间期核内与慢粒相关的遗传物质拓扑结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对肿瘤发病机制的研究一直是医学领域研究的热点之一,但以往对
    发病机制及其演进过程的研究多集中于肿瘤相关基因的检测,而对于遗
    传物质在细胞核内的空间构象的变化与肿瘤的发生及发展是否还存在着
    相关性却未予足够重视。70年代末就有人提出了每个染色体在核内都占
    有一个特定的空间区域,称为染色体结构域。为此人们还提出了许多的
    数学模型,来解释染色体的拓扑结构同其功能的关系。多数人认为,染
    色体结构域在核内位置相对恒定,但在细胞周期循环中也呈现有规律的
    变化。在肿瘤发生时,其本身的拓朴结构,包括体积,表面积、形状以
    及在核内的空间位置都会发生一系列的变化。而肿瘤中常出现的染色体
    易位也与染色体在核内构象有关,相邻染色体间发生易位的频率要大于
    非相邻的染色的易位,也就是说染色质在核内的空间定位决定了易位及
    肿瘤的发生概率。
     慢性髓细胞性白血病(CML)是起源于单一克隆的造血系统恶性肿瘤
    疾病,在95%的CML患者都可检测到特异的ph染色体,它是第9、22号
    染色体相互易位而成,即9号染色体长臂上的c-abl与22号染色体长臂
    的断裂点集中区(BCR)相互易位形成bcr-abl融合基因,其编码的融合
    蛋白具有酪氨酸激酶活性,是CML发病机制中的主要因素。CML在临床
    上分为慢性期、加速期和急变期,它们在细胞遗传学及分子生物学上存
    在着较大异质性,在急变期常会出现额外的染色体和基因的变异。但是
    这些异常是否与相关染色体在核内的拓朴结构的改变有关尚不清楚,这
    些变化在CML的发生和演进中的意义如何,目前也无确凿的证据。
     我们利用荧光原位杂交和激光共聚焦扫描显微镜方法,选用bcr,
    
    
    abl,c-mmc和的3单拷贝恻A探针,第 8,9,17和 22号全染色体探针,
    观察了与慢粒相关的遇传物质在间期核内拓扑学的表现和变异情况。结
    果发现:在人淋巴细胞株IM-9和KapZ细胞中,相关基因在问期核内的
    三维空间定位呈非随机分布,her和abl基因之问的融合同二者在核内
    的分布区域的一致性是有关的,提示基因之间的融合频率同其在核内三
    维空间相互位置呈正相关;同源染色质的拓扑学表现具有差异性,井且
    在细胞周期循环中表现出动态的变化。染色质的凝集和松散结构同染色
    质的活性密切相关,同源染色质之间的凝集程度存在着差异性。放射可
    以促使 IM-9细胞中比 和 abl基因相互接近,同时能改变第 9,22号染
    色质的形状和凝集程度,促使二者更加松散和伸展,活性增加,并使居
    于其上的abl和伙 基因的空间位置发生改变,使碍二者之间更加接近,
    这可能是放射引起her和abl融合的原因之一。
     CML是一种恶性克隆增殖性疾病,几乎每个病例最终都会发生急性
    变。在慢粒急变时,C-CyC和 P53基因在细胞核内的空间定位会发生明
    显的变化,都有一个向心性的移动过程,同时,第8和17号染色质的拓
    扑结构也发生了明显的变化,其表现更接近于K562细胞。这些结果提示,
    旷myc和的3在细胞核内空间定位的变化以及第8和17号染色质拓扑形
    态的改变同慢粒的急变之间存在着明显的相关性,这些基因或染色体的
    拓扑学的变异情况有可能成为判断慢粒急变的检测指标之一。
The Study of Topology of genetic material relative to
    chronic myeloid leukemia in interphase nucleous
    The study to neoplasm morbility mechanism is heat subject at all time in medical territory. But most of the studies have been focused on variations of the genes relative to tumor, meanwhile, the relativity between topologic changes of genetic material in the nuclear spaces and the tumor genesis and evolution has not been pay much attention. In the end of 70's, a presumption has been raised that each chromatin occupies a territory in the nucleus, which being called chromatin territory. Many mathematics model have been submitted to explain the relationship between chromatin topologic structure and its function. Most people believe that chromatin territory locations in nucleus are constant, and exhibit regular changes in cell cycle. In the genesis of tumor, a series of variations of the chromatin territory topology, including volume, surface area and the location in nuleus space, may take place. The familiar chromosome translocations in tumor are correlate to their conformation in nucleus. Adjacent chromosomes translocation are more frequent than non-adjacent chromosomes, that means chromosome locations in the space of nucleus determine the frequency of translocation and tumor genesis.
    Chronic myeloid leukemia (CML) is a hematopoietic therioma deriving from a singleness clone, ph chromosome, existing in 95% CML, is formed by reciprocal translocation of chromosome 9 and 22. c-abl gene in the long arm of chromosome 9 and break point concentration region (BCR) in the long arm of chromosome 22 translocate and form bcr-abl fusion gene, which code p210
    
    
    
    fusion protein having tyrosine kinase activity and; is a key in CML genesis. In clinical, CML has been divided into chronic period, acceleration period and blast period. Each period has distinct heterogenicity, and, .extra variations of chromosomes and genes emerge in bla$t period. But we still do not know if these variations are related to the changes of chuomatin topology in nucleus, and what kind of rules of these variations in CMLigenesis and evolution.
    Conbined with flurescence in situ hybridization (FISH) and confoeal laser scanning microscope (CLSM), we observed the topologic characters of genetic material relative to CML using single copy sequence bcr, c-abl, c-myc and p53 DNA probes, chromosome 8, 9, 17 and 22 whole chromosome probe(WCP). The results show that all genes are distributed non-randomly in 3-dimension space of interphase nucleus of IM-9, human lymphocyte cell line, and K562 cell line. The fusion of bcr and abl genes are consistent with their distribution in the same ugion which prompts that the fusion frequency of genes are positive correlate to their relative 3-dimension location' in the interphase
    nucleus. Homogenous chromatin exhibit diversities in topologic characters and dynamic changes in cell cycle. Chromatin condensation and decondensation have a intimate relationship with its activity, and homologous chromatin exist differences in chromatin condensation degree. Irradiation may facilitate approximability of bcr and abl genes in the nucleus of IM-9 cell, alter the figure and condensation of chromosome 9 and chromosome 22, making them more extent and active. These results could explain irradiation can lead to the fusion of bci and abl genes.
    CML is a kind of malignancy clone proliferation disease. Almost all cases will lead to blast. When the occurrence of blast, c-myc and p53 genes location in the interphase of nucleus may change obviously. They move
    
    
    
    toward to the nuclear center at blast period. Meanwhile, the topology of chromosome 8 and chromosome 17 vary dramatically and be more approximating to K562 cell. These results hint that the location variation of c-myc and p53 genes in nuclear space and the topologic changes of chromosome 8 and chromosome 17 are relative to CML blast. The variation of these genes and chomatin could be indicator to estimate CML blast.
引文
1. Warmuth M, Danhauser-Riedl S, Hallek M. Molecular pathogenesis of chronic myeloid leukemia: implications for new therapeutic strategies. Ann.Hematol. 1999;78:49-64.
    2. Radha V, Sudhakar C, Swarup G. Induction of p53 dependent apoptosis upon overexpression of a nuclear protein tyrosine phosphatase. FEBS Lett. 1999;453:308-12.
    3. Ceballos E, Delgado MD, Gutierrez P, Richard C, Muller D, Eilers M et al. c-Myc antagonizes the effect of p53 on apoptosis and p21 WAF1 transactivation in K562 leukemia cells. Oncogene 2000; 19:2194-204.
    4. Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat.Rev.Genet. 2001 ;2:292-301.
    5. Kreth G, Munkel C, Langowski J, Cremer T, Cremer C. Chromatin structure and chromosome aberrations: modeling of damage induced by isotropic and localized irradiation. Mutat.Res. 1998;404:77-88.
    6. Pajic A, Spitkovsky D, Christoph B, Kempkes B, Schuhmacher M, Staege MS et al. Cell cycle activation by c-myc in a burkitt lymphoma model cell line. Int.J.Cancer 2000;87:787-93.
    
    
    7. Dietzel S, Eils R, Satzler K, Bornfleth H, Jauch A, Cremer C et al. Evidence against a looped structure of the inactive human X-chromosome territory. Exp. Cell Res. 1 998;240: 1 87-96.
    8. Eils R, Dietzel S, Bertin E, Schrock E, Speicher MR, Ried T et al. Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J.Cell Biol. 1996;135:1427-40.
    9. Wang C, Sun B, Yuan Y. [Inhibition of apoptosis by ber-ab1 fusion gene in K562 cells]. Zhonghua Zhong.Liu Za Zhi. 1998;20:340-1.
    10. Zink D, Cremer T, Saffrich R, Fischer R, Trendelenburg MF, Ansorge W et al. Structure and dynamics of human interphase chromosome territories in vivo. Hum.Genet. 1998; 102:241-51.
    11. Muller C, Leutz A. Chromatin remodeling in development and differentiation. Curr. Opin. Genet. Dev. 2001 ; 11:167-74.
    12. Cremer T, Kreth G, Koester H, Fink RH, Heintzmann R, Cremer M et al. Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev. Eukaryot. Gene Expr. 2000;10:179-212.
    13. Bagga R, Armstrong JA, Emerson BM. Role of chromatin structure and distal enhancers in tissue-specific transcriptional regulation in vitro. Cold Spring Harb.Symp. Quant. Biol. 1998;63:569-76.
    14. Dietzel S, Schiebel K, Little G, Edelmann P, Rappold GA, Eils R et al. The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp.Cell Res. 1999;252:363-75.
    15. Manders EM, Kimura H, Cook PR. Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J.Cell Biol. 1999:144:813-21.
    16. Swedlow JR, Lamond AI. Nuclear dynamics: where genes are and how they got there. Genome Biol. 2001;2:REVIEWS0002.
    17. Zink D, Cremer T. Cell nucleus: chromosome dynamics in nuclei of living cells. Curr.Biol. 1998;8:R321-R324.
    
    
    18. Murakami T, Ohyashiki K, Ohyashiki JH, Kawakubo K, Tauchi T, Nakazawa S et al. Cytogenetic and immunogenotypic alterations of blast crisis cells in chronic myelogenous leukemia independently linked to immunophenotypic expression. Cancer Genet.Cytogenet. 1994;72:48-54.
    19. Jauch A, Daumer C, Lichter P, Murken J, Schroeder-Kurth T, Cremer T. Chromosomal in situ suppression hybridization of human gonosomes and autosomes and its use in clinical cytogenctics. Hum.Genet. 1990;85:145-50.
    20. Popp S, Jauch A, Qiu JY, Smialek B, Cremer T, Becher R. Translocation (8;21) in acute nonlymphocytic leukemia delineated by chromosomal in situ suppression hybridization. Cancer Genet. Cytogenet. 1991;57:103-7.
    21. Tosi S, Mosna G, Cazzaniga G, Giudici G, Kearney L, Biondi A et al. Unbalanced t(3;12) in a case of juvenile myelomonocytic leukemia (JMML) results in partial trisomy of 3q as defined by FISH. Leukemia 1997;11:1465-8.
    22. Gauwerky CE, Croce CM. Chromosomal translocations in leukaemia. Semin.Cancer Biol. 1993;4:333-40.
    23. Okabe M. [Molecular analysis of transformation into blast crisis in chronic myelogenous leukemia]. Hokkaido Igaku Zasshi 1993;68:237-50.
    24. Kozubek S, Bartova E, Kozubek M, Lukasova E, Cafourkova A, Koutna I et al. Spatial distribution of selected genetic loci in nuclei of human leukemia cells after irradiation. Radial.Res. 2001; 155:311-9.
    25. Kozubek S, Lukasova E, Ryznar L, Kozubek M, Liskova A, Govorun RD et al. Distribution of ABL and BCR genes in cell nuclei of normal and irradiated lymphocytes. Blood 1997;89:4537-45.
    26. Lukasova E, Kozubek S, Kozubek M, Kjeronska J, Ryznar L, Horakova J et al. Localisation and distance between ABL and BCR genes in interphase nuclei of bone marrow cells of control donors and patients with chronic myeloid leukaemia. Hum.Genet. 1997; 100:525-35.
    27. Neves H, Ramos C, da Silva MG, Parreira A, Parreira L. The nuclear topography of ABL, BCR, PML, and RARalpha genes: evidence for
    
    gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood 1999;93:1197-207.
    28. Hemmi H, Yamada K, Yoon UH, Kato M, Taniguchi F, Tsuchida Y et al. Coexpression of the myc gene family members in human neuroblastoma cell lines. Biochem.Mol.Biol.Int. 1995;36:1135-41.
    29. Paydas S. p53 protein expression in leukemias. Acta Oncol. 1995;34:23-6.
    30. Kremenetskaya OS, Logacheva NP, Baryshnikov AY, Chumakov PM, Kopnin BP. Distinct effects of various p53 mutants on differentiation and viability of human K562 leukemia cells. Oncol.Res. 1997;9: 155-66.
    31 . Ishikura H, Yufu Y, Yamashita S, Abe Y, Okamura T, Motomura S et al. Biphenotypic blast crisis of chronic myelogenous leukemia: abnormalities of p53 and retinoblastoma genes. Leuk.Lymphoma 1997;25:573-8.
    32. Skorski T, Nieborowska-Skorska M, Wlodarski P, Perrotti D, Martinez R, Wasik MA et al. Elastic transformation of p53-deficient bone marrow cells by p210bcr/abl tyrosine kinase. Proc.Natl.Acad.Sci. U.S. A 1996;93:13 137-42.
    33. Yang PM, Fu L. [The expression of C-myc oncogene in leukemia and its relationship to clinical symptoms]. Zhonghua Nei Ke.Za Zhi. 1992;31:143-5, 187.
    34. Bartova E, Kozubek S, Kozubek M, Jirsova P, Lukasova E, Skalnikova M et al. Nuclear topography of the c-myc gene in human leukemic cells. Gene 2000;244:1-11.
    35. Schuhmacher M, Staege MS, Pajic A, Polack A, Weidle UH, Bornkamm GW et al. Control of cell growth by c-Myc in the absence of cell division. Curr.Biol. 1999;9:1255-8.
    36. Kaiser C, L ux G, Eick D, Jochner N, Bornkamm GW, Kempkes B. The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J. Virol 1999;73:4481-4.
    
    
    37. Hermeking H, Funk JO, Reichert M, Ellwart JW, Eick D. Abrogation of p53-induced cell cycle arrest by c-Myc: evidence for an inhibitor of p21WAF1/CIP1/SDI1. Oncogene 1995;11:1409-15.
    38. Qumsiyeh MB. Impact of rearrangements on function and position of chromosomes in the interphase nucleus and on human genetic disorders. Chromosome. Res. 1995;3:455-65.
    39. Platero JS, Csink AK, Quintanilla A, Henikoff S. Changes in chromosomal localization of heterochromatin-binding proteins during the cell cycle in Drosophila. J.Cell Biol. 1998; 140:1297-306.
    40. Alami-Ouahabi N, Veilleux S, Meistrich ML, Boissonneault G. The testis-specific high-mobility-group protein, a phosphorylation-dependent DNA-packaging factor of elongating and condensing spermatids. Mol.Cell Biol. 1996;16:3720-9.
    41. Laloraya S, Guacci V, Koshland D. Chromosomal addresses of the cohesin component Mcd1p. J.Cell Biol. 2000; 151:1047-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700