PHBV/PCL共混材料性能研究及组织工程支架制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
支架材料作为细胞粘附生长的模板,对工程化组织的构建起重要作用。材料本体组成和结构、表面拓扑结构、降解行为等对组织的生物特征产生重要影响。聚羟基丁酸戊酸酯(PHBV)和聚ε-己内酯(PCL)都是具有良好生物相容性、生物降解性和无毒性的生物医用材料。PHBV结晶度较高、球晶大,导致其脆性大、加工温度范围窄,此外还有疏水性强等缺点。PCL在生物医学等领域有许多潜在的应用价值,但其热变形温度比较低,作为骨科修复材料和组织工程支架材料使用时,其硬度和强度方面都达不到要求。因此,本研究采用熔融共混和溶液共混两种共混方法制备了PHBV/PCL共混材料,在保留原有生物性能的同时,共混材料的综合力学性能得到了提高,材料的生物体结合能力也有望同时得到提高。
     文章研究了共混材料的结构、力学和降解等特性,运用溶剂浇铸/粒子沥滤法和纤维粘结法制备了组织工程用三维多孔支架材料。研究结果表明:无论采用溶液共混法还是熔融共混法,PHBV与PCL都是不相容的;PHBV/PCL共混体系中PHBV的结晶机制没有改变,而PCL的结晶机制改变了;共混物中PCL的结晶结构基本没变,而PHBV的结晶结构有改变,共混后材料的结晶度比单独的PCL、PHBV的结晶度都低。力学性能测试结果表明,PHBV和PCL,力学性能得到了互补,共混材料的强度虽然相比纯PHBV有所降低,但是改善了其脆性,韧性增加了。尤其是PHBV含量在40%左右时综合力学性能最佳,可以满足用作组织工程材料力学性能要求。通过接触角和吸水率测试,可以得出通过两材料的共混后,材料的表面结构和内部结构有改变,当PHBV含量在40%时其亲水性能最佳。降解试验结果表明,脂肪酶加速了PHBV/PCL的降解速率。降解15周后,不加酶的降解试验最高失重率是8%左右,而有酶参与的降解最高失重率达到了16%左右,这是因为脂肪酶有促进水解的作用。亲水性越好则降解越快,这是因为聚酯的降解其实主要是水解,亲水好的材料能与降解媒介接触充分,从而加速了降解。共混材料中当PHBV含量在40%时,其亲水性最好,故无论是加酶降解还是不加酶降解,其失重率都是最高的。通过溶剂浇注/粒子沥滤法和纤维粘结法都能成功制备三维多孔支架,前者制备的支架孔隙率能达到90%左右,后者只能达到70%左右。
     本文研究表明,经过一定比例共混改性后,PHBV/BCL共混材料具备优良的力学性能和生物性能,在组织工程支架材料中应用前景广阔。在支架制备方法中,可以制得高性能的三维多孔支架,同时实现一定范围内对微孔结构的可控调节,满足组织工程的不同需要。
Acting as templates for cell adhesion and growth, scaffolds play an important role in construct of tissue engineering. Thus, scaffold biomaterials should meet a series of physical, chemical and mechanical need such as surface and degradation characteristics, blood and cell compatibilities etc. PHBV is microbially produced materials with many excellent properties such as biodegradability , biocompatibility , non-toxicity etc. And PCL also have those excellent properties. But due to its high crystallinity and large spherulite, PHBV shows high brittleness and strong hydrophobic property. At the same time, its processing scope is rather narrow. PCL has important application in the field of biomedical engineering and tissue engineering. But it also has disadvantage. For example, its strength is too lower to be used effectively in tissue engineering. So, it is very necessary to further improve its intensity. In addition, the bone binding ability of the PHBV/PCL blend will be improved, because the PCL have better bone binding ability.
     In this paper, poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly (ε-caprolactone) (PCL) were blended by co-solution casting method and co-melt spinning method. The properties of PHBV/PCL blends were investigated. Such as crystallization , miscibility , biodegradability, mechanical property, etc. At the same time, three dimensional scaffolds were prepared by fiber bonding method and Solvent Casting /Particulate Leaching method. The result indicated that there is immiscibility for PHBV and PCL blends. Crystallization of PHBV and PCL was studied and analyzed by Avrami equation using two-step crystallization in the PHBV/PCL blends. The crystallization rate of PHBV at 70℃decreased with the increase of PCL in the blends, while the crystallization mechanism did not change. In the case of the isothermal crystallization of PCL at 40℃, the crystallization rate increased with the addition of PHBV, and the crystallization mechanism changed, too. And the Crystallinity of the PHBV/PCL blends is less than the pure PHBV and pure PCL. The processing ability was improved after adding PCL, which is due to decrease of the melting temperature and the crystallinity. With the tenacity and elongation increased much , PHBV/PCL blends mechanism property was improved, especially when the PHBV content 40%. After water absorption and contact angle tested and analyzed, the results indicated that the surface and interior structure were changed. Hydrophilic property is improved, especially when PHBV content 40%. The degradation behavior of PHBV/PCL blends was investigated in the phosphate solution and lipase phosphate solution by weight loss and SEM, etc. The results indicated that the degradation rate increased twice than before with the addition of lipase. Scaffolds fabricated via SC/PL could be applied in tissue engineering of cartilage with porosity higher than 90% and appropriate pore size. The porosity of scaffolds obtained from fiber bonding method could reach 70% with pore size between 70-300μm. Scaffolds fabricated from two methods hold good hydrophilic, which was favorable for cell adhesion and generation.
     PHBV/PCL owning excellent biological and physical properties should be an attracting prospect as scaffold biomaterial. For scaffold fabrication, improving of traditional methods and new attempted melt bonding process both were feasible to obtain high performance in microstructures which were controllable for different applications.
引文
[1]Langer Robert,Vacanti Joseph P.Tissue engineering[J],Science,1993,260(5110):920-926.
    [2]余耀庭,姚康德.生物医用材料[M].天津,天津大学出版社,2000,20-21.
    [3]裴国献.组织工程学─21世纪面临的机遇与挑战[J].国际骨科学杂志,2005,27(1):2-4.
    [4]崔磊,刘伟,曹谊林.组织工程的发展与主要研究方向[J].上海第二医科大学学报,2004,24(4):229-231.
    [5]Cao Y,Vacanti J P,Paige K T.Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear[J].Plastic and reconstructive surgery,1997,100(2):297-302.
    [6]Peter X M.Scaffolds for Tissue Fabrication.Materials Today,2004,5:30-40.
    [7]Lyaaght M J,Reyes J.The growth of tissue engineering[J].Tissue Engineering,2001,7(5):485-498.
    [8]Sechriest F V,Miao Y J.GAG-augmented pelysaccharide hydrogel:a novel biocompati ble and biodegradable material to support chondrogenesis.[J].Journal of Biomedical Mat erial Research,2000,49(4):534-541.
    [9]Chenite A,Chaput C,Wang D.Novel injectable neutral solutions of chitosan form biod egradable gels in situ[J].Biomaterials,2000,21(21):2155-2161.
    [10]张其清,张立海,马东端,等.组织工程及其支架研究进展和面临的问题及展望[J].基础医学与临床,2001,21(6):482-287.
    [11]王亚妮,刘艳君.甲壳素纤维性能研究及在纺织业中的应用.广西纺织科技,2007,36(3):44-48.
    [12]陈鹏,刘冰.活性纳米羟基磷灰石复合胶原材料贴附式植骨的实验研究.临床口腔医学杂志,2007,23(9):533-536.
    [13]Francesco Rosso,Gerardo Marino,Antonio Giordano.Smart Materials as Scaffolds for Tissue Engineering[J].Journal of Cellular Physiology.2005,203(3):465-470.
    [14]陈莉,赵保中,杜锡光.聚羟基乙酸及其共聚物的研究进展[J].化工新型材料,2002,30(3):10-15.
    [15]Daniels A U,Chang M K O,Andriano K P J.Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone.Journal of appliedbio materials:an official journal of the Society for Biomaterials,1990,1(1):57-78.
    [16]Brady J M,CutrIght D E,Miller R A.Resorption rate,route of elimination,and ultra structure of the implant site of polylactic acid in the abandonminal wall of the rat[J].J Biomed Mater Res,1973,7(2):155-166.
    [17]刘建伟,赵强,万昌秀.医用聚乳酸体内降解机理及应用研究进展[J].航天医学与医学工程,2001,14(4):308-312.
    [18]Hans Pistner,Harald Stallforth,Ralf Gutwald.Poly(L-lactide):a long-time degradation study in vivo.Part Ⅱ:physico-mechanical behaviour of implants[J].Biomaterials,1994,15(6):439-450.
    [19]Blaker J J,Day R M,Manet V et al.Novel bioresorbable poly(lactide-co-glycolide)(PLGA)and PLGA/Bioglass composite tubular foam scaffolds for tissue engineering a pplications[J].Materials Science Forum,2004:415-419.
    [20]Marra K G Szem J W,Kumta P N.In vitro analysis of biodegradable polymer blend/ hydroxyapatite composite for bone tissue engineering[J].J Biomed Mater Res,1999,47(3):324-335.
    [21]Williams D F.Mechanisms of biodegradation of implantable polymers.Clinical Materia Is,1992,10(1-2):9-12.
    [22]Coombes A G,Meikle M C.Resorbable synthetic polymers as replacements for boneg raft.Clin Mater,1994,17(1):35-67.
    [23]郑磊,王前,裴国献,等.复合类新型骨基质材料生物相容性研究[J].中国修复重建外科杂志,2003,17(2):125-130.
    [24]Storey R F,Taylor A E.Effect of stannous octoate on the composition,molecular wei ght,and molecular weight distribution of ethylene glycol-initiated PCL.Journal of Ma cromolecular Science,Pure and Applied Chemistry,1998,A35(5):723-750.
    [25]Rainagri R,Scoot C E.Phase inversion during compounding with a low melting majo r component:polycaprolactone/polyethylene blends[J].Polymer Engineering and Science,1998,38(10):1751.
    [26]Cheung Y W,Stein R S.Evolution of Crystalline Structures of Poly(s-caprolactone)/Po lycarbonate Blends[J].Macromolecules,1994,27(13):3589-3595.
    [27]lwawoto A,Tokiwa Y.Effect of the phase structure on the biodegradability of polypro pylene/polycaprolactone blends[J].Journal of Applied Polymer Science,1994,52(9):1357-1360.
    [28]Filippo Causa,Paolo A.Netti,Luigi Ambrosio.A multi-functional scaffold for tissue r egeneration:The need to engineer a tissue analogue.Biomaterials,2008,28(34):5093-5099.
    [29]Deniz K,Chang Liu.Microfabrication technology for polycaprolactone,a biodegradable polymer[J].Journal of Micromechanics and Microengineering,2000,10(1):80-84.
    [30]Matthew R,Eric F,Allan GA,et al.Cell attachment and proliferation on novel polyc aprolactone fibres having application in soft tissue engineering.Eur Cells Mater,2002,4(2):62-63.
    [31]Hutmacher D W,Schantz T,I Zein,etc.Mechanical properties and cell cultural respo nse of polycaprolactone scaffolds designed and fabricated via fused deposition modeling.J Biomed Mater Res,2001,55(2):203-216.
    [32]刘建伟,赵强,万昌秀.医用聚乳酸体内降解机理及应用研究进展[J].航天医学与医学工程,2001,14(4):308-312.
    [33]艾合麦提·玉素甫,陈统一,陈中伟,刘大鹏,王振斌.可降解聚己内酯修复骨缺损的实验研究[J].中国修复重建外科杂志,2005,19(6):439-442.
    [34]唐丽娜,宋存先,孙洪范等.医用聚己内酯埋植剂体内降解的研究.生物医用工程与临床,2007,11(4):263-269.
    [35]贾骏,段嫄嫄,周建学等.聚己内酯电纺纤维支架对骨髓基质细胞增殖及分化的影响.第四军医大学学报,2007,28(13):1153-1156.
    [36]Ali S A,Zhong S P,Doherty P J,etc.Mechanisms of polymer degradation in implan table devices.I Poly(caprolactone)[J].Biomaterials,1993,14(9):648-656.
    [37]Boeree N R,Dove J,Cooper J J.etc.Development of a degradable composite for ort hopaedic use:mechanical evaluation of a hydroxyopatite-polyhydroxybutyrate composite material[J].Biomaterials,1993,14(10):793-796.
    [38]Sharma ranjana,Ray R alok.Polyhydroxybutyrate,its copolymers and blends[J].Journal of Macromolecular Science,Reviews in Macromolecular Chemistry and Physics.1995,C35(2):327-359.
    [39]郭创奇,杨青芳.聚(3-羟基丁酸酯-co-3-羟基戊酸酯)的改性研究.化学与黏合,2002,5:217-221.
    [40]Zhu Xin Hao,Wang Chi-Hwa,Tong Yen Wah.Combination of proteins on PHBV mi crosphere scaffold to regulate Hep3B cells activity and functionality for an in vitro model of liver tissue engineering.AIChE Annual Meeting,Conference Proceedings,San Francisco,CA,United States,2006,430u/1-430u/6.
    [41]Zhu XinHao,Wang Chi-Hwa,Tong Yen Wah.Growing tissue-like constructs with Hep3B/HepG2 liver cells on PHBV microsphere scaffold.AIChE Annual Meeting,Conference Proceedings,San Francisco,CA,United States,2006,219f/1-219f/6.
    [42]Ni J,Wang M.In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite[J].Materials Science & Engineering.C:Biomimetic and Supramolecular Systems,2002,C20(1-2):101-109.
    [43]叶鹤荣,胡平,杨冬芝,张风波,齐庆磊.PHBV/HA骨修复材料的研究[J].功能高分子学报,2004,17(3):499-502.
    [44]Nam Y S,Park T G Porous biodegradable polymeric scaffoldsprepared by thermallyphase separation[J].J Biomed Mater Res,1999,47:8217.
    [45]Mikos AG,Bao Y,Cima LG,et al.Preparation of Poly(glycolic acid)bonded fiber structures for cell attachment and transplantation[J].Journal of Biomedical Materials Research,1993,27:183.
    [46]Mooney D J,Mazzoni C L,Breuer C,etc.Stabilized polyglycolic acid fiber-based tubes for tissue engineering.Biomaterials,1996,17(2):115-124.
    [47]颜晓慧,洪华容.可降解聚合物作骨组织工程细胞外基质材料的研究进展.北京生物医学工程,2000,19(2):123-130.
    [48]Bhattami S R,Bhattami N,Yic H K,et al.Novel biodegradable electrospun membrance:scaffolds for bone tissue engineering via precise extrusion[J].Biomaterials,2004,25:2595-2602.
    [49]费小琛,颜永年,熊卓.骨组织工程支架的研制材料导报,2002,16(9):63-66.
    [50]Seeger J M,Ingegno M D,Bigatan E,etc.Hydrophilic surface modification of metallic endoluminal stents.Journal of vascular surgery:official publication,the Society for Vascular Surgery[and]International Society for Cardiovascular Surgery,North American Chapten 1995,22(3):327-335.
    [51]Elema H,Groot J H,Nijenhuis A J.Use of porous biodegradable polymer implants in meniscus reconstruction:2.Biological evaluation of porous biodegradable implants in menisci[J].Colloid and Polymer Science,1990,268(12):1082-1093.
    [52]Schugens C,Maquet V,Grandfils C,et al.Biodegradable and macroporous polylactide implants for cell transplantation:1.Preparation of macroporous polylactide supports bysolid 2.liquidphase separation[J].Polymer,1996,37(6):1027-1038.
    [53]Ma Peter X,zhang Ruiyun.Microtubular architecture of biodegradable polymer scaffolds[J].Journal of Biomedical Materials Research,2001,56(4):469-477.
    [54]王克敏,李世荣,郭嘉.热致相分离技术制备组织工程支架.化学与生物工程,2006,23(1):1-3.
    [55]Schugens C,Maguet V,Grandfils C,et al.Polylactide macroporous biodegradable implants for cell transplantation:Ⅱ Preparation of polylactide foams for liquid-liquid phase separation[J].J Biomed Mater Res,1996,30:1970-1975.
    [56]Nam Y S,Park T G.Biodegradable polymer microcellular foams by modified thermally induced phase separation method[J].Biomaterial,1990,20:1783-1790.
    [57]Yang F,Murugan R,Ramakrishna S,et al.Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engi2neering[J].Biomaterials,2004,25(10):1891-1990.
    [58]Kim H D,Bae E H,Kwon I C,et al.Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation[J].Biomaterials,2004,25(12):2319-2329.
    [59]Whang K,Thomas C H.Healy K E,et al.A novel method to fabricate bioabsorbable scaffolds[J].Polymer,1995,36(4):837-842.
    [60]Kyumin Whang,Thomas K,Goldstick.A biodegradable polymer scaffold for delivery of osteotropic factors[J].Biomaterials,2000,21(24):2545-2551.
    [61]蔡志江.聚羟基丁酸酯的改性及其作为组织工程支架材料的研究[M].天津,天津大学.2005.
    [62]KIM S S,UTSUNOMIYA H,KOSKI J A,WU B M,et al.Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with anintrin sic network of channels[J].Annals of surgery,1998.228(1):8-13.
    [63]ZELTINGER J,SHEERWOOD J K,GRAHAM D M,MUELLERR,GRIFFITH L G.Effects of pore size and void fraction on cellular adhesion,proliferation,and matrix deposition[J].Tissue Engeneering,2001,7(5):557-572.
    [64]LAM C X F,MO X M,TEOH S H,HUTMACHER D W.Scaffold development using 3D printing with a starch-based polymer[J].Mater Sci Eng C,2002,20(1-2):49-56.
    [65]ZEIN I,HUTMACHER D w,TAN K C,TEOH S H.Fused deposition modeling of novel scaffold architectures for tissue engineering applications[J].Biomaterials,2002,23(4):1169-1185.
    [66]CORNEJO I A,MCNULTY T F,LEE S,BIANCHI E,DANFORTH S C,SAFARI A.Development of bioceramic tissue scaffolds via fused deposition of ceramics[M].Bioce ramies:materials and applications Ⅲ.Westerville,American Ceramic Society,2000.18-95.
    [67]Lee G H,Barlow J W.Selective laser sintering of bioceramic materials for implants[M].Proceedings of the Solid Freeform Fabrication Symposium,Austin,TX,1993:376-80.
    [68]Hou Q,Grijpma DW,Feijen J.Porous polymeric structures for tissue engineering prepared by a coagulation,compression molding and salt leaching technique[J].Biomaterials,2003,24(11):1937-1947.
    [69]Chen G Ushida T,Tateishi T.A hybrid network of synthetic polymer mesh and collagen sponge[J].Chemical Communications,2000,(16):1505-1506.
    [70]费强,尚龙安,范代娣,王德伟.生物可降解材料PHBV的细胞毒性评价的研究[J].安全与环境学报,2005,6(5):47-51.
    [71]Chen D R,Bei J Z,Wang S G.Polycaprolactone microparticles and their biodegradation[J].Polymer Degradation and Stability,2000,67(3):455-459.
    [72]胡芸,陈一民,谢凯.PCL改性途径的研究[J].材料导报,2001,15(5):52-54.
    [73]Y.S.Chun,W.N.Kin.Thermal properties of poly(hydroxybutyrate-co-hydroxyvalerate)and poly(ε-caprolactone)blends.Polymer,2000,41(6):2305-2308.
    [74]James E.Mark.Polymer Data Handbook[M].London,Oxford University Press,Inc.1999.512.
    [75]Qiu Zhaobin,Yang Wantai,Ikehara Takayuki.Miscibility and crystallization behavior of biodegradable blends of two aliphafic polyesters Poly(ε-hydroxybutyrate-co-hydroxyvalerate)and poly(ε-caprolactone)[J].Polymer,2005,46(25):11814-11819.
    [76]刘俊姝,王锐,张大省.易水解聚酯的结晶性能[J].北京服装学院学报.2001,23(1):1-5.
    [77]韩克清,余木火.PET/纳米TiO2复合材料的结晶性能[J]。塑料工业.2004,32(11):36-38.
    [78]Achimui k,Nakabyaya S.,Nanzawa H.,et al.Medical Polymer,kyoritsushhuppan kabushikikasha(in japan).
    [79]Zhigang Xie,Changhai Lu,Xuesi Chen,et al.A facile approach to biodegradable poly(ε-caprolactone)-poly(ethylene glycol)-based polyurethanes containing pendant amino groups[J].European Polymer Journal,2007,43(5):2080-2087.
    [80]Park K,E Mao W,Park H.Morphological characterzafion of surface-induced platelet activation[J].Biomaterials,1990,11(1):24-31.
    [81]高海军,陈竖,吴玉姗.聚-β-羟基烷酸薄膜的好氧和厌氧降[J].环境科学,1997,18(40):17-20.
    [82]Jitendra K Pandey,Reddy K Raghunatha,Kumat A Pratheep.An overview on the degradability of polymer nanocomposites[J].Polymer Degradationand Stability,2005,88(2):234-250.
    [83]Miller N D,Williams D E On the biodegradation of poly-β-hydroxybutyrate(PHB)homopolymer and poly-β-hydroxybutyrate-hydroxyvalerate copolymers[J].Biomaterials,1987,8(2):129-137.
    [84]Mollo A R,Corrigan O I.Effect of poly-hydroxy aliphatic ester polymer type on amoxicillin release from cylindrical compacts[J].International Journal of Pharmaceutics,2003,268(1-2):71-79.
    [85]Ramaswamy Mani,Marinal Bhattacharya,etc.Synthesis and characterization of function nal aliphatic copolyesters[J].Journal of Polymer Science,Part A:Polymer Chemistry,2002,40(19):3232-3239.
    [86]Gursel I,Baclk C,Arica Y,etc.Synthesis and Mechanical properties of interpenetrating networks of polyhydroxybutyrate-co-hydroxyvalerate and polyhydroxyethyl methacryla te[J].Biomaterials,1998,19(13):1137-1143.
    [87]陈建海,马安德,来永毅,等.可吸收性生物材料PCL在体外与动物体内降解机制的研究[J].生物医学工程杂志,1997,14(4):334-337.
    [88]沈正荣,朱家惠,吴兰亭,等.D,L-聚乳酸微球大鼠体内降解[J].生物医学杂志,1994,11(2):98-101.
    [89]沈正荣,周芝芳,沈文照,等.乳酸-乙醇酸聚物(8:2)微球大鼠体内降解[J].生物医学工程学杂志,1990,7(2):127-130.
    [90]Potts J E,Clendinning R A.,Cohen S.Biodegradable plastic containers for seeding transplants[J].Technical Papers-Society of Plastics Engineers,1975,21:567-569.
    [91]Pitt C G,Jeffcoat A R,Zweidinger R A.Sustained drug delivery systems.l.The perme ability of poly(ε-caprolactone),poly(DL-lactic acid),and their copolymers[J].Journal of Biomedical Materials Research,1979,13(3):497-507.
    [92]Pitt C G,Schindler A.Capronor.A biodegradable delivery system for levonorgestrel[M].Long-acting Contraceptive Delivery Systems,Harpper & Row Publishers,Philadelphia,1983:48-63.
    [93]Koleske J V.Blends containing poly(ε-caprolactone)and related polymers[M].Polymer Blends,Academic Press,New York,1978:369-389.
    [94]Suprakas Sinha Ray,Mosto Bousmina.Biodegradable polymers and their layered silicate nanocomposites:In greening the 21st century materials world[J].Progress in Materi al Science,2005,50(8):962-1079.
    [95]Georgia Chouzouri,Marino Xanthos.In vitro bioactivity and degradation of polycaprol actone composites containing silicate fillers[J].Acta Biomaterialia,2007,3(5):745-756.
    [96]Pitt C G,CHasalow F I,Hibionada Y M.Aliphatic polymesters.I.the degradation of Poly(ε-caprolactone)in vivo[J].J.Appl.polym.Sci.1984,26:3779-3789.
    [97]徐岩,李建波,王栋.解脂假丝酵母脂肪酶的纯化及性质研究[J].无锡轻工大学学报,2001,20(3):851-854.
    [98]Saltzman W M.Wearing carltilage at zero g:the reality of tissue engineering in space[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(25):13380-13391.
    [99]Felmming R G,Murphy C J,Nealey P F,etc.Effects of synthetic micro- and nano-st ructured surfaces on cell behavior[J].Biomaterials,1999,20:573-588.
    [100]Elfick A P D.Poly(ε-caprolactone)as a potential material for a temporary joint spacer[J].Biomaterials,2002,23(23):4463-4467.
    [101]Ng K W,Hutmacher D W,Schantz J T,et al.Evaluation of ultra-thin poly(ε-caprolactone)films for tissue-engineered skin[J].Tissue Engeneering,2001,7(4):441-455.
    [102]Mikos A G,Thorsen A J,Czerwonka L A,et al.Preparation and characterization of poly(L-lactic acid)foams[J].Polymer,1994,35(5):1068-77.
    [103]Murphy W L,Dennis R G,Kileny J L,et al.Salt fusion:an approach to im-provep ore interconnectivity within tissue engineering scaffolds[J].Tissue Engi-neering,2002,8(1):43-52.
    [104]陈际达,刘伟,崔磊,等.离心粘结法制备孔隙连通的三维细胞支架[J].中国生物工程杂志,2005,25(10):35-46.
    [105]Andrea C,Alessandro M.Tissue engineering and Cartilage regeneration for auricular reconstruction[J].International Journal of Pediatric Otorhinolaryngology,2006,70(9):1507-1515.
    [106]Lo H,Ponticiello M S,Leong K W Fabrication of controlled release biodegradable foams by phase separation[J].Tissue Engineering,1995,1(1):15-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700