下,荧光性物质色氨酸的荧光光谱将发生显著变化;离子种类和浓度的不同也将影响到色基酸的荧光光谱。
     酪氨酸作为三种天然荧光氨基酸之一,是合成儿茶酚胺类神经递质——多巴胺、肾上腺素和去甲肾上腺素的氨基酸前体物,因此酪氨酸对于提高心理和作业效率的营养干预措施正在日益受到重视。
     因此,本文在综述了海洋氨基酸的研究概况和高压荧光法基本原理的基础上,以酪氨酸为研究对象,在自建在线高压荧光检测平台上,考察了海水pH值,常压至60 MPa条件下,压力对酪氨酸荧光光谱的影响,同时研究了在不同离子种类、浓度条件下,压力对酪氨酸荧光光谱的影响。研究结果表明:
     (1)酪氨酸水溶液荧光光谱最大发射光在本实验的条件下均无变化;
     (2)酪氨酸水溶液荧光强度随压力的增加而增强;
     (3)常压下,K~+、Mg~(2+)对酪氨酸水溶液荧光强度无影响,而Ni~(2+)、Cu~(2+)对酪氨酸水溶液荧光强度具有明显的猝灭作用,且浓度越大,猝灭越强;
     (4)在Ni~(2+)、Cu~(2+)存在下,压力对酪氨酸水溶液荧光强度的增敏作用随Ni~(2+)、Cu~(2+)浓度的增加而增强。
     上述结果在将酪氨酸作为外源引入或内源性探针在探索蛋白质的构象变化以及在线检测海洋中的溶解态蛋白质及其氨基酸组分等方面具有一定的参考价值;也为探索深海热液口生物耐高金属离子浓度的机制提出一种新的思路。?
Study of the distribution of amino acids in seawater not only has great significance on the marine carbon and nitrogen in the geochemical cycle but also can explore the circulation of protein(amino acids) in marine food chain and clarify the source of protein in sediments.
     Detections of marine amino acids most commonly used are automatic analysis of amino acid analyzer, which the sample must be lower concentration. Therefore, the sample must be desalinated and enriched before detection, and this preprocessing are time-consuming and laborious. Fluorescence widely used in fluorescent substances in marine because of no pretreatment process. The fluorescence of fluorescent substances is not only related to the structure itself, and it also related to their environment, such as at different hydrostatic pressure the fluorescence spectrum of amino acid will be a significant change, different ion type and concentration will also affect fluorescence spectroscopy.
     As one of three natural fluorescent amino acid, tyrosine(Tyr) is the precursor of synthesis catecholamine neurotransmitters-dopamine, epinephrine and norepinephrine. Therefore, Tyr became more and more important in measures of nutritional interventions for improving the psychological and operational efficiency. So, in this paper, on the basis of reviews on the research of marine amino acids and basic principle high-pressure fluorescence, we studied the effect of pressure on fluorescence Spectrum of Tyr aqueous solution and Tyr in different concentrations of K+、Mg~(2+)、Ni~(2+)、Cu~(2+) on the conditions of pH of seawater and the pressure from atmospheric pressure to 60 MPa. Results showed:
     (1) Theλmax of Tyr aqueous solution had no change in our experiment conditions.
     (2) The fluorescence intensity of Tyr aqueous solution enhanced with increased hydrostatic pressure.
     (3) At atmospheric pressure, the fluorescence intensities of Tyr aqueous solution were constant in the presences of K+、Mg~(2+) but quenched obviously in the presences of Ni~(2+)、Cu~(2+) where the quenching became stronger when the concentration increased.
     (4) The effect of pressure on the fluorescence intensity of Tyr aqueous solution was different in the presences of various Ni~(2+)、Cu~(2+) concentrations, When Ni~(2+)、Cu~(2+) concentration was lower, the fluorescence intensity increased relatively smaller and vice versa the fluorescence intensity increased relatively higher.
     The study of tryptophan fluorescence provide some reference value for the on-line research of the ocean dissolved protein and amino acids and the study of Tyrosine as exogenous or endogenous probes to explore protein conformational changes and also provide a new idea on exploring the mechanisms of deep-sea hydrothermal vents community resistant to high metal ion concentration.
引文
[1] Eatherall A., Naden P. S., Cooper D. M.. Simulating carbon flux to the estuary: the first step[J]. The Science of the total Environment, 1998, 210:519-533.
    [2]孔定江.不同分子量级DOM中氨基酸变化初步研究[D].上海,华东师范大学, 2007.
    [3]王将克,陈水侠,钟月明等.氨基酸生物地球化学[M].北京:科学出版社, 1991:Ⅲ.
    [4]夏锦尧.实用荧光分析法[M].北京:中国人民公安大学出版社, 1992:442.
    [5]陈国珍等编著.荧光分析法[M ].北京:科学出版社, 1990:3-5.
    [6]德斯马,道森主编,纪明侯,钱佐国译.海洋有机化学[M].北京:海洋出版社, 1992: 669.
    [7] Weber G., Drickamer H. G.. The effect of high pressure upon proteins and other biomolecules[J]. Quarterly Reviews of Biophysics. 1983, 16:89-112.
    [8]王海涛,关哈斯高娃,赵卫红.海洋荧光溶解有机质的研究[J].中国海洋大学学报,2007,37(5):801-806.
    [9] Southward A. J., Southward E. C.. The role of dissolved organic matter in the nutrition of deep-sea benthos[J]. American Zoologist, 1982, 22(3):647-659.
    [10] Holden J. F., Adams M. W. W.. Microbe-metal interactions in marine hydrothermal environments[J]. Current Option in Chemical Biology, 2003, 7(2):160-165.
    [11] Bennett S. A., Achterberg E. P., Connelly D. P.. The distribution and stabilization of dissolved Fe in deep-sea hydrothermal plumes[J]. Earth and Planetary Science Letters, 2008, 270(34):157-167.
    [12] Ruan K. C., Tian S. M., Reinhard L., et al. Pressure Effects on Tryptophan and Its Derivatives[J]. Biochemical and Biophysical Research Communications, 2000, 269: 681-686.
    [13]陶丽梅,胡皆汉,赵玉新.不同金属离子与色氨酸作用的荧光光谱研究[J].光谱学与光谱分析, 1994, 14(3):45-48.
    [14]朱联辉,武士华.酪氨酸提高军事作业效率的研究进展[J].解放军预防医学杂志. 1999(8), 17(4):307-310.
    [15]王将克,陈水挟,钟月明等.氮基酸的生物地球化学[M].北京:科学出版社, 1991:93-100.
    [16]陆田生,纪明侯.胶州湾海水中溶解氨基酸的研究[J].海洋与湖沼, 1996, 27(2):117-124.
    [17]李静.东海和黄海中溶解游离氨基酸的分析与分布[D].青岛,中国海洋大学, 2006.
    [18] Mopper K., Zika R.G.. Free amino acids in marine rains: evidence for oxidation and potential role in nitrogen cycling[J]. Nature. 1987, 325:246-249.
    [19] Lee C., Wakeham S. G., Hedges J. J.. Composition and flux of particulate amino acids and chloropigments in equatorial Pacific seawater and sediments[J]. Deep-Sea Research J. 2000, 47:1535-1568.
    [20]郭玉洁等.浮游植物-胶州湾生态学和生物资源[M].北京:科学出版社, 1992:136-169.
    [21]肖贻昌等.浮游动物-胶州湾生态学和生物资源[M].北京:科学出版社, 1992:170-203.
    [22]王将克,陈水侠,钟月明等.氨基酸生物地球化学[M].北京:科学出版社, 1991:173-177.
    [23] North B. B.. Primary amines in Califomia coasta1 waters: utilization by Phytoplankton[J]. Limnol.&Oceanogr. 1975, 20(1):20-27.
    [24] Jorgensen N. O. G.. Annual variation of dissolved free primary amines in estuarine water and sediment[J]. Oecologia(Berlin), 1979, 40: 207-217.
    [25] Delmas D.,Frikh M.G., Linley E. A. S.. Dissolved primary amine measurent by flow injection analysis with o-phthaldialdehyde: comparison with high-performance liquid chromatography[J]. Mar.Chem, 1990, 29:145-154.
    [26]王将克,陈水侠,钟月明等.氨基酸生物地球化学[M].北京:科学出版社, 1991:190-193
    [27] Spackmean D. H., Steinw H., Stanford M.. Automatic recording apparatus for use in chromatography of amino acids[J]. Anal. Chem., 1958, 30(7):1190-1206.
    [28]张星君,纪明侯.渤海湾、黄河口和长江口海域海水中颗粒氨基酸含量的分布与含量的分布调查研究[J].海洋科学集刊, 2004, 46: 91-99.
    [29]陈水挟,钟月明,王将克.一些土壤样品的氨基酸初步分析[J]. 1996, 35: 106-109.
    [30] MacKenzie S. L., Tenaschuk D. J.. Gas liquid chromatography of N-heptafluorobutyryl isobutyl esters of amino acids[J]. Chromatography, 1974, 97(2): 19-24.
    [31]丁永胜,牟世芬.氨基酸的分析方法及其应用进展[J].色谱, 2004, 22(3):210-215.
    [32] Mayadunne R., Nguyen T. T., Marriott P. J.. Amino acid analysis by using comprehensive two-dimensional gas chromatography. Anal Bioanal Chem, 2005, 382: 836-847.
    [33] Friedel J. K., Edwin S.. Composition of hydrolysable amino acids in soil organic matter and soil microbial biomass[ J ]. Soil Biology and Biochemistry, 2002, 34: 315-325.
    [34]曾念辉.氨基酸的分析方法综述[J].江西化工, 2007(3), 1:49-51.
    [35] Fürst P., Pollack L., Graser T. A., et al. Appraisal of four Pre-column derivatization methods for high-performance liquid chromatographic determination of free amino acids in biological materials. J. Chromatogr., 1990, 499: 557- Lindroth P,Mopper,K. High Performance liquid chromatography determination of subpicomole amounts of amino acids by precolumn fluorescence with o-phthaldialdehyde, Aanl. Chem,1979,51(11):1667-1674.
    [36]夏恩琴,郭卫东,吴芳等.海水溶解色氨酸的荧光分析[J].台湾海峡, 2004,23(3): 274-278.
    [37]陈国珍等编著.荧光分析法[M ].北京:科学出版社, 1990:4-7.
    [38] Vhtalo V., Wetzel R. G., Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months-years) exposures[J]. Mar. Chem., 2004, 89:313-326.
    [39]叶树明,楼凯凯,杨俊毅等.利用ATP生物发光法测定西湖水体微生物量[J].浙江大学学报(农业与生命科学版).2006,32(5):500-504.
    [40] Weir C. E., Lippincott E. R., Valkenburg A. V., et al. Infrared Studies in the 1- to 15-Micron Region to 30,000 Atmospheres[J]. J. Res. Natl. Bur. Stand. 1959, 63(A), 55-62.
    [41] Forman R. A., Piermarini G. J., Barnett J. D., et al. Pressure measurement made by the utilization of ruby sharp-line luminescence[J]. Science, 1972, 176:284-285.
    [42]游长江,卢雪芳.钻石对顶砧(Diamond Anvil Cell, DAC)高压产生技术及在高压条件下的光物理和光化学研究[J].感光科学与光化学, 2002(5), 20(3):197-203.
    [43] Xu J. A., Mao H. K., Bell P. M.. High pressure ruby and diamond fluorescence: observation at 0.21-0.55 terapascal[J]. Science, 1986, 232: 1404.
    [44] Paladini A. A., Weber G.. Absolute measurements of fluorescence polarization at high pressure, Rev. Sci. Instrum. 1981, 52: 419-427.
    [45] ISS公司产品页面http://www.iss.com/fluorescence/components/index.html.
    [46] Müller J. D., Gratton E.. High-Pressure Fluorescence Correlation Spectroscopy[J]. Biophysical Journal. 2003(8), 85: 2711-2719.
    [47] Mitchell D. J., Schuster G. B., Drickamer H. G.. Effect of Pressure on the Fluorescence of 9-Carbonyl Substituted Anthracenes[J]. Journal of the American Chemical Society, 1977(2),
    [48] Zhang B. L., Meera C., Chandrasekhar H. R.. Pressure-induced shifts of the fluorescence spectrum of Rhodamine 6G in solution[J]. Applied Optics, 1985(9), 24(17):2779-2782.
    [49] Paulo R. F. L., Scaramello M. E., Clarissa M. M., et al. Effect of Hydrostatic Pressure on the Fluorescence of Indole Derivatives[J]. Journal of Fluorescence, 1996, 6(4):231-236.
    [50] Lu X. F., Zhang H. R., Li Y., et al. High pressure effects on the luminescent properties and crystal structure of magnesium 8-hydroxyquinoline complex[J]. Chemical Physics Letters. 2001, 342:545-549.
    [51] Franco W., Regenstein I.. High Pressure Fluorescence of 2,5-diphenyl-1,3,4-oxadiazole Crystals[J]. High Pressure Research. 2002, 22(1):131-134.
    [52] Li H., Zhong B., He L. M., et al. High pressure effects on the luminescent properties and structure of coumarin 153[J]. Applied Physics Letters, 2002(4), 80(13):2299-2301.
    [53]赵智,丁泽军,王中平等.罗丹明101的高压荧光特性[J].高压物理学报. 2006, 20(1):6-10.
    [54] Wang Z. P., Zhang Z. M., Ding. Z. J.. Photoluminescence study of Congo red molecules under high pressure[J]. Journal of Luminescence 2007, 122-123:237-240.
    [55] Bao C. M., Ye S. M., Lou K. K., et al. High pressure optical cell system for on-line luminescence spectrum research[J]. High Pressure Research, 2010, 30(1):190-197.
    [56]王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社, 2002:160-161.
    [57]章林溪.蛋白质构象与折叠行为的研究[J].浙江师范大学学报, 2006, 29(1):1-10.
    [58] van gunsteren W. F., Hunenberger P. H., Kovacs H., et a1. Investigation of protein unfolding and stability by computer simulation[J]. Phil Trans R Soc Lond B, 1995, 348: 49-59.
    [59]许金钩,王尊本.荧光分析法[M].北京:科学出版社, 2006:49-62.
    [60] Lakowicz J. R.. Principle of Fluorescence Spectroscopy[M]. New York: Kluwer Academic/Plenum Publishers. 1999.
    [61] Li T. M., Hook J. W., Weber G., et al. Effects of pressure upon the fluorescence of the riboflavin binding protein and its flavin mononucleotide complex[J], Biochemistry, 1976, 15: 3205-3211.
    [62] Royer C. A., Weber G., Daly T. J., et al. Dissociation of the lactose repressor protein tetramer using high hydrostatic pressure[J], Biochemistry, 1986, 25:8308-8315.
    [63] Garcia C. R., Amaral A., Abrahamsohn P., et al. Dissociation of F-actin induced byhydrostatic pressure[J], Eur. J. Biochem., 1992, 209:1005-1011.
    [64] Ruan K. C., Lange R., Bec N, et al. A stable partly denatured state of trypsin induced by high hydrostatic pressure[J]. Biochemical and Biophysical Research Communications. 1997, 239: 150-154.
    [65] Dumoulin M., Ueno H., Hayashi R., et al. Contribution of the carbohydrate moiety to conformational stability of carboxypeptidase Y[J]. Eur. J. Biochem.. 1999, 262:475-783.
    [66] Zhou J. M., Zhu, L., Balny, C.. Inactivation of creatine kinase by high pressure may precede dimer dissociation[J]. European Journal of Biochemistry, 2000, 267:1247-1253.
    [67] Ruan Q., Ruan K. C., Balny C., et al. Protein folding pathways of adenylate kinase from coli: hydrostatic pressure and stopped-flow studies[J]. Biochemistry, 2001,40:14706-14714.
    [68] Ikeuchi Y., Suzuki A., Oota T., et al. Fluorescence study of the high pressure induced denaturation of skeletal muscle actin[J]. European Journal of Biochemistry, 2002, 269:364-671.
    [69] Kazuyoshi A., Masakazu K., et al. The pressure effect on the structure and functions of protein disulfide isomerase[J]. Biochimica et Biophysica Acta. 2006, 1764: 586-592.
    [70] Kazuyoshi A., Yoshihiro T.. Pressure effects on the structure and function of human thioredoxin[J]. Biochimica et Biophysica Acta. 2007, 1774: 813-821.
    [71] Ruan K. C., Lange R., Zhou Y., et al. Unusual effect of high hydrostatic pressure on basic phospholipase A2 from venom of Agkistrodon Halys Pallas[J]. Biochem. Biophys. Res. Commun.. 1998, 249:844-848.
    [72] Ruan K. C., Xu C., Yu, Y., et al. Pressure-exploration of the 33-kDa protein from spinach photosystem II particule[J]. European Journal of Biochemistry, 2001, 268:27422-750.
    [73] Eisenberg D., Kauzmann W.. The Structure and Properties of Water[M]. Oxford: Clarendon Press, 1969.
    [74]张正斌,程风云. E%-pH曲线法研究铜-酪氨酸-金属氧化物体系[J].物理化学学报, 1998, 14(2):131-135.
    [75]张勇,张贵珠,王月梅等.光谱法研究丝裂霉素、血清白蛋白以及金属离子间的相互作用[J].分析科学学报,2000,16(6):445‐449.
    [76]张晓威,赵凤林,李克安.环丙沙星与牛血清白蛋白相互作用的研究[J].高等化学学报,1999,20(7):1063‐1067. 55
    [77]刘雪峰,夏咏梅,方云.三种香豆素类中药小分子与牛血清白蛋白的相互作用[J].化学学报,2004,62(16):1484‐1490.
    [78]许金钩,王尊本.荧光分析法[M].北京:科学出版社, 2006:69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700