不同分子链微结构聚乳酸—聚三亚甲基碳酸酯共聚物的降解行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大多数的可生物降解材料都是脂肪族聚酯,它们具有良好的生物相容性,而且对环境无污染,在生物医学领域如手术缝合线,药物控制释放载体以及组织工程材料等方面得到了广泛的应用,是二十一世纪理想的绿色环保材料。通过在聚L-乳酸(PLLA)的链段中引入聚三亚甲基碳酸酯(PTMC),可以改善PLLA的降解速率和力学性能,同时还可以减轻PLLA降解过程中产生的大量酸性物质带来的炎症反应,减少患者的痛苦,缩短病患的恢复期。可降解材料的生物降解行为研究,不仅具有重要的理论价值,对于实际应用也具有重要的指导意义。
     本论文研究了一系列PLLA-PTMC共聚物。其中,Cop1、Cop2和Cop3是在110℃反应了72h后的产物,而Cop4和Cop5是在180℃反应50min和80min后得。样品放入pH=7.4,37℃的磷酸盐缓冲溶液进行降解实验,对聚合物的降解行为进行了跟踪测试。采用~1H NMR、~(13)C NMR、GPC、DSC、WAXD、FI-IR等分析测试方法对共聚物进行合成表征以及降解行为的研究。
     结果表明,Cop1、Cop2和Cop3为半结晶态共聚物,而Cop4和Cop5为无规共聚物,其中LLA和TMC单元含量相同的无规共聚物Cop4在降解中仍然保持了无规的特性,而LLA含量较高的无规共聚物Cop5由于含有较多的长链段LLA序列,因此在降解过程中发生了结晶行为。对于初始状态为半结晶形态的共聚物Cop1~Cop3,降解优先发生在无定型区域。不同形态的共聚物在降解过程中呈现了不同的化学组成,链段微观结构以及不同的形态变化,我们可以通过改变共聚物组成与链结构来调节材料的亲疏水性能和降解速率,为生物医药和组织工程领域的研究提供了一种有意义的载体材料。
Ring-opening copolymerization of L-lactide(LLA) and 1,3-trimethylene carbonate(TMC) blends with LLA/TMC feed ratios from 90/10 to 50/50 was realized at 110℃or at 180℃for various time periods,using low toxic zirconium(Ⅳ) acetylacetonate(Zr(Acac)_4) as initiator.The resulting copolymers exhibit different chain microstructures.Copolymers obtained at 110℃exhibit a gradient chain structure with the presence of long lactidyl sequences next to very short ones,and are thus semi-crystalline.In contrast,copolymers obtained at 180℃are amorphous because of a more random chain microstructure with the presence of larger amounts of medium sequences.Degradation of the copolymers was carried out in a pH 7.4 phosphate buffer at 37℃.Analytical techniques such as ~1H-NMR、~(13)C-NMR、DSC、GPC and WAXD were used to monitor the degradation.Initially amorphous copolymers can remain amorphous during degradation because of the highly random units distribution,and equivalent LLA and TMC contents.However,initially amorphous copolymers containing larger amounts of lactidyl units are able to crystallize during degradation because of the presence of relatively long LLA blocks. Insofar as initially semi-crystalline copolymers are concerned,degradation occurs preferentially in the amorphous zones.Therefore,various degradation behaviors and degradation rates can be obtained by varying the chemical composition,chain microstructure and morphology of PLLA-PTMC copolymers.
引文
[1]俞耀庭.生物医用材料[M].天津:天津大学出版社,2000:45-73
    [2]Li S.M.;Vert M.Encyclopedia of controlled drug delivery,Volume 1[M].New York:Wiley&Sons,1999:71-93
    [3]Liu L.J.;Li S.M.;Garreau H.;Vert M.Selective Enzymatic Degradations of Poly(L-lactide) and Poly(ε-caprolactone) Blend Films[J].Biomacromolecules,2000,1:350-359
    [4]Choi S.K.;Kim D.Drug-releasing Behavior of MPEG/PLA Block Copolymer Micelles and Solid Particles Controlled by Component Block Length[J].Journal of Applied Polymer Science,2003,83:435-445
    [5]Jeong B.;Bae Y.H.;Lee D.S.;Kim S.W.Biodegradable block copolymers as injectable drug-delivery systems[J].Nature,1997,388:860-862
    [6]Li S.M.;Ghzaoui A.E.;Dewink E.Rheology and Drug release Properties of Bioresorbale Hydrogel Prepared from Polylactide/Poly(ethylene glycol) block Copolymers[J].Macromolecualr sympisa,2005,222:23-35
    [7]Molina I.;Li S.M.;Martinez M.B.;Vert M.Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type[J].Biomaterials,2001,22:363-369
    [8]Ren T.B.;Ren J.;Jia X.Z.;Pan.K.F.The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds[J].Journall of Biomecidal materials research:part A,2005,74A:562-569
    [9]Vert M.;Li S.M.;Garreau H.New Insight on the Degradation of Bioresorable Polymers Devices Based on Lactic and Glycolic Acids[J].Clinical Materials,1992,10:3-8
    [10]Middleton J.C.;Tipton J.C.Synthetic Biodegradable polymers as orthopedic devices[J].Biomaterials,2000,21:2335-2346
    [11]Gilding D.K.;Reed A.M.Biodegradable Polymers for use in surgery-polyglycolic/poly(lactic acid) homo- and copolymers:l[J].Polymer,1979,20:1459-1464
    [12]Langer R.;Vacanti J.P.Tissue engineering.Science,1993,260:920-926
    [13]Balet J.E.;Gover L.;Gaunt T.;Wright A.J.;Gibson I.R.Preparation ofmacroporous calcium phosphate cement tissue engineering scaffold[J].Biomaterials,2002,23:3063-3072
    [14]Li S.H.;De Wijn J.R.;Layrolle P.;De Groot K.Synthesis ofmacroporous hydro xyapatite scaffolds for bone tissue engineering[J].Journal of Biomedical Materials Research,2002,61:109-120
    [15]Rodriguez-Lorenzo L.M.;Vallet-Regi M.;Ferreira J.M.F.;Ginebra M.P.;Aparicio C.;Planell J.A.Hydroxyapatite ceramic bodies with tailored mechanical properties for different applications[J].Journal of Biomedical Materials Research,2002,60:159-166
    [16]Griffith L.G.Polymeric biomaterials[J].Acta Materialia,2000,48:263-277
    [17]Seal B.L.;Otero T.C.;Panitch A.Polymeric biomaterias for tissue and organ regeneration[J].Materials Science & Engineering R-Reports,2001,34:147-230
    [18]Chu C.C.Degradation phenomena of two linear aliphatic polyester fibres used in Medicine and surgery[J].Polymer,1985,26:591-594
    [19]Schwach G.;V ert M.In vitro and in Vivo degradation of lactic acid-based interference screws used in cruciate ligament reconstruction[J].Internal Journal of Biological Macromolecules,1999,25:283-291
    [20]Albertsson A.C.;Varma I.K.Aliphatic Polyesters:Synthesis,Properties and Applications[J].Advanced in Polymer Science,2002,157:1-40
    [21]Edlund U.;Albertsson A.C.Degradable Polymer Microspheres for Controlled Drug Delivery[J].Advanced in Polymer Science,2002,157:67-112
    [22]Li S.M.;Vert M.Biodegradation of aliphatic polyesters[B].Degradable Polymers:Principles and Applications,2nd edition,G.Scott,ed.,Dordrecht(NL):Kluwer Academic Publishers,2002,pp.71-131
    [23]李世普.生物医用材料导论[M].武汉工业大学出版社,2000,185-186
    [24]任杰.可降解与吸收材料[M].化学工业出版社,现代生物技术与医药科技出版中心,2003:1-15,72-110
    [25]Okada M.Chemical syntheses of biodegradable polymers[J].Progress in Polymer Science,2002,27:87-133
    [26]Ghalbzouri A.E.;Lamme E.N.;Van Blitterswijk C.A.The use of PEGT/PBT as a dermal scaffold for skin tissue engineering[J].Biomaterials,2004,25:2987-2999
    [27]Kellomaki M.;Paasimaa S.;Grijpma D.W.In vitro degradation of Polyactive(R)1000PEOT70PBT30 devices.Biomaterials,2002,23:283-295
    [28]Godbey W.T.;Atala A.In Vitro systems for tissue engineering.Annals of the the New York Academy of Sciences,2002,961:10-26
    [29]liaz R.V.;Labres M.;Evora C.One-month sustained release microsphcrcs of 1251.bovine calcitonin..In vilro-in vivo syudics[J].Journal of Controlled Release,1999,59:55-62
    [30]任杰,宋金星.聚乳酸及其共聚物在缓释药物中的研究及应用.同济大学学报,2003.31:1054-1058
    [31]Qiu H.J.;Rieger J.;Gilbert B.Jerome R.;Jerome C.PLA-Coated gold nanoparticles for the labeling of PLA biocarriers[J].Chemistry of Materials,2004,16:850-856
    [32]Moe K.S.;Weisman R.A.;Resorbable fixation in facial plastic and head and neck reconatructive surgery:an initial report on polylactic acid implants[J].Laryngoscope,2001,111:1697-1701
    [33]李孝红,袁明龙,熊成东.聚乳酸及其共聚物的合成和在生物医学上的应用[J].高分子通报,1999,3:24-32
    [34]姚军燕,杨青芳,马强.生物高分子材料聚乳酸的改性研究进展明[J].高分子材料科学与工程,2004,20:28-32
    [35]Janata M.;Masar B.;Toman L.Synthesis of novel types of graft co polymers by a "grafting-from" method using ring-opening polymerization of lactones and lactides[J].Reactive and Functional Polymers,2003,57:137-156
    [36]Iannace S.;Maffezzoli A.;Leo G.;Nicolais L.Influence of crystal and amorphous phase morphology on hydrolytic degradation of PLLA subjected to different processing conditions[J].Polymer,2001,42:3799-3807
    [37]Suh H.;Hwang Y.S.;Lee J.E.;Han C.D.;Park J.C.Behavior ofosteoblasts on a type I atelocollagen grafted ozone oxidized poly---lactic acid membrane[J].Biomaterials,2001,22:219-230
    [38]Fukuzaki H.;Yoshida M.;Asano M.Synthesis of low-molecular-weight copoly (L-lactic acid/ε-caprolactone) by direct copolycondensation in the absence of catalystsand enzymatic degradation of the polymers[J].Polymer,1990,31:2006-2014
    [39]Hans R.;Kricheldorf.;Caroline B.Polylactones 26.Lithium alkoxide-initiated polymerizations of L-lactide[J].Macromolecular Chemistry Physics,1993,194:1665-1669
    [40]Reed A.M.;Gilding D.K.Biodegradable polymers for use in surgery poly(glycolic)/poly(lactic acid) homo and copolymers:2.In vitro degradation[J].Polymer,1981,22:494-498
    [41]Tormala P.The Effcets of Figer Renforcement and Gold Plating on the Flexural and Tensile Strength of PGA/PLA Copolymer Materials in Vitro[J].Biomaterials,1987,8:42-45
    [42]张连来,熊成东.可生物降解PLA-PEG嵌段共聚物的形态研究.高分子材料科学与工程.1992.8:45-49
    [43]吴之中.聚乳酸-聚乙二醇嵌段共聚物及其交联聚氨酯弹性体的性能研究.信阳师范学院学报(自然科学版).1999,12:166-169
    [44]Xiong C.D.;Cheng L.M.;Xu R.P.Synthesis and Characterization of Block Copolymers from D,L-Lactide and Poly(tetramethylene ether glycol)[J].Journal of Applied Polymer Science,1995,55:865-869
    [45]Li S.M.;Garreau H.;Pauvert B.;McGrath J.;Toniolo A.;Vert M.Enzymatic Degradation of Block Copolymers Prepared from ε-Caprolactone and Poly(ethylene glycol)[J].Biomacromolecules,2002,3:525-530
    [46]Li S.M.;Anjard S.;Rashkov I.;Vert M.Hydrolytic degradation of PLA/PEO/PLA triblock copolymers prepared in the presence of Zn metal or CaH_2[J].Polymer,1998,39:5421-5430
    [47]Buchholz B.;Analysis and characterization ofresorbable DL-lactide-trimethylene carbonate copolyesters[J].Journal of Materials Science:Materials in Medicine,1993,4:381-388
    [48]Zhang Z.;Grijpma D.W.;Jan F.J.Triblock Copolymers Based on 1,3-Trimethylene carbonate and lactide as biodegradable thermoplastic elastomers[J].Macromolecular Chemistry and Physics,2004,205:867-875
    [49]Kricheldorf H.R.;Kreiser-Saunders I.;Dirk-Olaf D.Resorbable initiators for polymerizations of lactones[J].Macromolecular Symposia,2000,159:247-258
    [50]Montaudo G.;Puglisi C.;Rapisardi R.Samperi F.Further studies on the thermal decomposition processes in polycarbonates[J].Polymer Degradation and Stability,1991,31:229-246
    [51]Bishara A.;Kricheldorf H.R.;Domb A.J.Stereocomplexes ofTriblock Poly(lactide-PEG2000-lactide)as Carrier of Drugs[J].Macromolecular Symposia,2005,225:17-30
    [52]P(?)go A.P.;Grijpma D.W.;Feijen J.Enhanced Mechanical Properties of 1,3-Trimethylene Carbonate Polymers and Networks[J].Polymer,2003,44:6495-6564
    [53]Zhu K.J.;Hendren R.W.;Jensen K.;Pitt C.G.Synthesis,Properties and Biodegradation of Poly(1,3-Trimethylene Carbonate)[J].Macromolecules,1991,24:1736-1740
    [54]Ruckenstein E.;Yuan Y.M.;Molten ring-open copolymerization of L-lactide and cyclic trimethylene carbonate[J].Journal of Applied Polymer Science,1998,69:1429-1434
    [55]Schmidt P.;Keul H.;Hocker H.;Copolymerization of 2,2-Dimethyltrimethylene Carbonate and L,L-Lactide[J].Macromolecules,1996,29:3674-3680
    [56]Matsumura S.;Tsukada K;Toshima,K.Novel lipase-catalyzed ring-opening copolymerization of lactide and trimethylene carbonate forming poly(ester carbonate)s[J].International Journal of Biological Macromolecules.1999,25:161-167
    [57]Bachholz B.Analysis and Characterization of Resorbable DL-Lactice -Trimethylene Carbonate Copolyesters[J].Journal of Maerials Science:Materials in Medicine,1993,4:381-388
    [58]Li S.M.;Garreau H.;V ert M.Structure-property relationships in the case of the degradation of massive aliphatic poly-(α-hydroxy acids) in aqueous media,part 1:Poly (DZ-lactic acid)[J].Journal of Materials Science:Materials in Medicine,1990,1:123-130
    [59]Li S.M.;Garreau H.;Vert M.Structure-property relationships in the case of the degradation of massive aliphatic poly-(α-hydroxy acids) in aqueous media,part 2:Degradation of lactide-co-glycolide copolymers:PLA37.5GA25 and PLA75GA25[J].Journal of Materials Science:Materials in Medicine,1990,1:131-139
    [60]Vert M.;Li S.M.;Garreau H.More about the degradation of LA/GA-derived matrices in aqueous media[J].Journal of Controlled release,1991,16:15-26
    [61]Williams D.F.Enzymatic hydrolysis of polylactic acid[J].Ieee Enginering in Medicine and Biology Magazine,1981,10:5-11
    [62]Betzel C;Pal G.P.;Saenger W.Three-dimensional structure of proteinase K at 0.15-nm resolution[J].European Journal of Biochemistry,1988,178:155-171
    [63]Betzel C;Gourinath S.;Kumar P.;Kaur P.;Perbandt M.;Eschenburg S.;Singh T.P.Structure of a Serine Protease Proteinase K from Tritirachium album limber at 0.98 A Resolution[J].Biochemistry,2001,40:3080-3088
    [64]Gan Z.H.;Yu D.H.;Zhong Z.Y.;Liang Q.Z.;Jing X.B.Enzymatic degradation of poly (ε-caprolactone)/poly (DL-lactide) blends in phosphate buffer solution[J].Polymer,1999,40:2859-2862
    [65]Gan Z.H;Liang Q.Z;Zhang J.;Jing X.B.Enzymatic degradation of poly (ε-caprolactone) film in phosphate buffer solution containing lipases[J].Polymer Degradation and Stability,1997,56:209-213
    [66]Fukuzaki H.;Yoshida M.;Asano M.;Kumakura M.Synthesis of low molecular weight copoly (L-lactic acid/e-caprolactone) by direct copolycondensation in the absence of catalysts,and enzymatic degradation of the polymers[J].Polymer,1990,31:2006-2014
    [67]Mochizuki M.Hydrolysis of polycaprolactone fibers by lipase:Effects of draw ratio on enzymatic degradation[J].Journal of Applied Polymer Scienc,1995,55:289-296
    [68]Burkersroda F.V.;Schedl L.;Goferich A.Why degradable polymers undergo surface erosion or bulk erosion[J].Biomaterials,2002,23:4221-4231
    [69]Gopferich A.Polymer Bulk Erosion[J].Macromolecules,1997,30:2598-2604
    [70]Li S.M.Hydrolytic Degradation Characteristics of Aliphatic Polyesters Derived from Lactic and Glycolic Acids[J].Journal of Biomedical Materials Research.1999,48:342-353
    [71]Li S.M.;McCarthy S.Further investigations on the hydrolytic degradation of poly (DL-lactide)[J].Biomaterials,1999,20:35-44
    [72]Li S.M.;Espartero J.L.;Foch P.;Vert M.Structural characterization and hydrolytic degradation of a Zn metal initiated copolymer of L-lactide and ε-caprolactone[J].Journal of Biomaterials Science:Polymer edition,1996,8:165-187
    [73]Li S.M.;Vert M.Morphological changes Resulting from the Hydrolytic Degradation of Stereocoplymers Derived from L-and DL-Lactides[J].Macromolecules,1994,27:3107-3110
    [74]Li S.M.;Vert M.Crystalline oligomerc stereocomplex as an intermediate compound in Racemic Poly(DL-Lactic acid) Degradation[J].Polymer International,1994,33:37-41
    [75]Pitt C.G.;Vert M.Biodegradable Polymers and Plastics[M].London:Royal Society of Chemistry,1992:7-19
    [76]Grizzi I.;Garreau H.;Li S.M.;Vert M.Hydrolytic degradation of devices based on Poly(DL-lactic acid) Size-dependence[J].Biomaterials,1995,16:305-311
    [77]Li S.M.;Vert M.Hydrolytic degradation of coral/poly(DL-lactid acid) bioresorbale material[J].Journal of Biomateials Science:Polymer Edition,1996,7:817-827
    [78]Li S.M.;Holland S.G.;Vert M.Hydrolytic degradation ofpoly(DL-lactic acid) in the presence of caffeine base[J].Journal of Controllled Resease,1996,40:41-53
    [79]Zhang Y.;Zale S.;Sawyer L.Effects of metal salts on poly(DL-lactide-co-glycolide)polymer hydrolysis[J].Journal of Biomedical Materials Research,1997,34:531-538
    [1]Drumright R.E.;Gruber P.R.;Henton D.E.Polylactic Acid Technology[J].Advanced Materials,2000,12:1841-1846
    [2]Dunn R.L in:Biomedical Applications of Synthetic Biodegradable Polymers,Hollinger,JO.Eds.,CRC Press,Boca Raton 1995:17
    [3]Li S.M.;Vert M.Encyclopedia of controlled drug delivery,Volume 1[M].New York:Wiley&Sons,1999:71-93
    [4]Pego A.P.;Poot A.A.;Grijpma D.W.;Feijen J.Biodegradable elastomeric scaffolds for soft tissue engineering[J].Journal of Controlled Release,2003,87:69-79
    [5]Ikada Y;Shikinami Y;Hara Y;Tagawa M;Fukada E.Enhancement of bone formation by drawn poly (Z-lactide)[J].Journal of Biomedical Materials Research,1996,30:553-558
    [6]Buntner B.;Nowak M.;Kasperczyk J.;Ryba M.;Grieb P.;Walski M.;Dobrzynski P.;Bero M.J.The application of microspheres from the copolymers of lactide and e-caprolactone to the controlled release of steroids[J].Journal of Controlled Release,1998,56:159-167.
    [7]Gogolewski S.;Jovanovic M.;Perren S.M.;Dillon J.G;Hughes M.K.Tissue response and in vivo degradation of selected polyhydroxyacids:Polylactides (PLA),poly (3-hydroxybutyrate) (PHB) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA)[J].Journal of Biomedical Materials Research,1993,27:1135-1148
    [8]Li S.M.;Vert M.Synthesis,Characterization,and Stereocomplex-Induced Gelation of Block Copolymers Prepared by Ring-Opening Polymerization of L(D)-Lactide in the Presence of Poly (ethylene glycol)[J].Macromolecules,2003,36:8008-8014
    [9]Pistner H.;Stallforth H.;Gutwald R.;Muling J.;Reuther J.;Michel C.Poly (X-lactide):a long-term degradation study in vivo:Part II:physico-mechanical behaviour of implants[J].Biomaterials,1994,15:439-450
    [10]Pego A.P.;Poot A.A.;Grijpma D.W.;Feijen J.Physical properties of high molecular weight 1,3-trimethylene carbonate and A L-lactide copolymers[J].Journal of Materials Science-Materials in Medicine,2003,14:767-773
    [11]Aunoble S.;Clement D.;Frayssinet P.;Harmand M.F.;Le Huec J.L.Biological performance of a new /?-TCP/PLLA composite material for applications in spine surgery:In vitro and in vivo studies[J].Journal of Biomedical Materials Research Part A,2006,78A:416-422
    [12]Andronova N.;Albetsson A.C.Resilient Bioresorbable Copolymers Based on Trimethylene Carbonate,Z-Lactide,and 1,5-Dioxepan-2-one[J].Biomacromolecules,2006,7:1489-1495
    [13]P(?)go A.P.;Poot A.A.;Grijpma D.W.;Feijen J.In Vitro Degradation of Trimethylene Carbonate Based(Co) polymers[J].Macromolecular Bioscience,2002,2:411-419
    [14]Dobrzynski P.;Kasperczyk J.Synthesis of biodegradable copolymers with low-toxicity zirconium compounds.V.Multiblock and random copolymers of L-lactide with trimethylene carbonate obtained in copolymerizations initiated with zirconium(Ⅳ) acetylacetonate[J].Journal of Polymer Science Part A:Polymer Chemistry,2006,44:3184-3201
    [15]P(?)go A.;Poot A.A.;Grijpma D.W.;Feijen J.Copolymers of trimethylene carbonate and ε-caprolactone for porous nerve guides:Synthesis and properties[J].Journal of Biomaterials Science---polymer Edition,2001,12:35-53
    [16]Asplund B.;Sperens J.;Mathisen T.;Hilborn J.Effects of hydrolysis on a new biodegradable co-polymer[J].Journal ofbiomaterials Science---polymer Edition.2006,17:615-630
    [17]Lee S.C.;Kim K.J.;Kang S.W.;Kim C.Microstructural analysis and structure-property relationship of poly(glycolide-co-1,3-trimethylene carbonate)[J].Polymer,2005,46:7953-7960
    [18]Albertsson A.C.;Eklund M.Influence of molecular structure on the degradation mechanism of degradable polymers:In vitro degradation of poly(trimethylene carbonate),poly(trimethylene carbonate-co-caprolactone),and poly(adipic anhydride)[J].Journal of Applied Polymer Science,1995,57:87-103
    [19]Dobrzynski P.;Kasperczyk J.;Janeczek H.;Bero M.;Synthesis of Biodegradable Copolymers with the Use of Low Toxic Zirconium Compounds.1.Copolymerization of Glycolide with L-Lactide Initiated by Zr(Acac)_4[J].Macromolecules,2001,34:5090-5098
    [1]Pego A.P.;Poot A.A.;Grijpma D.W.;Feijen J.Physical properties of high molecular weight 1,3-trimethylene carbonate and D,Z-lactide copolymers[J].Journal of Materials Science-Materials in Medicine,2003,14:767-773
    [2]Pego A.P.;Poot A.A.;Grijpma D.W.;Feijen J.In Vitro Degradation of Trimethylene Carbonate Based (Co) polymers[J].Macromolecular Bioscience,2002,2:411-419
    [3]Albertsson A.C.;Eklund M.Influence of molecular structure on the degradation mechanism of degradable polymers:In vitro degradation of poly (trimethylene carbonate),poly (trimethylene carbonate-co-caprolactone),and poly (adipic anhydride)[J].Journal of Applied Polymer Science,1995,57:87-103
    [4]Zhu K.J.;Hendren R.W.;Jensen K.;Pitt C.G.Synthesis,properties,and biodegradation of poly (1,3-trimethylene carbonate)[J].Macromolecules,1991,24:1736-1740
    [5]Zhang Z.;Kuijer R.;Bulstra S.K.;Grijpma D.W.;Feijen J.The in vivo and in vitro degradation behavior of poly (trimethylene carbonate)[J].Biomaterials,2006,27:1741-1748
    [6]Pego A.P.;Van Luyn M.J.A.;Brouwer L.A.;Poot A.A.;Grijpma D.W.;Feijen J.In vivo behavior of poly (1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or ε-caprolactone:Degradation and tissue response[J].Journal of Biomedical Materials Research Part A,2003,67A:1044-1054
    [7]Li S.M.;McCarthy S.Further investigations on the hydrolytic degradation of poly (DL-lactide)[J].Biomaterials,1999,20:35-44
    [8]Li S.M.;Vert M.Encyclopedia of controlled drug delivery,Volume 1[M].New York:Wiley&Sons,1999:71-93
    [9]Li S.M.Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids[J].Journal of Biomedical Materials Research,1999,48:342-353

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700