聚丙烯大分子表面改性剂的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯( PP )是一种用途广泛的非极性结晶高分子材料,表面张力低,难以与其它极性介质相浸润。作为医用高分子材料,聚丙烯的非极性结构与生物体的结构相差甚远,与伤口接触会引起排异反应。同时,聚丙烯制品在应用的过程中,其高绝缘性也导致材料表面容易产生静电累积,产生静电危害,其抗菌性能也有待提高。因此,有必要对聚丙烯材料进行表面改性。通过在聚丙烯制品表面引入具有不同改性目的的功能性基团,可以改善其生物相容性、抗菌性、抗静电性能。同时,表面功能基团的引入,赋予聚丙烯以全新的性能,可以实现材料的功能化和高性能化,扩大其使用范围。
     本论文采用大分子表面改性剂与聚丙烯共混的方式,使聚丙烯表面功能化,达到改性的目的。具有良好表面迁移、富集特性的大分子表面改性剂,可以在很低的加入量下起到明显的表面改性效果,且不影响其本体性能。同时,与低分子量的表面改性剂相比,当制品表面受到冲刷作用时,这种添加剂较难脱离,具有一定的长效性。
     选择利用聚乙烯基吡咯烷酮(PVP)、聚丁二酸丁二醇酯(PBS)、聚3-羟基丁酸酯(PHB)作为大分子表面改性剂的功能性链段,以低分子量聚丙烯作为亲基体链段,通过低分子量端羧基聚丙烯链与端羟基功能性链段酯化的方法,合成了具有不同功效的嵌段共聚物作为大分子表面改性剂。通过红外测定和热重实验,研究大分子表面改性剂的组成、结构与耐热性能。
     利用合成的PP-b-PVP以及PP-b-PBS、PP-b-PHB作为大分子表面亲生物改性剂,分别添加于聚丙烯中制备改性薄膜。采用ATR-FTIR、接触角测定及SEM等手段,考察了不同的改性剂添加量对聚丙烯基体表面富集程度的影响,并对改性薄膜的血液相容性和组织相容性进行表征。实验表明,通过大分子表面亲生物改性剂的共混改性,可以显著提高聚丙烯表面的血液相容性和组织相容性,血小板粘附数量减小,血浆复钙时间延长、溶血率下降,其中尤以PP-b-PVP改性效果最好。
     另外,利用合成的PP-b-PQVP作为聚丙烯表面抗菌、抗静电改性剂,用ATR-FTIR和接触角测定等手段,考察了PP-b-PQVP的添加量对改性剂表面富集程度的影响,PP-b-PQVP作为大分子表面改性剂能够实现在聚丙烯表面的选择性富集,提高聚丙烯的表面抗菌活性和抗静电性能。
     由于大分子表面改性剂与基体不存在化学键,其改性效果的稳定性和持久性必须依靠改性剂的亲基体链段锚固于基体内部,才能改善改性的长效性。因此,本文还考察了改性材料的抗溶剂腐蚀性。与小分子表面改性剂相比,含有亲基体链段的大分子表面改性剂耐溶剂浸泡能力明显增强。
Due to its low surface energy and relatively high crystallinity, products of polypropylene are hard to dye, adhere and coat. Its compatibility with polar polymers is also poor. As a medical polymer material, the non-polar structure of polypropylene is far different from the structure of organisms’, which causes the phenomenon of rejection when it contacts with the wounds. In addition, the material surface should avoid bacterial or fungal infections and the spread of disease, as well as to avoid the occurrence of electrostatic hazards in the application of polypropylene. To overcome these barriers,surface modification is frequently employed to enhance its surface performances.
     By introducing functional segments onto the surface, the biocompatibility, antibacterial and antistatic properties of polypropylene can be improved. Meanwhile, new surface performances of polypropylene can be achieved by introducing functional segments onto the surface, which can expand the scope of its application.
     Blending with macromolecular surface modifiers is often recognized as a potential technique to functionalize the surface of polypropylene. Modification by loading with macromolecular surface modifiers at very low content has a significant effect on the surface performance without affecting its ontology. Furthermore, compared with the low molecular weight surfactants, macromolecular surface modifiers are more difficult to be detracted from the surface when the products are frictionized or washed with water and organic solvents, which endows their lasting effectiveness.
     The aims of this dissertation are to synthesize the block copolymers suitable for surface modification of polypropylene and to evaluate the preferential segregation of additives on the surface of polypropylene blends. PP-b-PVP, as well as PP-b-PBS and PP-b-PHB used were synthesized through the esterification of dicarboxyl-terminated polypropylene with hydroxyl-terminated respective polymers. Their structures and thermal stabilities were characterized by IR, NMR and TGA. The surface enrichments of copolymers on polypropylene were evaluated by attenuated total reflectance IR Spectroscopy, contact angle measurements. The modified effects of biocompatibility were also characterized by determination of the extent of platelet adsorption, plasma recalcixcation time and hemolysis rate, cell proliferation using smooth muscle cells from rabbit aorta. The results revealed that the blood compatibility and cell compatibility of PP are improved significantly by entrapment of a few copolymers in PP.
     In addition, PP-b-PQVP was synthesized and used as a macromolecular surface modifier of polypropylene to enhance its surface antimicrobial and anti-electrostatic properties. The results of ATR-FTIR, contact angle measurement indicated that the additive can enrich on the surface of polypropylene and increase its antibacterial activity and anti-electrostatic property.
     The modifying durability was studied by the solvent-soaked experiments. Compared with the small molecule modifiers, the macromolecular surface modifiers exhibit better stability of resistant-solvent.
引文
[1]吴金忠.聚丙烯表面改性[J].化工新型材料,1996,7:1
    [2]杜仕国.聚合物合金技术与开发的新进展[J].化工进展,1998,2:26
    [3]杨伟,李忠明,谢邦互,杨鸣波.几种医用聚丙烯专用料的研究.中国塑料,2003,17(10):19~21
    [4]黄灵阁,曹宏深,陈金周等.聚丙烯基抗菌塑料的制备与性能研究.化学推进剂与高分子材料, 2008,5(6):38~39
    [5]王雅珍,李栋,朱清梅等.聚丙烯抗静电剂的研究现状及发展趋势.塑料工业,2008,36(7):11~19
    [6]陈旭东,许家瑞.高分子表面改性剂的分子设计.功能高分子学报,1998,4:550
    [7] Mihaela Pascu,Cornelia Vasile,M ariana Gheorghiu. Modification of Polymer Blend Properties by Argon Plasma/electron Beam Treatment: Surface Properties. Materials Chemistry and Physics,2003,80:548~554
    [8]陈程林.聚丙烯改性技术及制品应用.玻璃纤维,2006,4:42~45
    [9]金郡潮,戴瑾瑾,陆望等.丙纶薄膜等离子体表面改性处理的研究.印染,2000,4:l1~13
    [10] Vallon S,Drevillon B,et al.. In Situ Spectroellip some try Study of the Crosslinking of Polypropylene by an Argon Plasma. Applied Surface Science,1997,108:177~185
    [11] DayssE,Leps G,Meinhardt J. Surface Modification for Improved Adhesion of a Polymermetal Compound. Surface&Coating Technology,1999,l17:986~990
    [12]窦强,王斌.β晶型成核剂改性聚丙烯纤维研究.合成纤维工业,2002,25(4):6~8
    [13] Kato K.,Investigation of High-density Polyethylene Film Surface Treated With Chromic Acid Mixture by Use of 2,4-dinitrophenyl- hydrazine. Film Surfaces Treated at 70 oC. J. Appl. Polym. Sci.,1977,12:2735
    [14] Kato K.,Change of Polypropylene Film Surface by Chromic Acid Mixture Treatment. J. Appl. Polym. Sci.,1975,19:1593
    [15] Schonhom H.,Hansen R. H.,Surface Treatment of Polymers for Adhensive Bonding. J. Appl. Polym. Sci.,1967,11:1461
    [16]李张焰.聚丙烯改性技术及其最新进展.江西石油化工,2004,4(16):6~10
    [17]方治齐,唐龙祥等.聚丙烯改性新进展.现代塑料加工应用,2002, 6(14):36~39
    [18]刘卫平.聚丙烯接枝改性及应用.塑料科技,2001,2:9~32
    [19] Jinyu Huang,Hironobu Murata,Richard R. Koepsel,Alan J. Russell,Krzysztof Matyjaszewski. Antibacterial Polypropylene via Surface-Initiated Atom Transfer Radical Polymerization. Biomacromolecules,2007,8:1396~1399
    [20]贺天禄,李宝芳,罗英武,王雷.复合抗静电剂在PP上的应用研究.塑料工业,2003,31(5):43~45
    [21]丁运生,唐海欧,陈大为等.油酸聚乙二醇醋对PP抗静电性能的影响.塑料工业,2007,35(1):56~58
    [22] Manson J A,et al.. Polymer Blends and Composites. New York:Plenum Press,1976,148
    [23]聂宇,段友容,张志荣. mPEG表面修饰的PLGA嵌段共聚物的血液相容性评价.生物医学工程学杂志,2007,24(2):336~339
    [24]刘芸.高分子的表面化学组成与生物相容性.高分子通报,2006,3:42~45
    [25]崔百元.生物降解性聚乳酸材料的改性.吉林大学硕士学位论文. 2006,5
    [26]夏英,孙洪,董晓丽等.季铵盐高分子抗菌剂的制备及其在PP中的应用.塑料工业,2008,4(36):55~58
    [27]黄灵阁,曹宏深,陈金周等.聚丙烯基抗菌塑料的制备与性能研究.化学推进剂与高分子材料, 2008,5(6):38~39
    [28]鲍亦璐,李贺,张丽叶.抗菌聚四氟乙烯双向拉伸薄膜的制备.化工新型材料,2006,34(12):8~11
    [29]化工部科技情况研究所,世界精细化工手册,北京化工出版社1985:209
    [30] Pan D. H.,Koberstein J. T.. Preferential Surface Adsorption in Miscible Blends of Polystyrene and Poly(vinyl methyl ether). Macromolecules,1988,21:2166
    [31] Sakellariou P.,Effect of Polymer Compatibility on Surface Enrichment in Polymer Blends. Polymer,1993,34(6):3408
    [32] John G. Van Alsten,Steven R.Lustig. Polymer Mutual Diffusion Measurements Using Infrared ATR Spectroscopy. Macromolecules,1992,25:5069
    [33]钱浩,林志勇,张莹雪.大分子表面改性剂在聚合物表面的富集行为.中国塑料,2005,8(19):11~16
    [34] Patric J.. Surface Structure and Dynamics of Block and Graft Copolymer HavingFluorinated Poly(ethylene oxide) Chain Ends. Macromolecules,1998,31:1341
    [35] Tretinnikov O.N. Selective Accumulation of Functional Groups at the Film Surface of Stereoregular Poly(methyl methacrylate)s. Langmuir,1997,13:2988
    [36]陈汉佳,祝亚非,许家瑞.聚丙烯大分子表面改性剂PP-g-PMMA的制备及应用.高分子材料科学与工程,2007,5(3):17~48
    [37]陈汉佳,祝亚非,张艺等.添加型聚丙烯大分子表面改性剂PP-g-PEG的制备及其应用.高分子学报,2007, 2:203~208
    [38] Ho C.-P. , Yasuda H.. Coatings and Surface Modification by Methane Plasma Polymerization. J. Appl. Polym. Sci.,1990,39:1541
    [39] Asfardjani K.,Segui Y.,Aurelle Y.,et al. Effect of Plasma Treatments on Wettability of Polysulfone and Polyetherimide. J. Appl. Polym. Sci.,1991,43:271
    [40] Cho D. L.,Clasesson P. M.,Golander C. G.. Effect of Polymic Acid on Interfacial Shear Strength in Carbon Fiber/Aromatic Thermoplastics,J. Appl. Polym. Sci.,1990,41:1373
    [41] Brennar W. J.,Feast W. J.,Munro H.S.,Investigation of the Ageing of Plasma Oxidized PEEK,Polymer,1991,32:1527
    [42] Harrick N.J.. Internal Reflection Spectroscopy. New York:Harrick Scientific Corp.,1967
    [43] Francis M.,et al.. Internal Reflection Spectroscopy. Appl. Spectro. reviews,1985,2145
    [44]陈汉佳,祝亚非,张艺,许家瑞.衰减全反射傅里叶红外光谱在聚丙烯的表面改性的应用.光谱学与光谱分析,2008,8(28):1799~1802
    [45]钱浩,林志勇,张莹雪.大分子表面改性剂在聚合物表面的富集行为.中国塑料,2005,8(19):11~16
    [46] S. W. Gaarenstroom,N. Winograd. Initial and final state effects in the ESCA spectra of cadmium and silver oxides. J .Chem at Physics. 1977,Vol. 67, No.8
    [47]袁泉,霍丹群,郑书家等.肝素化聚醚砜抗凝血材料的血液相容性研究.中国生物医学工程学报,2007,26(4):593~599
    [48]白茹,张丽叶.抗菌聚乳酸薄膜的性能研究.化工新型材料,2008,36(7):38~79
    [49]丁运生,王僧山等.抗静电聚丙烯的制备研究.塑料工业,2004,32(5):37~52
    [1]杨伟,李忠明,谢邦互,杨鸣波.几种医用聚丙烯专用料的研究.中国塑料,2003,17(10):19~21
    [2]苗迎春,况敬业等.医用聚丙烯专用料的研制.中国塑料,1999,18(8):28~29
    [3]陈汉佳,祝亚非,张艺等.添加型聚丙烯大分子表面改性剂PP-g-PEG的制备及其应用.高分子学报,2007,2:203~208
    [4]陈汉佳,祝亚非,张艺,许家瑞.衰减全反射傅里叶红外光谱在聚丙烯的表面改性的应用.光谱学与光谱分析,2008,8(28):1799~1802
    [5]刘芸.高分子的表面化学组成与生物相容性.高分子通报,2006,3:42~45
    [6] Peng-Fei Fu,Mary Kay Tomalia. Carboxyl-Terminated Isotactic Polypropylene Preparation, Characterization, Kinetics, and Reactivities. Macromolecules,2004,37,267~275
    [7]马晓妍聚乳酸及其共聚物的制备和降解性能研究2004中国优秀硕士论文数据库
    [8]于志省,李扬,王玉荣,张春庆.红外光谱法分析苯乙烯系树脂组份含量.塑料科技,2009,Vol (37) :1005-3360
    [9]俞开潮4-二甲氨基吡啶的简便合成[J].湖北化工,1997,1:5
    [10]孙杰,张大伦,谭惠民,罗运军.聚丁二酸丁二醇酯的共聚改性.中国塑料,2004,Vol(18): 1001-9278
    [11]赵强生物可降解聚(3-羟基丁酸酯)/聚乙二醇多嵌段共聚物的合成与表征2003中国优秀硕士论文数据库
    [12] Teruaki, Masahiro, Eiichiro, Kazuhiko. A Convenient Methhod For The Synthesis Of Carboxylic Esters. Chemistry Letters. 1975, 1045-1048
    [13]廖戎,万积秋,袁晓静. 4-二甲氨基吡啶(DMAP)的合成研究[J].西南民族大学学报,2004,30(4):425
    [1] Yang Q, Xu ZK, Dai ZW, Wang JL, Ulbricht M. Surface Modification of Polypropylene Microporous Membranes with a Novel Glycopolymer. Chem Mater 2005;17:3050-58.
    [2] Liu ZM, Xu ZK, Wan LS, Wu J, Ulbricht M. Surface modification of polypropylene microfiltration membranes by the immobilization of poly(N-vinyl-2-pyrrolidone): a facile plasma approach. J Membrane Sci 2005;249:21-31
    [3] Robinson S, Williams PA. Inhibition of protein adsorption onto silica by Polyvinylpyrrolidone. Langmuir 2002;18:8743-48
    [4] Pieracci J, Crivello JV, Belfort G. UV-assisted graft polymerization of N-vinyl-2-pyrrolidoneonto poly (ether sulfone) ultrafiltration membranes using selective UV wavelengths. Chem Mater 2002;14:256-65
    [5] Higuchi A, Shirano K, Harashima M, Yoon BO, Hara M, Hattori M, Imamura K. Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials 2002;23:2659-66
    [6] Abd El-Rehim HA, El-Arnaouty MB. Properties and Biocompatibility of Polypropylene Graft Copolymer Films. Wiley Periodicals, Inc 2003
    [7] Li DJ, Niu LF. Cell attachment of polypropylene surface-modified by COOH+ ion implantation. Nuclear Instruments and Methods in Physics Research B 2002;192:393-401
    [8]周素琼.水性聚氨酯/硫酸酯化壳聚糖的合成与血液相容性研究.华南师范大学硕士学位论文,2007:45
    [9]邓凡,赵玉凤,樊庆春等.魔芋葡甘聚糖膜的制备及其血液相容性研究.化学与生物工程,2008,25(10):54~56
    [10]袁泉,霍丹群,郑书家等.肝素化聚醚砜抗凝血材料的血液相容性研究.中国生物医学工程学报,2007,26(4):593~599
    [11]聂宇,段友容,张志荣. mPEG表面修饰的PLGA嵌段共聚物的血液相容性评价.生物医学工程学杂志,2007,24(2):336~339
    [12]霍丹群,詹东妮,侯长军等.生物材料的生物相容性综合评价研究.生物医学工程学杂志,2006, 23(6):1350~1356
    [13] Chen ZF, Cheng ST, Li ZB, Xu KT, Chen GQ. Synthesis, Characterization and CellCompatibility of Novel Poly(ester urethane)s Based on Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) Prepared by Melting Polymerization. J Biomaterials Sci 2009;20:1451-1471
    [14] Sharon S, Katanchalee MN. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials. Colloids and Surfaces B: Biointerfaces 2005;42:147–155
    [15] Kwon OH, Nho YC, Park KD, Kim YH. Graft Copolymerization of Polyethylene Glycol M-ethacrylate onto Polyethylene Film and Its Blood Compatibility. J Appl Polym Sci 1999;71:631-641
    [16] Chen Hj, Shi XH, Zhu YF, Zhang Y, Xu JR. Surface Functionalization of Polypropylene by Entrapment of Polypropylene-grafted-Poly(ethylene glycol). J Appl Polym Sci 2009;114:2461-2468
    [17] Chen Hj, Zhu YF, Zhang Y, Xu JR. Surface enrichment of polypropylene-graft-poly(methyl-methacrylate) on polypropylene. J Polym Res 2007;14:489–496
    [18] Zhu ZY, Dakwa P, Tapadia P, Whitechouse RS, Wang SQ. Rheological Characterization of Flow and Crystallization Behavior of Microbial Synthesized Poly(3-hydroxybutyrate-co-4-hydroxybuterate).Macromolecular2003;36:4891-4897
    [19] Felstein MM, Kuptsov SA, Shandryuk GA. Coherence of thermal transitions in poly(N-vinyl pyrrolidone)-poly(ethylene glycol) compatible blends 2. The temperature of maximum cold crystallization rate versus glass transition. Polymer 2000;41:5339-5348
    [20] Worth NF, Rolfe BE, Song J. Vasular smooth muscle cell phenotypic modulation in culture is associated with reorganization of contractile and cytoskeletal proteins. Cell Motil Cytoskeleton 2001;49:130–145
    [21] Qu XH, Wu Q, Liang J, Qu X, Wang SG, Chen GQ. Enhanced vascular-related cellular affinity on surface modified copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials 2005;26:6991-7001
    [22] Fischer D, Li Y, Ahlemeyer B, Kriglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 2003;24(7):1121-1131
    [23] Yoshinari M, Klinge B, Derand T. The biocompatibility (cell culture and histologic study) of hydroxyapatite-coated implants created by ion beam dynamic mixing. Clin Oral Implants Res 1996;7:96-100
    [24] Wiese KG, Heinemann DEH, Ostermeier D, Peters JH. Biomaterial properties and biocompatibility in cell culture of a novel self-inflating hydrogel tissue expander. J Biomed Mater Res 2001;54:179-18
    [25] Garcia AJ, Boettiger D. Integrin–fibronectin interactions at the cell–material interface: initial integrin binding and signaling. Biomaterials 1999;20:2427-2433
    [26] Zhao K, Deng Y, Chen GQ. Effects of surface morphology on the biocompatibility of polyh-ydroxyalkanoates. Biochem Eng J 2003;16:115-123
    [1]丁运生,王僧山,汪涛.抗静电聚丙烯的制备研究.塑料工业,2004,32(5):37~52
    [2]贺天禄,李宝芳,罗英武等.复合抗静电剂在PP上的应用研究.塑料工业,3003,31(5):43~45
    [3]李涛.国内外抗菌剂的发展及其在PP中的应用.塑料工业,2003,10(31):5~8
    [4]王雅珍,李栋,朱清梅等.聚丙烯抗静电剂的研究现状及发展趋势.塑料工业,2008,36(7):11~19
    [5]陈珂,熊传溪,舒本勤等. PET抗静电复合材料的性能研究.工程塑料应用,2008,36(6):5~8
    [6]王蕊欣,郭建峰,高保娇.高分子吡啶季铵盐的抗菌性能及机理的探讨.应用化学,2006,Vol (23) No. 2
    [7]夏英,孙洪,董晓丽等.季铵盐高分子抗菌剂的制备及其在PP中的应用.塑料工业,2008,4(36):55~58
    [8]欧军飞,周金芳,简令奇等.聚合物表面改性方法概述.塑料工业,2007,11(35): 5~10
    [9]钱浩,林志勇,张莹雪.大分子表面改性剂在聚合物表面的富集行为.中国塑料,2005,8(19):11~16
    [10]龚丽芳,倪人捷,黄煜等.双季铵盐表面活性剂对涤纶织物的抗静电性能.纺织学报,2008,29(5):72~83
    [11] R·穆鲁根,M·革兰德兹.线性聚乙烯基吡啶的水基聚合.申请(专利)号:200710101637.X
    [12] Jinyu Huang,Hironobu Murata,Richard R. Koepsel,Alan J. Russell,Krzysztof Matyjaszewski. Antibacterial Polypropylene via Surface-Initiated Atom Transfer Radical Polymerization. Biomacromolecules, 2007, 8:1396~1399
    [13]吴承佩,周彩华,栗方星,《高分子化学实验》,安徽科学技术出版社
    [14]鲍亦璐,李贺,张丽叶.抗菌聚四氟乙烯双向拉伸薄膜的制备.化工新型材料,2006,34(12):8~11
    [15] M. Biesalski , J. Ruhe. Preparation and Characterization of a Polyelectrolyte Monolayer Covalently Attached to a Planar Solid Surface.Macromolecules ,1999, 32:2309-2316
    [16]金玉顺,刘振明,郭文莉,李树新,曾海.聚4-乙烯基吡啶的合成与表征.弹性体,2004,14(5):29~33
    [17] Liyan Wang, Zhiqiang Wang, Xi Zhang, Jiacong Shen. A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acry1icacid) based on hydrogen bonding . Macromol,1997, 18: 509-514
    [18]李涛.抗静电剂在PP与PE中的应用,现代塑料加工应用,2003,15(1):35~37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700