广东典型海域表层沉积物中赤潮藻类休眠体的分布及赤潮发生潜势研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采集了广东沿海典型养殖海域表层沉积物样品以及沉积物捕捉器样品,对沉积物中的孢囊进行分类鉴定,同时在25℃下对沉积物进行了直接萌发实验,对萌发的优势种类进行形态学和分子生物学鉴定,以了解广东典型海域沉积物中甲藻孢囊的分布状况、探讨浮游植物休眠体对营养细胞种群动态的贡献、揭示广东典型养殖海域赤潮发生潜势,为赤潮发生机制和防治研究提供参考和依据。
     研究结果显示,柘林湾、桂山岛海域甲藻孢囊种类多样性较低,分析鉴定出甲藻孢囊16种、22种。两海域孢囊类型大部分为世界各海域常见类型,且均以异养型孢囊占优势,其中以原多甲藻孢囊种类和密度最为丰富,显示了两海域较高的富营养化程度。柘林湾沉积物为较粗的泥沙型,不利于孢囊的沉降和积累,孢囊密度较低,在16.59-83.37 cysts/g DWt之间,平均为39.52 cysts/g D Wt,柘林湾较低的孢囊密度也与异养型孢囊的低产量有关;桂山岛海域沉积物为富含有机质的深棕色细沙粘土,而且防波堤降低了水体扰动,较有利于孢囊的沉积,孢囊密度较高,在110.33-315.08 cysts/g DWt之间,平均为202.37 cysts/gD Wt。有毒种巴哈马梨甲藻孢囊在柘林湾海域出现。桂山岛海域表层沉积物中亚历山大藻孢囊分布广泛,最高百分比可达56.88%,为亚历山大藻赤潮的发生提供了潜在种源。
     通过对柘林湾和桂山岛海域表层沉积物以及大亚湾大鹏澳海域沉积物捕捉器样品萌发实验得出,三个海域萌发出的浮游植物种类数均较少,低于同期浮游植物种类数的调查。柘林湾共萌发出浮游植物26属33种、桂山岛海域19属22种、大亚湾大鹏澳海域27属37种。硅藻种类主要有菱形藻、舟形藻、圆筛藻、具槽帕拉藻、骨条藻、角毛藻、海链藻等;甲藻种类数较少,包括亚历山大藻、斯氏藻、裸甲藻等常见有害种类。裸甲藻(Gymnodinium corii Schiller)为三个海域的甲藻优势种,其占甲藻细胞数量的平均百分比为73.1%,最高百分比可达100%;萌发还出现了大量金色藻、粘四集藻、色球藻、固氮蓝藻及球形棕囊藻。通过对沉积物的萌发,发现了一些研究海域未见报道的种类,丰富了海域浮游植物的信息。萌发的浮游植物优势种类与沉积物捕捉时间有一定的关系,种类组成随孢囊形成的季节变化而出现一定差异。研究结果表明,沉积物中休眠体的萌发可在一定程度上更为全面反映水体浮游植物组成,而在萌发中大量出现的一些微型和微微型浮游植物可能会由于体型过小而在浮游植物监测中被忽略。
     对萌发的优势种类裸甲藻进行了电子显微镜观察和分子生物学鉴定,通过形态学特征及rDNA ITS和LSU序列分析和对比,确定该裸甲藻为Gymnodinium corii。该裸甲藻在我国沿海尚未见报道,但由于其细胞裸露,体型微小,在常规生态学调查中很难区分至种,因此难以判断其是否为我国沿海新记录种。该藻在本研究萌发的浮游植物中频繁高密度出现,应加强对其监控,防止其赤潮的发生。
Dinoflagellate cysts were identified and counted in surface sediments from Zhelin Bay and Guishan Island area of Guangdong province, in order to understand the distribution of dinoflagellate cyst in typical Guangdong coastal waters. Surface sediments from these two sea areas together with samples in sediment trap deposited in Daya Bay were incubated at 25℃under laboratory conditions to study the germination of cyst and other phytoplankton spores, and to discuss the contribution of resting spores to the vegetative population. Meanwhile, the dominant germinated species was identified by the morphological and molecular biology methods. The purpose of this study was to reveal the potential of the occurrence of harmful algal blooms (HAB) in Guangdong coastal waters, and to provide basic data and reference from HAB controlling and prevention.
     Results showed that cyst species diversities were lower in Zhelin Bay and Guishan Island area, with a total of 16 and 22 type identified respectively. Cyst types were of the common species in the two areas and the dominant species were those of heterotrophic species. Protoperidinium was the most abundant group in both species richness and quantitative number indicating the high eutrophic level in both sites. The cyst concentrations in Zhelin Bay were generally low due to the coarse sediment partials, which are not benefit for cyst deposition. Cyst concentrations in Zhelin Bay ranged from16.59 to 83.37 cysts/g D Wt with an average of 39.52 cysts/g D Wt. In addition, the predominance of cyst of heterotrophic dinoflagellates also contributed to the low cyst production in Zhelin Bay. The brown organic rich fine clay sediments in Guishan Island area favorite for the deposition and accumulation of cyst, and the embankment acts as a barrier to prevent the transference of cyst to the out area, which resulted in the high cyst concentrations. Cyst concentrations ranged from10.33 to 315.08 cysts/g D Wt with an average of 202.37 cysts/g D Wt in Guishan Island area. Cysts of the toxic species were observed in the survey, e.g. Polysphaeridinium zoharyi in Zhelin Bay, and cysts of Alexandrium spp. widely distributed in Guishan Island area with the highest proportion of 56.88%, indicating rich seed bed for Alexandrium blooms.
     Results from the germination experiments showed that the germinated phytoplankton species richness was lower than phytoplankton survey in all the three study areas. The species number was 33 in 26 genus in Zhelin Bay,22 in 19 genus in Guishan Island area and 37 in 27 genus in Daya Bay. The dominant diatom species included Nitzschia spp., Navicula spp., Coscinodiscus spp., Paralia sulcata, Skeletonema spp., Chaetoceros spp., Thalassiosira spp., and dominant dinoflagellate were Alexandrium spp., Scrippsiella spp., Gymnodinium spp. etc. Gymnodinium corii Schiller was the dominant dinoflagellate species in all of the three sites, with an average accounting for 73.1% of the proliferating dinoflagellate cells and the highest proportion up to 100%. Species in other phytoplankton groups such as haptophyta species Chrysochromulima spp. and Phaeocystis globosa, cyanobacteria species Anabaenopsis spp. and Chroococcus spp., chlorophyta specie Palmella mucosa, occurred abundantly in some samples. Species, which were not reported in study areas in previous surveys, were observed as well, which enriched phytoplankton information. The species composition of geminated phytoplankton was different after 20d and 40d incubation, and differed in samples collected from different months. Results from germination experiments suggested that the germination of resting spore better mirrored the phytoplankton composition in the water column to some extent. However, some nannophytoplankton species occurred abundantly in germinated phytoplankton, were seldom reported in water column in previous phytoplankton surveys, which might be ignored due to their small sizes.
     The dominant geminated species Gymnodinium sp. was observed under scanning electron microscope (SEM), and the sequences of ITS and LSU rDNA were analyzed. This species was identified as Gymnodinium corii based on morphological characteristics on SEM and rDNA sequences. This species has not been recorded in Chinese coastal water yes to the best of our knowledge. However, it is not meant that this species should be a new record in China and do not exist in the water column, due to the small cell size and naked cell wall. In our study, Gymnodinium corii occurred frequently and abundantly. Therefore, this species and other nanno harmful species should be put into regular monitoring to prevent the occurrence of its blooms.
引文
[1]陈国福,王广策,张春云等.一株裸甲藻类似种的形态和系统进化分析[J].科学通报,2008,53(3):299-305.
    [2]陈菊芳,王燕,徐宁等.中国赤潮新记录种一球形棕囊藻(Phaeocystis globosa)[J].暨南大学学报,1999,20(3):124-129.
    [3]陈清潮,黄良民,尹健强等.南海群岛海区浮游动物多样性研究[M].北京:海洋出版社,1994.
    [4]丁德文,刘胜浩,刘晨临等.孢囊及其与赤潮爆发关系的研究进展[J].海洋科学进展,2005,23:1-10.
    [5]方琦,蓝东兆,顾海峰等.闽江口海域表层沉积物中甲藻休眠孢囊的初步研究[J].海洋通报,2004,23(6):21-25.
    [6]苟万里,刘东艳,甄毓等.利用rDNA和ITS序列对1株裸甲藻的初步鉴定[J].中国海洋大学学报,2004,34(1):075-083
    [7]辜小莲.大亚湾海域甲藻孢囊生态动力学研究[M].广州:暨南大学出版社,2002.
    [8]顾海峰,方琦,李瑞香等.长江口甲藻孢囊的初步研究[J].海洋与湖沼,2004,35(05):413-423.
    [9]顾海峰,孙军,邹迎麟等.厦门港纤小裸甲藻(Takayama pulchellum)的形态、生长及分子特征[J].生态学报,2006,26(4):1021-1027.
    [10]顾海峰.中国东南沿海典型藻类的休眠体、生活史和系统发育[D].中国海洋大学,2007.
    [11]桂君,谭晓风.植物分子分类与鉴定综述[J].生命科学研究,1998,2(4):253-257.
    [12]郭玉洁,钱树本.中国海藻志(第五卷)硅藻门[M].北京:科学出版社,2003.
    [13]侯建军,黄辉,雷红灵等.厦门西海域裸甲藻和原甲藻赤潮的观察[J].中国水产科学,2007,14(6):950-960.
    [14]黄玉昆,夏法,陈国能等.桂山岛地下水的地质条件及其开发利用[J].中山大学学报论丛,1992,1:123-137.
    [15]黄长江,董巧香,郑磊等.1997年底中国东南沿海棕囊藻赤潮的生物学与生态学特征[J].海洋与湖沼,1999,30(6):581-590.
    [16]黄宗国.中国海洋生物种类与分布[M].北京:海洋出版社,1994.
    [17]简洁莹,邓峰.一起由栉江珧引起的食物中毒分析[J].南海研究与开发,1991, 4:42-45.
    [18]姜胜,黄长江,周凯等.2000—2001年柘林湾浮游动物的群落结构及时空分布[J].生态学报,2002,22(6):82-84.
    [19]姜胜,黄长江,陈善文等.2000—2001年柘林湾浮游动物的群落结构及时空分布[J].生态学报,2002,22(6):828-840.
    [20]蓝东兆,方琦,顾海峰等.厦门湾沉积物中有害有毒甲藻休眠孢囊及塔玛亚历山大藻的潜在危害[J].台湾海峡,2004,23(4):453-457.
    [21]林均民,金德祥.双突角毛藻休眠孢子的形成和萌发[J].海洋学报,1986,8(1):92-100.
    [22]林元烧,曹文清,Terdalkar S等.厦门西港甲藻孢囊种类和数量分布特征[J].海洋与湖沼,2002,33(4):407-414.
    [23]马媛,魏巍,夏华永等.珠江口伶仃洋海域营养盐的历史变化及影响因素研究[J].海洋学报,2009,31(2):69-77.
    [24]牟德海.大亚湾放射生态学及沉积物的生物地球化学研究[D].暨南大学图书馆:暨南大学博士论文,2002.
    [25]齐雨藻,黄长江.南海大鹏湾海洋卡盾藻赤潮发生的环境背景[J].海洋与湖沼,1997,28(4):337-342.
    [26]沈竑,洪君超.长江口中肋骨条藻赤潮发生全过程调查报告[J].海洋与湖沼,1994,25(6):591-595.
    [27]宋淑华.大亚湾浮游植物群落结构与赤潮藻分子鉴定研究[D].暨南大学图书馆:暨南大学硕士学位论文,2009.
    [28]王朝晖,Matsuoka K,齐雨藻,辜小莲.柘林湾近代沉积物中甲藻孢囊的垂直分布[J].海洋通报,2004,23(3):46-53.
    [29]王朝晖,齐雨藻.甲藻孢囊在长江口海域表层沉积物中的分布[J].应用生态学报,2003a,14(7):1039-1043.
    [30]王朝晖,Matsuoka K,齐雨藻等.有毒亚历山大藻(Alexandrium spp.)和链状裸甲藻(Gymnodinium catenatum)孢囊在中国沿海的分布[J].海洋与湖沼,2003b,34(4):422-430.
    [31]王朝晖,Matsuoka K,齐雨藻等.深圳湾表层沉积物中甲藻孢囊的垂直分布[J].生态学报,2003c,23(10):2073-2081.
    [32]王朝晖,Matsuoka K,齐雨藻等.大亚湾澳头海域表层沉积物中甲藻孢囊的垂直分 布[J].海洋环境科学,2003d,22(4):5-8.
    [33]王朝晖,齐雨藻,辜小莲.大亚湾海域锥状斯氏藻孢囊形成与萌发的季节变化[J].热带亚热带植物学报,2007,15(1):9-15.
    [34]王朝晖,齐雨藻,尹伊伟等.珠海桂山岛米氏裸甲藻赤潮对鱼鳃损伤的病理学组织观察[J].海洋学报,2001a,23(1):133-138.
    [35]王朝晖,齐雨藻,尹伊伟等.1998年春深圳湾环节环沟藻赤潮及其发生原因的探讨[J].海洋科学,2001b,25(5):47-49.
    [36]王朝晖,陈菊芳,徐宁,齐雨藻.大亚湾裸甲藻种群的季节变化与环境条件的关系[J].生态学报,2001c,21(11):1825-1832.
    [37]王朝晖.中国典型近海海域甲藻孢囊分布及其与富营养化和赤潮生消的关系研究[D].暨南大学图书馆:暨南大学博士论文,2007.
    [38]王朝晖.中国沿海甲藻孢囊与赤潮研究[M].海洋出版社,2007.
    [39]王团老,林均民,谢宏等.紧密角管藻的两种类型休眠孢子[J].厦门大学学报(自然科学版),1997,36(3):442-447.
    [40]王纬斐,洪君超.东海沿岸水域夏季沉积物中甲藻孢囊数量分布初探[J].海洋通报,1994,13(6):53-59.
    [41]吴国瑄,孙湘君.南海表层沉积沟鞭藻孢囊的分布特征[J].热带海洋,2000,19(1):8-16.
    [42]肖咏之,王朝晖,陈菊芳等.广东大亚湾甲藻孢囊及其与锥状斯氏藻赤潮的关系[J].水生生物学报,2003,27(4):372-376.
    [43]谢文玲,高亚辉.海洋浮游植物休眠期的生态学研究[J].厦门大学学报(自然科学版),2006,45:240-244.
    [44]徐宁,齐雨藻,陈菊芳.球形棕囊藻(Phaeocystis globosa Scherffel)赤潮成因分析[J].环境科学学报,2003,23(1):117-122.
    [45]杨宝兰.从水动力学角度探讨沟鞭藻孢囊形态对沉积物环境的适应[J].现代地质,1997,11(2):145-148.
    [46]张宝玉,王广策,张炎等.一株赤潮甲藻转录单元内间隔区(ITS)和5.8SrDNA序列的克隆[J].海洋科学,2004,28(12):48-52.
    [47]张玉娟.大亚湾浮游植物种群动态及锥状斯氏藻的实验生态研究[D].暨南大学图书馆:暨南大学硕士学位论文,2006.
    [48]郑磊,林均民,金德祥.中华半管藻繁殖生物学研究Ⅱ营养细胞和休眠孢子的形态结构[J].台湾海峡,1994,13(13):280-283.
    [49]郑磊,林均民,金德祥.中华半管藻休眠孢子的形成和萌发[J].厦门大学学报(自然科学版),1995,34(2):276-281.
    [50]郑磊,齐雨藻,Anderson D M.南海大鹏湾甲藻孢囊分布研究[J].热带亚热带植物学报,1997,5(3):10-15.
    [51]周凯,黄长江,姜胜等.柘林湾浮游植物群落结构及数量变动的周年调查[J].生态学报,2002,22(5):688-698.
    [52]周成旭,严小军.组织培养板在获取微藻种质中的应用[J].海洋技术,2006,25(4):54-57.
    [53]周成旭,孙雪,冯婧等.源于中国东海的有毒裸甲藻Karlodinium micrum的显微观察和分子鉴定[J].海洋通报,2008,27(3):32-37.
    [54]周凯,黄长江,姜胜等.2000-2001年粤东柘林湾营养盐分布[J].生态学报,2002,22(12):2116-2124.
    [55]周明江,朱明远,张经.中国赤潮的发生趋势和研究进展[J].生命科学,2001,13(2):54-59.
    [56]庄丽,陈月琴,李钦亮等.赤潮叉角藻18S rDNA和ITS区序列测定与分析[J].海洋与湖沼,2001,32(2):148-154.
    [57]Adachi M, Sako Y, Ishida Y, et al. Restriction fragment length polymorphism of ribosomal DNA internal transcribed spacer and 5.8S regions in Japanese Alexandrium species (Dinophyceae) [J]. Journal of Phycology,1994,30:857-863.
    [58]Adachi M, Sako Y, Ishida Y. Analysis of Alexandrium (Donophyceae) species using sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions [J]. Journal of Phycology,1996,32:424-432.
    [59]Anderson D M, Aubrey D G, Tyler M A, et al. Vertical and horizontal distributions of dinoflagellate cysts in sediments [J]. Limnol.Oceanogr,1985,27(4):757-767.
    [60]Anderson D M. The effects of temperature conditioning on the development and germination of Gonyaulax tamarensis (Dinophyceae) hypnozygotes [J]. Journal of Phycology,1980,16:166-172.
    [61]Basterretxea G, Garces E, Jordi A, Maso M, Tintore J. Breeze conditions as a favoring mechanism of Alexandrium taylori blooms at a Mediterranean beach. Estuarine [J]. Coastal and Shelf Science,2005,62:1-12.
    [62]Chen G F, Wang G C, Zhang B Y, et al. Morphological and phylogenetic analysis of Skeletonema costatum-like diatoms (Bacillario-phyta) from the China Sea [J]. Journal of Phycology,2007,42:163-175.
    [63]Chen Y Q, Qiu X Z, Qu L H. Analysis of molecular biogeographic marker on red tide toxic Alexandrium tamarense in the South China Sea [J]. Oceanologia and Limnologia Sinica,1999,30:45-51.
    [64]Cho H J, Matsuoka K. Distribution of dinoflagellate cysts in surface sediments from the Yellow Sea and East China Sea [J]. Marine Micropaleontology.2001,42:103-123.
    [65]Dale B, Dale A L, Janse J H F. Dinofagellate cysts as environmental indicators in surface sediments from the Congo deep-sea fan and adjacent regions [J]. Palaeogeography Palaeoclimatology Palaeoecology,2002,185:309-338.
    [66]Dale B, Dinoflagellate resting cysts:"benthic plankton" In GA Fryxell [Eds]:Survival strategies of the algae, Cambridge University Press, Cambridge,1983,69-136.
    [67]Dale B, Thorsen T A, Fjellsa A. Dinoflagellate cysts as indicators of cultural eutrophication in the Oslofjord, Norway [J]. Estuarine, Coastal and Shelf Science,1999, 48:371-382.
    [68]Dale B, Fjellsa A. Dinoflagellate cyst as paleoproductivity indicators:state of the art, potential and limits [A]. Zahn R, et al. Carbon Cycling in the Glacial Ocean:Constrains on the Ocean Role in Global Change [C]. Berlin:Springer Verlag,1994.
    [69]Daugbjerg N, Hansen G, Larsen J.& Moestrup. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates [J]. Phycologia,2000,39: 302-317.
    [70]De Salas M.F, Bolch C.J.S, Botes L, Nash G, Wright S.W, Hallegraeff G.M. Takayama Gen. Nov. (Gymnodiniales, Dinophyceae), a New Genus of Unarmored Dinoflagellates with Sigmoid Apical Grooves, Including the Description of Two New Species [J]. Journal of Phycology,2003,39:1233-1246(14).
    [71]D'Onofrio G, Marino D, Blanco L, Busico E, Montresor M. Toward an assessment on the taxonomy of dinoflagellates that produce calcareous cysts (Calciodinelloideae, Dinophyceae):Amorphological and molecular approach [J]. Journal of Phycology,1999, 35:1063-1078.
    [72]Durr G. Electron microscopical studies on the theca of dinoflagellates III:The cyst of Peridinium cinctum [J]. Archiv fur Protistenkunde,1979,122:21-39.
    [73]Ellegaard M, Charistensen N F, Moestrup F. Dinoflagellate cysts from recent Danish marine sediments [J]. European Journal of Phycology,1994,29:183-194.
    [74]Ellegaard M, Lewis J, Harding I, Gonyaulax baltica sp. Nov. (Dinophyceae) cyst-theca relationship, life cycle and environmentally induced morphological variations in the cyst of a newspecres from the Baltic [J]. Journal of Phycology,2002,38:775-789.
    [75]Fensome R A, Taylor F J R, Norris G, et al. A Classification of Living and Fossil Dinoflagellates [J]. Micropaleontology, Special Publication,1993,7:1-315.
    [76]French F W, Hargraves P E. Physiological characteristics of plankton diatom resting spores [J]. Marine Biology.1980,1:185-195.
    [77]Gill S, Murphy M, Clausen J, et al. Neural injury biomarkers of novel shellfish toxins, spirolides:a pilot study using immunochemical and transcriptional analysis [J]. Neurotoxicology,2003,24:593-604.
    [78]Godhe A, Noren F, Kuylenstiiema M, Ekberg C, Karlson B. Relationship between planktonic dinoflagellate abundance, cysts recovered in sediment traps and environmental factors in the Gullmar Fjord, Sweden [J]. Journal of Plankton Research, 2001,23:923-938.
    [79]Goodman D K. Dinoflagellate cysts in Ancient and Modern Sediments. In:F.J.R. Taylor (ed.). The Biology of Dinoflagellates, Blackwell Scientific Publications, Botanical Monographs,1987,21:649-722.
    [80]Gu H F, Fang Q, Sun J, et al. Dinoflagellate cysts in recent marine sediment from Guangxi, China [J]. Acta Oceanologica Sinica,2003,22:407-419.
    [81]Gu H F, Lan D Z, Fang Q, et al. Cyst formation, development of Alexandrium tamarense from Yangtse River Estuary and its relation to bloom dynamics[J]. Acta Botanica Sinica, 2004,46:1025-1031.
    [82]Guillard R L. Culture of phytoplankton for feeding marine invertebrates. In:Smith W L, Chanley M H, eds. Culture of Marine In-vertebrate Animals. New York:Plenum Press, 1975,29-60.
    [83]Hallegraeff G M, Anderson D M, Cembella A D. Manual on harmful marine microalgae [M]. UNESCO, IOC Manual and Guides.2004,33:381-563.
    [84]Hargraves P E, French F. Diatom resting spores:significance and strategies [A]. Fryxell G A. Survival Strategies of the Algae [C]. New York:Cambridge University Press.1983, 49-68.
    [85]Harland R, Nordberg T, Filipsson H L. Dinoflagellate cysts and hydrographical change in Gullmar Fjord, west coast of Sweden [J]. Science of the Total Environment,2006,355: 204-231.
    [86]Haya K, Martin J L, Robinson S M C, Martin J D, Khots A. Does uptake of Alexandrium fundyense cysts contribute to the levels of PSP toxin found in the sea scallop, Placopecten magellanicus? [J]. Harmful Algae,2003,2:75-81.
    [87]Hosoi-Tanabe S, Sako Y. Rapid detection of natural cells of Alexandrium tamarense and A. catenella (Dinophyceae) by fluorescence in situ hybridization [J]. Harmful Algae. 2005,4:319-328.
    [88]Huang C J, Dong Q X, Lin J. Two large-scale blooms of harmful algae occurred on Southeast Coast of China and the relationship with meteorological factors [J]. Plankton Reseach,2002.
    [89]Imai I, Itakura S, Yamaguchi M, et al. Selective germination of Heterosigma akashiwo (Raphidophyceae) cysts in bottom sediments under low light conditions:a possible mechanism of red tide initiation[A]. Yasumoto T, Oshima Y, Fukuyo Y. Harmful and toxic algal blooms [A]. IOC of UNESCO, Paris,1996,197-200.
    [90]Imai I, Itoh K. Annual life cycle of Chattonella spp. causative flagellates of noxious red tide in the Inland Sea of Japan [J]. Marine Biology,1987,94:287-292.
    [91]Ishikawa A, Furuya K. The role of diatom resting stages in the onset of spring bloom in the East China Sea [J]. Marine biology,2004,145:633-639.
    [92]Ishikawa A, Taniguchi A. Contribution of benthos cysts to the population dynamics of Scrippsiella spp. (Dinophyceae) in Onagawa Bay, northeast Japan [J]. Marine Ecology Progress Series,1996,140:169-178.
    [93]Itakura S, Imai I, Itoh K. "Seed bank"of coastal planktonic diatoms in bottom sediments of Hiroshima Bay, Seto Inland Sea, Japan [J]. Marine Biology,1997,128:497-508.
    [94]Itakura S, Yamaguchi M, Imai I. Resting spore formation and germination of Chaetoceros didymus var. protuberans (Bacillariophyceae) in clonal culture [J]. Bulletin of the Japanese Society of Scientific Fisheries,1993,59:807-813 (in Japanese with English abstract).
    [95]Joyce L B, Pitchera G C, Randta A, et al. Dinoflagllate cysts from surface sediments of Saldanha Bay, South Africa:an indication of the potential risk of harmful algal blooms [J]. Harmful Algal,2005,4:309-318.
    [96]Kawai H, Sasaki H, Maeba S. Morphology and molecular phylogeny of Phaeost rophion irregulare (Phaeophyceae) with aproposal for Phaeost rophiaceae fam. nov., and a review of Ishigeaceae [J]. Phycologia,2005,44:169-182.
    [97]Kremp A, Anderson D M. Factors regulation germination of calcified cysts of the spring bloom dinoflagellate Scrippsiella hangoei from the northern Baltic Sea [J]. Journal of Plankton Research,2000,22:1311-1327.
    [98]Kremp A, Heiskanen S. Sexuality and cyst formation of the spring-bloom dinoflagellate Scrippsiella hangoei in the coastal northern Baltic Sea [J]. Marine Biology,1999, 134:771-777.
    [99]Kumar A, Patterson R T. Dinoflagellate cyst assemblages in Effingham Inlet, Vancouver Island, Canada. Paleogeography, Paleoecology, Paleoclimatology,2002,180:187-206.
    [100]Landsberg J H. The effects of harmful algal blooms on aquatic organisms [J]. Reviews in Fisheries Science,2002,102:113-390.
    [101]Lensers G, Scholin G A, Bhaud Y, et al. A molecular phylogeny of dinoflagellate protists (Pyrrhophyta) inferred from the sequence of 24s rDNA divergent domains D1 and D8 [J]. Journal of Molecular Evolution,1991,32:53-63.
    [102]Martin L, Laure G, Daniel V. Identificatin of the class prymnesiophyceae and the genus Phaeocystiswith ribosomal RNA-targeted nucleic acid probes detected by flow cytometry [J]. Journal of Phycology,1996,32:858-868.
    [103]Matsuoka K, Kim H S. Process of eutrophication in enclosed seas recorded in dinoflagellate cyst assemblage and sediments-the case in Nagasaki Bay, west Japan. Fossils,1999,66:1-5 (in Japanese with English abstract).
    [104]Matsuoka K. Eutrophication process recorded in dinoflagellate cyst assemblages-a case of Yokohama Port, Tokyo Bay, Japan [J]. The Science of the Total Environment,1999, 231:17-35.
    [105]Matsuoka K and Fukuyo Y. Technical guide for modern dinoflagellate cyst study. WESTPAC-HAB/WESTPAC/IOC. Tokyo:Asian Natural Environmental Science Center,2000.
    [106]Mcgillicuddy D J, Signell R P, Stock C A, et al. A mechanism for offshore initiation of harmful algal blooms in the coastal Gulf of Maine [J]. Journal Plankton Research,2003, 25:1131-1138.
    [107]McQuoid M R, Hobson L A. Diatom resting stages [J]. Journal of Phycology,1996, 32:889-902.
    [108]Miller P, Scholin C. Identification and enumeration of cultured and wild Psuedo-nitzschia (Bacillariophycae) using species-specific LSU rRNA-targeted flourescent probes and filter-based whole cell hybridization [J]. Journal of Phycology,1998,34:371-382.
    [109]Mizushima K, Matsuoka K. Vertical distribution and germination ability of Alexandrium spp. cysts (Dinophyceae) in the sediments collected from Kure Bay of the Seto Inland Sea, Japan [J]. Phycological Research,2004,52:408-413.
    [110]Mudie P J, Rochon A, Levac E. Palynological records of red tide-producing species in Canada:past trends and implications for the future [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2002,180:159-186.
    [111]Oshima Y, Bolch C M, Hallewgraeff G M. Toxin composition of resting cysts of Alexandrium tamarense (Dinophyceae) [J]. Toxicon.1992,30:1539-1544.
    [112]Peperzak L, Colijn F, Gieskes W W C, Peeters J C H. Development of the diatom-Phaeocystis spring bloom in the Dutch coastal zone (North Sea):the silicon depletion versus the daily irradiance hypothesis [J]. Journal Plankton Research,1998, 20:517-537.
    [113]Pertola S, Faust M A, Kuosa H. Survey on germination and species composition of dinoflagellates from ballast tanks and recent sediments in ports on the South Coast of Finland, North-Eastern Baltic Sea [J]. Marine Pollution Bulletin,2006,52:900-911.
    [114]Pfiester L A, Anderson D M. Dinoflagellate reproduction. In Tayler, F J R. (ed.), The Biology of Dinoflagellates.Botanical Monographs. Blackwell Scientific Publications, Oxford.1987, pp:611-648.
    [115]Qi Y Z, Hong Y, Zheng L. Dinoflagellate cysts from recent marine sediments of the South and East China Seas[J]. Asian Marine Biology,1996,13:87-103.
    [116]Qu L H, Hardman N, Gill L L, et al. Phylogeny of helminchs determined by rRNA sequence comparison [J]. Molecular and Biochemical Parasitology,1986,20:93-99.
    [117]Ribeiro S, Amorim A. Environmental drivers of temporal succession in recent dinoflagellate cyst assemblages from a coastal site in the North-East Atlantic (Lisbon Bay, Portugal) [J]. Marine Micropaleontology,2008,68:156-178.
    [118]Schelske C L, Carrick H J, Aldridge F J. Can wind-induced resuspension of meroplankton affect phytoplankton dynamics [J]. The North American Benthological Society,1995,14:616-630.
    [119]Scholin C A, Anderson D M. Identification of group and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae).I. RFLP analysis of SSU rRNA genes [J]. Journal of Phycology,1994,30:744-754.
    [120]Scholin C A, Herzog M, Sogin M, et al. Identification of group-and strain-specific genetic markers for globally distributed Alexandrium (Dinoflagellate). Sequence analysis of a fragment of the LSU rRNA gene [J]. Journal of Phycology,1994,30:999-1011.
    [121]Schwinghamer P, Hawryluk M, Powell C, et al. Resuspended hypnozygotes of Alexandrium fundyense associated with winter occurrence of PSP in inshore Newfoundland waters [J]. Aquaculture,1994,122:171-179.
    [122]Selvin R C, Lewis C M, Yentsch C M. Hurst J W. Seasonal persistence of resting cyst toxicity in the dinoflagellate Gonyaulax tamarensis var. excavates [J]. Toxicon.1984, 22:817-820.
    [123]Theorpe J P. The molecular dock hypothesis:Biochemical evaluation, genetic differentiation, and systemayias. Annual Review of Ecology and Systematics,1982, 13:139-168.
    [124]Tom C R. Identifying Marine Phytoplankton [M]. USA:Harcourt Brace & Company, Academy Press,1997,446-447.
    [125]Vernal A, Rochon A, Turon J L, et al. Organic-walled dinoflagellate cysts:Palynological tracers of sea-surface conditions in middle to high latitude marine environments [J]. Geobios,1997,30:905-920.
    [126]Wall D, Dale B, Lohman G P, et al. The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the north and south/atlantic oceans and adjacent seas [J]. Marine Micropaleontology,1977,2:121-200.
    [127]Wang Z H, Matsuoka K, Qi Y, et al. Dinoflagellate cysts in recent sediments from Chinese coastal waters [J]. Marine Ecology,2004a,25:289-311.
    [128]Wang Z H, Qi Y Z, Yang Y F. Cyst formation:an important mechanism for the termination of Scrippsiella trochoidea (Dinophyceae) bloom [J]. Plankton Research, 2007,29:209-218.
    [129]Wang Z, Qi Y, Lu S, Wang Y, Matsuoka K. Seasonal distribution of dinoflagellate resting cysts in surface sediments from Changjiang River Estuary [J]. Phycological Research, 2004b,52:387-395.
    [130]Wang Z, Matsuoka K, Qi Y, Chen J, Lu S. Dinoflagellate cyst records in recent sediments from Daya Bay, South China Sea[J]. Phycological Research,2004c,52:396-407.
    [131]Yamaguchi M, Itakura S, Imai I. Vertical and horizontal distribution and abundance of resting cysts of the toxic dinoflagellae Alexandrium tamarense and Alexandrium catenella in sediments of Hiroshima Bay, Seto Inland Sea, Japan [J]. Bulletin of the Japanese Society of Scientific Fisheries,1995,61:700-706.
    [132]Yamaguchi M, Yamaguchi H, et al. Morphology and germination characteristics of the cysts of Chattonella ovata (Raphidophyceae), a novel red tide flagellate in the Seto Inland Sea, Japan [J]. Harmful Algae,2008,7:459-463.
    [133]Yamamoto T, Hashimoto T, Tarutani K, Kotani Y. Effects of winds, tides and river water runoff on the formation and disappearance of the Alexandrium tamarense bloom in Hiroshima Bay, Japan [J]. Harmful Algae.2002,1:301-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700