不同结构表面活性剂改性黏土对海洋卡盾藻的去除作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋卡盾藻赤潮在我国沿海频繁爆发,给海产养殖业带来严重的经济损失,已成为我国南方重要的有害赤潮种类。赤潮治理的方法有很多种,各自存在的弊端使得其在实际应用中受到限制。采用改性黏土可以在提高黏土对藻细胞的去除率的同时,降低黏土的用量。
     本文在实验室条件下,采用结构不同的表面活性剂(单链季铵盐、单链季磷盐、吉米奇表面活性剂)改性黏土,通过比较不同改性黏土的除藻效能与改性剂结构间的关系,揭示影响改性黏土除藻活性的因素,以便为筛选新的除藻剂提供参考。同时,论文以模式生物斑马鱼(Brachydanio rerio)及广东常见经济水产品种凡纳滨对虾(Litopenaeus vannamei)为生物毒性研究对象,考查了初筛改性黏土的生物毒性,分析了改性粘土的播散对水体中氮营养盐的可能影响,以了解改性黏土对水体环境的影响,为改性黏土的实际应用提供必要数据。
     研究结果表明,链长为十四烷基的季铵盐改性黏土的除藻效果最好,其次为十二烷基和十烷基,而十六烷基较差;季铵(磷)盐取代基团对改性黏土除藻效果的影响不大。十四烷基三丁基溴化磷改性黏土和双十四烷基二甲基乙基溴化铵改性黏土的除藻效果最好,对海洋卡盾藻的120 h半抑制质量浓度分别为6.11mg/L和6.13 mg/L。毒性试验表明,这2种改性黏土对斑马鱼的毒性均较低,质量浓度为10-100 mg/L时,96h后斑马鱼的存活率均为100%。改性黏土对蒙古裸腹蚤有一定毒性,其中十四烷基三丁基溴化磷改性黏土24 h的LCso远超过100mg/L,双十四烷基二甲基乙基溴化铵改性黏土的LC50为9.37 mg/L。因此,十四烷基三丁基溴化磷改性黏土的毒性更低,有望成为赤潮治理的潜在除藻剂。
     四种不同结构的吉米奇表面活性剂对海洋卡盾藻均具有良好的去除效果,其中乙撑基双(十二烷基二甲基溴化铵)(Ethylene bis(dodecyl dimethyl ammonium bromide), EDAB)对海洋卡盾藻的去除作用最优,对海洋卡盾藻的120 h半抑制浓度为0.42 mg/L;EDAB与天然黏土的复配实验显示,黏土与EDAB复配不能增加EDAB对海洋卡盾藻的去除效果;改性黏土的除藻作用具有长效性,并存在最佳配比,改性剂质量百分比为15%时除藻率达到最高,3 mg/L EDAB改性黏土即可有效去除海洋卡盾藻(RE>90%)。生物毒性实验说明,EDAB改性粘土对斑马鱼、幼年凡纳滨对虾和成年凡纳滨的48h LC50分别为25.66 mg/L、12.49mg/L和48.03 mg/L。EDAB改性黏土在有效除藻的同时,可降低水体中可溶性氮盐的水平。这些事实表明,EDAB改性黏土治理赤潮有一定应用前景。
The harmful algal blooms (HABs) frequently occur and result in the serve mortality of fishes and invertebrates, and harm to the cultivation and ecological system in South Chin Sea. It is urgently needed to investigate how to control HABs effectively. However, progress is still slow in developing effective and economic controlling strategies. Many studies on controlling or inhibiting the growth of HABs species have been conducted. Of them, natural clays attracted much attention due to its non-toxic and friendly to environment.
     In this paper, to explore the new modified clays with excellent algae removal efficiencies, clays were modified by three kinds of surfactants such single-chain quaternary ammonium salts, single-stranded quarter of phosphate and Gemini surfactants with different structures. The removal efficiencies of the modified clays against Chattonella marina, a typical HABs alga in China were observed. The toxicities of the modified clays with high removal efficiency on Brachydanio rerio, Miona mongolica Daddy and Litopenaeus vannamei were evaluated.
     The clays modified by tetradecyl quaternary phosphonium were shown to have the highest removal efficiency, followed by ones with decyl, dodecy and cetyl quaternary phosphonium. The clays modified by tetradecyl quaternary ammonium with different substituent groups such as trimethyl, dimethyl phenmethyl and dimethyl ethide had similar removal efficiency, suggesting less effect of the substituent groups in quaternary ammonium on the algaecide activity of the modified clays. Among the modified clays assayed, the clays with tributyltin bromide tetradecyl phosphonium and two-brominated ethyl dimethyl tetradecyl ammonium had the highest removal efficiency. The EC50120 of the two modified clays against C. marina was only 6.11 mg/L and 6.13 mg/L, respectively, indicating that these two modified clays could remove the algae effectively under low concentrations. Low toxicities of these two modified clays were shown in the acute toxicity tests of B. rerio. None of the B. rerio were killed in 96 h after exposed to the two modified clay in the concentration of 10~100 mg/L. However, some differences in toxicity to M. mongolica were exited between them. The LC50 in 24 h of clay with tributyltin bromide tetradecyl phosphonium against M. mongolica was above 100 mg/L, while the other one was only 9.37 mg/L. Obviously, clay modified by tributyltin bromide tetradecyl phosphonium was less toxic to M. mongolica than that of modified by two-brominated ethyl dimethyl tetradecyl ammonium. Combining the high removal effectiveness on C. marina and low toxicity to B. rerio and M. mongolica, it was reasonable to consider the clay modified by tributyltin bromide tetradecyl phosphonium a potential algaecide with high effectiveness and low toxicity to fishery.
     The clays modified by four Gemini surfactants such as ethylene bis(dodecyl dimethyl ammonium chloride) (EDAC), ethylene bis (octadecyl dimethyl ammonium chloride) (EOAC), poly(quaternary ammonium salt)(PQAS) and ethylene bis(dodecyl dimethyl ammonium bromide) (EDAB) were all shown to exhibit high removal efficiencies against C. marina. Among them, the clay modified by EDAB had the highest removal efficiency, with EC50120 of 0.42 mg/L. Simple mixture of EDAB and natural clay did not enhance the removal efficiency of them against C. marina. In contrast, the clay modified by EDAB exhibited higher removal efficiency than EDAB and clay did, with an ideal composition ratio of 15%. At 3 mg/L, removal efficiency of the clay modified with EDAB was above 90%. The LC50 in 48 h of clay with EDAB against B. rerio, juvenile L. vannamei and adult L. vannamei were 25.66, 12.49 and 48.03 mg/L, respectively, suggesting the low toxicity of the modified clay to other aquatic organisms. In addition, EDAB modified clays could reduce the level of soluble nitrogen in water by adsorption. Combining the high removal efficiency on C. marina, low toxicity to B. rerio and L. vannamei, and high adsorption capacity for soluble nitrogen in water, it would probably be reasonable to believe that the clay modified by EDAB should be better a favorable choice to control HABs. However, further studies are awaited to prove the hypothesis we have proposed in the future in an open aqua-ecosystem.
引文
[1]Garcia-Hansen, I, Cortes-Altamirano, R, Sierra-Beltran, A P. The red tide caused by the dinoflagellate Alexandrium tamarense in the Colombian Pacific Coast (2001)[J]. Revista De Biologia Tropical,2004,52:59-68.
    [2]Richlen, M L, Morton, S L, Jamali, E A, Rajan, A, Anderson, D M. The catastrophic 2008-2009 red tide in the Arabian gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides[J]. Harmful Algae, 2010,9 (2):163-172.
    [3]Anderson, D M. Approaches to monitoring, control and management of harmful algal blooms (HABs)[J]. Ocean & Coastal Management,2009,52 (7):342-347.
    [4]Anderson, D M. Turning back the harmful red tide[J]. nature,1997,388 (6642):513-514
    [5]Sengco, M R. Prevention and control of Karenia brevis blooms[J]. Harmful Algae,2009,8 (4):623-628.
    [6]Hagstrom, J A, Sengco, M R, Villareal, T A. Potential methods for managing Prymnesium Parvum blooms and toxicity, with emphasis on clay and barley straw:a review[J]. Journal of the American Water Resources Association,2010,46 (1):187-198.
    [7]Bauer, M, Hoagland, P, Leschine, T M, Blount, B G, Pomeroy, C M, Lampl, L L, Scherer, C W, Ayres, D L, Tester, P A, Sengco, M R, Sellner, K Q Schumacker, J. The importance of human dimensions research in managing harmful algal blooms[J]. Frontiers in Ecology and the Environment,2010,8 (2):75-83.
    [8]Reifel, K M, McCoy, M P, Rocke, T E, Tiffany, M A, Hurlbert, S H, Faulkner, D J. Possible importance of algal toxins in the Salton Sea, California[J]. Hydrobiologia,2002,473 (1-3):275-292.
    [9]Mikhail, S K. First monospecific bloom of the harmful raphidophyte Chattonella antiqua (Hada) Ono in Alexandria waters related to water quality and copepod grazing[J]. Chemistry and Ecology,2007,23 (5):393-407.
    [10]Kim, C S, Lee, S G, Kim, H G. Biochemical responses of fish exposed to a harmful dinoflagellate Cochlodinium polykrikoides[J]. Journal of Experimental Marine Biology and Ecology,2000,254 (2):131-141.
    [11]Kim, D, Sato, Y, Oda, T, Muramatsu, T, Matsuyama, Y, Honjo, T. Specific toxic effect of dinoflagellate Heterocapsa circularisquama on the rotifer Brachionus plicatilis[J]. Bioscience Biotechnology and Biochemistry,2000,64 (12):2719-2722.
    [12]Hiroishi, S, Okada, H, Imai, I, Yoshida, T. High toxicity of the novel bloom-forming species Chattonella ovata (Raphidophyceae) to cultured fish[J]. Harmful Algae,2005,4 (4):783-787.
    [13]Munday, B L, Hallegraeff, G M. Mass mortality of captive southern bluefin tuna (Thunnus maccoyii) in April/May 1996 in Boston Bay, South Australia:A complex diagnostic problem[J]. Fish Pathology,1998,33 (4):343-350.
    [14]Dorantes-Aranda, J J, Garcia-de la Parra, L M, Alonso-Rodriguez, R, Morquecho, L. Hemolytic activity and fatty acids composition in the ichthyotoxic dinoflagellate Cochlodinium polykrikoides isolated from Bahia de La Paz, Gulf of California[J]. Marine Pollution Bulletin,2009,58 (9):1401-1405.
    [15]Tiffany, M A, Barlow, S B, Matey, V E, Hurlbert, S H. Chattonella marina (Raphidophyceae),
    a potentially toxic alga in the Salton Sea, California[J]. Hydrobiologia,2001,466 (1-3):187-194.
    [16]Whyte, J, Haigh, N, Ginther, N G, Keddy, L J. First record of blooms of Cochlodinium sp (Gymnodiniales, Dinophyceae) causing mortality to aquacultured salmon on the west coast of Canada[J]. Phycologia,2001,40 (3):298-304.
    [17]Anderson, D M, Keafer, B A, Geyer, W R, Signell, R P, Loder, T C. Toxic Alexandrium blooms in the western Gulf of Maine:The plume advection hypothesis revisited[J]. Limnology and Oceanography,2005,50 (1):328-345.
    [18]Haque, S M, Onoue, Y. Variation in toxin compositions of two harmful raphidophytes, Chattonella antiqua and Chattonella marina, at different salinities[J]. Environmental Toxicology,2002,17 (2):113-118.
    [19]Kuroda, A, Nakashima, T, Yamaguchi, K, Oda, T. Isolation and characterization of light-dependent hemolytic cytotoxin from harmful red tide phytoplankton Chattonella marina[J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology,2005, 141 (3):297-305.
    [20]Song, X Y, Huang, L M, Zhang, J L, Huang, H H, Li, T, Su, Q. Harmful algal blooms (HABs) in Daya Bay, China:An in situ study of primary production and environmental impacts[J]. Marine Pollution Bulletin,2009,58 (9):1310-1318.
    [21]Ravn, H. Management strategies for phycotoxin control. In:Miraglia M, VanEgmond H P, Brera C, Gilbert J (eds). Mycotoxins and Phycotoxins-Developments in Chemistry, Toxicology and Food Safety; 1998.495-502.
    [22]Lewitus, A J, Holland, A F. Initial results from a multi-institutional collaboration to monitor harmful algal blooms in South Carolina[J]. Environmental Monitoring and Assessment,2003, 81 (1-3):361-371.
    [23]Elfes, A, Podnar, G W, Dolan, J M, Stephen, S, Lin, E, Hosler, J C, Ames, T J, Moisan, J, Moisan, T A, Higinbotham, J, Kulczycki, E A. The telesupervised adaptive ocean sensor fleet-art. no.668411. In:Goldberg M D, Bloom H J, Huang A H, Ardanuy P E (eds). Atmospheric and Environmental Remote Sensing Data Processing and Utilization Iii:Readiness for Geoss; 2007.68411-68411.
    [24]Sarkar, R R, Mukhopadhyay, B, Bhattacharyya, R, Banerjee, S. Time lags can control algal bloom in two harmful phytoplankton-zooplankton system[J]. Applied Mathematics and Computation,2007,186 (1):445-459.
    [25]Doucette, G J, McGovern, E R, Babinchak, J A. Algicidal bacteria active against Gymnodinium breve (Dinophyceae). I. Bacterial isolation and characterization of killing activity[J]. Journal of Phycology,1999,35 (6):1447-1454.
    [26]Rosetta, C H, McManus, G B. Feeding by ciliates on two harmful algal bloom species, Prymnesium parvum and Prorocentrum minimum[J]. Harmful Algae,2003,2 (2):109-126.
    [27]Kim, Y S, Lee, D S, Jeong, S Y, Lee, W J, Lee, M S. Isolation and characterization of a marine algicidal bacterium against the harmful raphidophyceae Chattonella marina[J]. Journal of Microbiology,2009,47 (1):9-18.
    [28]李卓佳,张庆,陈康德,楊鶯鶯.有益微生物防治蝦池夜光藻的初步观察.In:何件宗,林海揚,俞字修(eds).南中国海红潮预防和管理国隙研讨会.香港:南中国赤潮协会;2000.415-418.
    [29]W. Veldhuis, M J, Wassmann, P. Bloom dynamics and biological control of a high biomass HAB species in European coastal waters:A Phaeocystis case study[J]. Harmful Algae,2005,4 (5):805-809.
    [30]Leblond, J D, Sengco, M R, Sickman, J O, Dahmen, J L, Anderson, D M. Sterols of the syndinian dinoflagellate Amoebophrya sp., a parasite of the dinoflagellate Alexandrium tamarense (Dinophyceae)[J]. Journal ofEukaryotic Microbiology,2006,53 (3):211-216.
    [31]Yamasaki, Y, Shikata, T, Nukata, A, Ichiki, S, Nagasoe, S, Matsubara, T, Shimasaki, Y, Nakao, M, Yamaguchi, K, Oshima, Y, Oda, T, Ito, M, Jenkinson, I R, Asakawa, M, Honjo, T. Extracellular polysaccharide-protein complexes of a harmful alga mediate the allelopathic control it exerts within the phytoplankton community[J]. Isme Journal,2009,3 (7):808-817.
    [32]Xie, Z H, Xiao, H, Tang, X X, Lu, K H, Cai, H J. Interactions between red tide microalgae and herbivorous zooplankton:effects of two bloom-forming species on the rotifer Brachionus plicatilis (O.F. Muller)[J]. Hydrobiologia,2008,600:237-245.
    [33]Kim, J D, Kim, J Y, Park, J K, Lee, C G. Selective control of the Prorocentrum minimum harmful algal blooms by a novel algal-lytic bacterium Pseudoalteromonas haloplanktis AFMB-008041[J]. Marine Biotechnology,2009,11 (4):463-472.
    [34]Lei, G Y, Ma, J, Guan, X H, Song, A K, Cui, Y J. Effect of basicity on coagulation performance of polyferric chloride applied in eutrophicated raw water[J], Desalination,2009, 247(1-3):518-529.
    [35]杨维东,刘玉荣,刘洁生,刘政.桉木粉对塔玛亚历山大藻(Alexandrium tamarense)的抑制作用及其化学基础研究[J].环境科学,2008,29(8):2296-2301.
    [36]杨维东,欧阳好婧.玉米秸秆对塔玛亚历山大藻生长的影响及化学基础研究[J].环境科学,2008,29(9):2470-2474.
    [37]刘洁生,杨维东,高洁,李诗盈.稻、麦秸秆对球形棕囊藻(Phaeocystis globosa)生长的抑制作用[J].生态学报,2007,27(11):4498-4505.
    [38]Yang, W D, Liu, J S, Li, H Y, Zhang, X L, Qi, Y Z. Inhibition of the Growth of Alexandrium tamarense by Algicidal Substances in Chinese Fir (Cunninghamia lanceolata)[J]. Bulletin of Environmental Contamination and Toxicology,2009,83 (4):537-541.
    [39]Alamsjah, M A, Hirao, S, Ishibashi, F, Oda, T, Fujita, Y. Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and U-pertusa (Ulvaceae, Chlorophyta) on phytoplankton[J]. Journal of Applied Phycology,2008,20 (5):713-720.
    [40]张珩,刘洁生,杨维东,高洁,李劲雄.双季铵盐对两种赤潮藻的去除研究[J].海洋环境科学,2003,22(4):68-71.
    [41]Gustafsson, S, Hultberg, M, Figueroa, R I, Rengefors, K. On the control of HAB species using low biosurfactant concentrations[J]. Harmful Algae,2009,8 (6):857-863.
    [42]Sun, X-X, Choi, J-K, Kim, E-K. A preliminary study on the mechanism of harmful algal bloom mitigation by use of sophorolipid treatment[J]. Journal of Experimental Marine Biology and Ecology,2004,304 (1):35-49.
    [43]Wang, X, Gong, L, Liang, S, Han, X, Zhu, C, Li, Y. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa[J]. Harmful Algae,2005,4 (2):433-443.
    [44]Baek, S H, Sun, X X, Lee, Y J, Wang, S Y, Han, K N, Choi, J K, Noh, J H, Kim, E K. Mitigation of harmful algal blooms by sophorolipid[J]. Journal of Microbiology and Biotechnology,2003,13 (5):651-659.
    [45]钱宏林,梁松.广东沿海的赤潮问题与防范对策.南海资源与环境研究文集.广州:中山大学出版社:1999.182-188.
    [46]钱宏林.水产养殖中赤潮的防治对策[J].水产科学,1994,4:14-16.
    [47]王肇鼎.控制小雜鱼投饵,減輕沿海富營养化.In:何件宗,林海揚,俞字修(eds).南中国海红潮预防和管理国隙研封会.香港:南中国海红潮协会;2000.419-423.
    [48]Milliman, J, D., meade, R H. World-wide delivery of river sediment to the oceans[J]. J. Geol, 1983,91 (1):1-21.
    [49]Millot, G, Farrand, W R, Paquet, H, A, D L. Geology of clays[J]. Soil science,1972,114 (3):242.
    [50]Han, M Y, Kim, W. A theoretical consideration of algae removal with clays[J]. Microchemical Journal,2001,68 (2-3):157-161.
    [51]Guenther, M, Bozelli, R. Factors influencing algae-clay aggregation[J]. Hydrobiologia,2004, 523 (1-3):217-223.
    [52]Lee, Y J, Choi, J K, Kim, E K, Youn, S H, Yang, E J. Field experiments on mitigation of harmful algal blooms using a Sophorolipid-Yellow clay mixture and effects on marine plankton [J]. Harmful Algae,2008,7 (2):154-162.
    [53]Pan, G, Zhang, M M, Chen, H, Zou, H, Yan, H. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals[J]. Environmental Pollution, 2006,141 (2):195-200.
    [54]Padilla, L V, Diego-McGlone, M L S, Azanza, R V. Preliminary results on the use Of clay to control Pyrodinium Bloom-a mitigation strategy[J]. Science Diliman,2006,18 (1):35-42.
    [55]Pan, G, Zou, H, Chen, H, Yuan, X. Removal of harmful cyanobacterial blooms in Taihu Lake using local soils III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils[J]. Environmental Pollution,2006,141 (2):206-212.
    [56]俞志明,邹景忠,马锡年.一种去除赤潮生物更有效的粘土种类[J].自然灾害学报,1994,3(2).
    [57]俞志明,邹景忠,马锡年.一种提高粘土矿物去除赤潮生物能力的新方法[J].海洋与湖沼,1994,25(2):226-232.
    [58]Jackson, G A. A model of the formation of marine algal flocs by physical coagulation processes[J]. Deep Sea Research Part A. Oceanographic Research Papers,1990,37 (8):1197-1211.
    [59]Pan, G, Zhang, M-M, Chen, H, Zou, H, Yan, H. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals[J]. Environmental Pollution, 2006,141 (2):195-200.
    [60]Hunt, J R, Pandya, J D. Sewage sludge coagulation and settling in seawater[J]. Environ. Sci. Technol,1984,18 (2):119-121.
    [61]Yu, Z M, ZOU, J Z, MA, X N. Application of clays to removal of red tide organisms III. the coagulation of kaolin on red Tide organisms[J]. Chin.J.Oceanol.Limnol,1995,13 (1):62-70.
    [62]Pierce, R H, Henry, M S, Higham, C J, Blum, P, Sengco, M R, Anderson, D M. Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation[J]. Harmful Algae,2004,3 (2):141-148.
    [63]van Wijk, D, den Bos, M G V, Garttener-Arends, I, Geurts, M, Kamstra, J, Thomas, P. Bioavailability and detoxification of cationics:I. Algal toxicity of alkyltrimethyl ammonium salts in the presence of suspended sediment and humic acid[J]. Chemosphere,2009,75 (3):303-309.
    [64]Shumway, S E, Frank, D M, Ewart, L M, Ward, J E. Effect of yellow loess on clearance rate in seven species of benthic, filter-feeding invertebrates[J]. Aquaculture Research,2003,34 (15):1391-1402.
    [65]Sengco, M R, Anderson, D M. Controlling harmful algal blooms through clay Flocculation[J]. Journal of Eukaryotic Microbiology,2004,51 (2):169-172.
    [66]Sengco, M R, Li, A S, Tugend, K, Kulis, D, Anderson, D M. Removal of red-and brown-tide cells using clay flocculation. I. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens[J]. Marine Ecology-Progress Series,2001,210:41-53.
    [67]Yu, Z M, Sengco, M R, Anderson, D M. Flocculation and removal of the brown tide organism, Aureococcus anophagefferens (Chrysophyceae), using clays[J]. Journal of Applied Phycology, 2004,16 (2):101-110.
    [68]Sengco, M R, Hagstrom, J A, Graneli, E, Anderson, D M. Removal of Prymnesium parvum (Haptophyceae) and its toxins using clay minerals[J]. Harmful Algae,2005,4 (2):261-274.
    [69]Beaulieu, S E, Sengco, M R, Anderson, D M. Using clay to control harmful algal blooms: deposition and resuspension of clay/algal flocs[J]. Harmful Algae,2005,4 (1):123-138.
    [70]Brownlee, E. The use of clay to remove algal blooms from Chesapeake Bay waters[J], Oceans, 2005,1:866-872.
    [71]Henderson, R, Sharp, E, Jarvis, P, Parsons, S, Jefferson, B. Identifying the linkage between particle characteristics and understanding coagulation performance. In:Han M Y, Park K H, Dockko S (eds). Particle Separation 2005-Drinking Water Treatment; 2005.31-38.
    [72]Kwak, D H, Kim, S J, Jung, H J, Won, C H, Kwon, S B, Ahn, H W, Lee, J W. Removal of clay and blue-green algae particles through zeta potential and particle size distribution in the dissolved air flotation process. In:Han M Y, Park K H, Dockko S (eds). Particle Separation 2005-Drinking Water Treatment; 2005.95-103.
    [73]Verspagen, J M H, Visser, P M, Huisman, J. Aggregation with clay causes sedimentation of the buoyant cyanobacteria Microcystis spp[J], Aquatic Microbial Ecology,2006,44 (2):165-174.
    [74]Guenther, M, Bozelli, R. Effects of inorganic turbidity on the phytoplankton of an Amazonian Lake impacted by bauxite tailings[J]. Hydrobiologia,2004,511 (1):151-159.
    [75]Suren, A M, Jowett, I G. Effects of deposited sediment on invertebrate drift:an experimental study[J]. New Zealand Journal of Marine and Freshwater Research,2001,35 (4):725-737.
    [76]Zou, H, Pan, G, Chen, H, Yuan, X. Removal of cyanobacterial blooms in Taihu Lake using local soils Ⅱ. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan[J]. Environmental Pollution,2006,141 (2):201-205.
    [77]曹西华,宋秀贤,俞志明.改性粘土去除赤潮生物及其对养殖生物的影响[J].环境科学,2004,25(5):148-152.
    [78]高咏卉,俞志明,宋秀贤,曹西华.有机改性黏土对海水中营养盐及主要水质因子的影响[J].海洋科学,2007,31(8):30-37.
    [79]曹西华,宋秀贤,俞志明,王奎.有机改性粘土去除赤潮生物的机制研究[J].环境科学,2006,27(8):1521-1529.
    [80]曹西华,俞志明.有机改性粘土去除有害赤潮藻的研究[J].应用生态学报,2003,14(7):1169-1172.
    [81]吴萍,俞志明,宋秀贤.烷基多糖苷季铵盐改性粘土治理赤潮研究[J].环境科学,2006,27(11):2164-2169.
    [82]吴萍,俞志明,杨桂朋.新型表面活性剂改性粘土去除赤潮藻研究[J].海洋与湖沼,2006,37(6):511-516.
    [83]吴萍,俞志明.有机改性粘土对赤潮藻絮凝沉降的动力学研究[J].环境科学,2007,28(7):1518-1523.
    [84]Lurling, M, Tolman, Y. Effects of lanthanum and lanthanum-modified clay on growth, survival and reproduction of Daphnia magna[J]. Water Research,2010,44(1):309-319.
    [85]Anirudhan, T S, Ramachandran, M. Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay[J]. Journal of Colloid and Interface Science,2006, 299(1):116-124.
    [86]Yan, L G, Wang, J, Yu, H Q, Wei, Q, Du, B, Shan, X Q. Adsorption of benzoic acid by CTAB exchanged montmorillonite[J], Applied Clay Science,2007,37 (3-4):226-230.
    [87]孙岩,殷福山,宋湛谦,王墨林.新表面活性剂[M].北京:化学工业出版社;2003.
    [88]In, M, Zana, R. Phase behavior of gemini surfactants[J]. Journal of Dispersion Science and Technology,2007,28 (1):143-154.
    [89]Cao, X L, Li, Z Q, Song, X W, Cui, X H, Wei, Y P, Cheng, F, Wang, J. Effects of spacers on surface activities and aggregation properties of anionic Gemini surfactants[J]. Journal of Surfactants and Detergents,2009,12 (2):165-172.
    [90]Banno, T, Toshima, K, Kawada, K, Matsumura, S. Synthesis and properties of Gemini-type cationic surfactants containing carbonate linkages in the linker moiety directed toward green and sustainable chemistry[J]. Journal of Surfactants and Detergents,2009,12 (3):249-259.
    [91]Wang, Y J, Marques, E F, Pereira, C M. Monolayers of gemini surfactants and their catanionic mixtures with sodium dodecyl sulfate at the air-water interface:Chain length and composition effects[J]. Thin Solid Films,2008,516 (21):7458-7466.
    [92]Oda, R, Hucb,I, Candaua, S J. Gemini surfactants, the effect of hydrophobic chain length and dissymmetry[J]. Chem. Commun.,1997, (21):2105-2106.
    [93]Pang, Q H, Zang, R R, Kang, G L, Li, J M, Hu, W, Meng, X G, Zeng, X C. Hydrolysis of p-nitrophenyl picolinate catalyzed by gemini surfactants with different hydrophobic tail groups[J]. Journal of Dispersion Science and Technology,2006,27 (5):671-675.
    [94]Kozak, M, Domka, L. Adsorption of the quaternary ammonium salts on montmorillonite[J]. Journal of Physics and Chemistry of Solids,2004,65 (2-3):441-445.
    [95]Rosen, M J, Li, F. The adsorption of gemini and conventional surfactants onto some soil solids and the removal of 2-naphthol by the soil surfaces[J]. Journal of Colloid and Interface Science, 2001,234 (2):418-424.
    [96]Li, F, Rosen, M J. Adsorption of Gemini and conventional cationic surfactants onto montmorillonite and the removal of some pollutants by the clay[J]. Journal of Colloid and Interface Science,2000,224 (2):265-271.
    [97]曹西华,俞志明.季铵盐类化合物灭杀赤潮异弯藻的实验研究[J].海洋与湖沼,2003,34(2):201-207.
    [98]Liu, G, Fan, C, Zhong, J, Zhang, L, Ding, S, Yan, S, Han, S. Using hexadecyl trimethyl ammonium bromide (CTAB) modified clays to clean the Microcystis aeruginosa blooms in Lake Taihu, China[J]. Harmful Algae,2010,9 (4):413-418.
    [99]Yu, Z M, ZOU, J Z, MA, X N. Application of clays to removal of red tide organismsll. coagulation of different species of red tide organisms with montmorillonite and effect of clay pretreatmen[J]. Chin.J.Oceanol.Limnol.,1994,12 (4):316-324.
    [100]Yu, Z M, Sun, X X, Song, X X, Zhang, B. Clay surface modification and its coagulation of red tide organism[J]. Chinese Science Bulletin,1999,44 (7):617-620.
    [101]傅佳骏,严莲荷,王瑛.季鳞盐类杀菌剂的研究进展[J].江苏化工,2003,31(6):12-16.
    [102]Kanazawa, A, Ikeda, T. Multifunctional tetracoordinate phosphorus species with high self-organizing ability[J]. Coordination Chemistry Reviews,2000,198:117-131.
    [103]Kanazawa, A, Ikeda, T, Endo, T. Synthesis and antimicrobial activity of dimethyl-and trimethyl-substituted phosphonium salts with alkyl chains of various lengths[J]. Antimicrobial Agents and Chemotherapy,1994,38 (5):945-952.
    [104]Sengco, M. The Aggregation of Clay Minerals and Marine Microalgal Cells:Physicochemical Theory and Implications for Controlling Harmful Algal Blooms. Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution. Massachusetts:Long Island University; 2001.
    [105]Archambault, M C, Grant, J, Bricelj, V M. Removal efficiency of the dinoflagellate Heterocapsa triquetra by phosphatic clay, and implications for the mitigation of harmful algal blooms[J]. Marine Ecology-Progress Series,2003,253:97-109.
    [106]Robb, M, Greenop, B, Goss, Z, Douglas, G, Adeney, J. Application of Phoslock (TM), an innovative phosphorus binding clay, to two Western Australian waterways:preliminary findings[J]. Hydrobiologia,2003,494 (1-3):237-243.
    [107]Kamaya, Y, Kurogi, Y, Suzuki, K. Acute toxicity of fatty acids to the freshwater green alga Selenastrum capricornutum[J]. Environmental Toxicology,2003,18:289-294.
    [108]Marshall, J A, Nichols, P D, Hallegraeff, G M. Chemotaxonomic survey of sterols and fatty acids in six marine raphidophyte algae[J]. Journal of Applied Phycology,2002,14 (4):255-265.
    [109]McLarnon-Riches, C J, Rolph, C E, Greenway, D L A, Robinson, P K. Effects of environmental factors and metals on Selenastrum capricornutum lipids[J]. Phytochemistry, 1998,49(51):241-1247.
    [110]Wu, J T, Chiang, Y R, Huang, W Y, Jane, W N. Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria[J]. Aquatic Toxicology,2006,80 (4):338-345.
    [111]Petkov, G, Garcia, G. Which are fatty acids of the green alga Chlorella?[J]. Biochem System Ecol,2007,35 (5):281-285.
    [112]Schindler, D W. Evolution of phosphorus limitation in lakes[J]. Science,1977,195 (4275):260-262.
    [113]Lee, S J, Jang, M H, Kim, H S, Yoon, B D, Oh, H M. Variation of microcystin content of Microcystis aeruginosa relative to medium N:P ratio and growth stage[J]. Journal of Applied Microbiology,2000,89 (2):323-329.
    [114]朱森.Gemini阴离子表面活性剂结构与性能研究.天津:天津大学:2003.
    [115]Brun, A, Brezesinski, G, Mohwald, H, Blanzat, M, Perez, E, Rico-Lattes, I. Interaction between phospholipids and new Gemini catanionic surfactants having anti-HIV activity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,228 (1-3):3-16.
    [116]Veronovski, N, Andreozzi, P, La Mesa, C, Sfiligoj-Smole, M, Ribitsch, V. Use of Gemini surfactants to stabilize TiO2 P25 colloidal dispersions[J]. Colloid and Polymer Science,2010, 288 (4):387-394.
    [117]Khan, I A, Mohammad, R, Alam, M S, Kabir ud, D. Effect of alkylamine chain length on the critical micelle concentration of cationic Gemini butanediyl-,-bis(dimethylcetylammonium bromide) surfactant[J]. Journal of Dispersion Science and Technology,2009,30 (10):1486-1493.
    [118]《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社;2002.
    [119]APHA. Standard methods for the examination of water and waste water[M]. Washington,DC: American Public Health Association; 1998.
    [120]Lewis, M A, Dantin, D D, Walker, C C, Kurtz, J C, Greene, R M. Toxicity of clay flocculation of the toxic dinoflagellate, Karenia brevis, to estuarine invertebrates and fish[J]. Harmful Algae,2003,2 (4):235-246.
    [121]Howell, B R, Shelton, R G J. The effect of China clay on the bottom fauna of St Austell and Mevagissey bays[J]. J. Mar. Biol. Assoc. UK,1970,50:593-607.
    [122]Nuttall, P M, Bielby, G H. The effect of China-clay wastes on stream invertebrates[J]. Environmental Pollution (1970),1973,5 (2):77-86.
    [123]Qi, L, Liao, W, Bi, Z. Adsorption of conventional and gemini cationic surfactants in nonswelling and swelling layer silicate[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,302 (1-3):568-572.
    [124]Seo, K S, Lee, C K, Park, Y T, Lee, Y. Effect of yellow clay on respiration and phytoplankton uptake of bivalves[J]. Fisheries Science,2008,74(1):120-127.
    [125]唐世华,黄建滨,李子臣,王传忠,李锰.Gemini(孪联)表面活性剂的界面性质与应用[J].日用化学工业,2001,31(6):26-29.
    [126]张长荣,金聪玲.阳离子活性杀菌剂的合成进展及其结构与杀菌力的关系[J].陕西化工,1997.3:1-13.
    [127]Spiegel, S, Bader, K P. Interaction of quaternary ammonium and phosphonium salts with photosynthetic membranes[J]. Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 2001,56 (11-12):1057-1066.
    [128]Sun, X X, Choi, J K, Kim, E K. A preliminary study on the mechanism of harmful algal bloom mitigation by use of sophorolipid treatment[J]. Journal of Experimental Marine Biology and Ecology,2004,304 (1):35-49.
    [129]吴萍,俞志明.吉米奇表面活性剂改性粘土治理赤潮研究[J].环境科学,2007,28(1):17-23.
    [130]Chen, Y M, Liu, J C, Ju, Y-H. Flotation removal of algae from water[J]. Colloids and Surfaces B:Biointerfaces,1998,12 (1):49-55.
    [131]Phoochinda, W, White, D A, Briscoe, B J. Comparison between the removal of live and dead algae using froth flotation[J]. Journal of Water Supply Research and Technology-Aqua,2005, 54 (2):115-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700