花生(Arachis hypogaea)Ara h 1基因启动子的克隆及贮藏蛋白基因Fiber-FISH的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生是一种重要的油料作物,对于花生种子发育相关基因的研究,特别是对有关储藏物质积累过程调控机制的研究具有重要的生产实践意义。同时花生又是一种植物蛋白源,对花生贮藏蛋白基因结构以及表达调控的研究,为改善花生品质,培育优质花生品种以及生产低变应原花生提供理论基础。
     本实验通过用一对特异性引物,PCR扩增得到花生(Arachis hypogaea)主要致敏蛋白Ara h 1的基因的启动子片段1957bp,其序列组成与已发表序列基本一致。用其替换pBIN 35S-mGFP4载体中的35S启动子部分,组成一种花生转基因表达载体pGA1。该载体含有种子特异表达调控元件、增强表达元件和一些与转录因子结合的调控元件,是一个强启动子。此载体便于将外源基因转入花生,实现外源基因在花生中的表达,为建立花生生物反应器奠定了基础。
     本文还对花生贮藏蛋白基因在基因组DNA纤维上的排布规律进行了初步探索。实验通过DNA纤维荧光原位杂交技术(Fiber-FISH),利用花生中两个贮藏蛋白基因(Ara h 1和Ara h 3)的启动子片断为探针,对花生基因组DNA进行双色杂交。研究发现,花生贮藏蛋白基因有可能成簇分布在染色体的某个区域,连续的11个簇最长跨越了纤维上86.78μm的长度,对应的DNA长为217.82kb,簇之间间隔的平均纤维长度为3.94±0.78μm,相当于DNA长度在7.93kb-11.85kb之间。对多个双色杂交信号进行统计,发现每个簇的平均长度为5.7±1.32μm,对应的DNA长度在10.99—17.62kb之间。
Peanut is an important oil crops. The research on genes related to development of peanut seeds, especially on regulation mechanism of accumulation process of the storage materials establishes a foundation to the application in agricultural production. Peanut is also a source of plant protein for nutrition. The study of the gene structure and expression regulation of peanut storage protein provides an academic base on improving the quality of peanut, breeding peanut variety with high quality and producing hypoallergenic peanuts.
    The promoter of the gene encoding the major peanut allergy protein Ara h 1 has been cloned with a pair of special primers using Polymerase Chain Reaction technique (PCR). The promoter we have got is 1957 bp. Basically, it is consistent with the sequence published. By replacing the 35S promoter in pBIN 35S-mGFP4 vector with this promoter, we have constructed a plant transgenic expression vector of peanut named pGA1. It contains seed specifically expressed elements, enhancers and some elements regulated by transcription factors. Thus the heterologous gene can be transferred to peanut and expresses in seed easily. The research lays a foundation for establishing the peanut bioreactor.
    We have also done some initiative researches on the arrangement of gene family encoding peanut storage proteins. We use the technique of fiber fluorescent in situ hybridization (Fiber-FISH) and two promoters of peanut storage protein genes-Arah1 and Arah3 as probes in order to find the DNA region in peanut genome which hybridizes to the two probes. The results indicate that the genes encoding peanut storage protein may exist as some clusters in the peanut chromosomes. The longest continuous fragment contains eleven clusters and covering a 86.78 micrometer region on the DNA fiber corresponding to 217.82 kilo base pairs on the DNA sequence. The average length of the intervals among these eleven clusters is 3.94 micrometer with variance of 0.78 micrometer corresponding to 7.93 kilo base pairs to 11.85 kilo base pairs on the DNA sequence. Based on a large amount of analysises of the dual-colored hybridization signals, we have found that the average length of each cluster was 5.7 micrometer with variance of 1.32 micrometer corresponding to 10.99 kilo base pairs to 17.62 kilo base pairs on the DNA sequence.
引文
1.王宪泽.小麦种子贮藏蛋白研究进展[J].种子,1999,1:23-25
    2. Bevan M, Color V, Hammond-Kosack M et al. Transcriptional control of plant storage protein genes[J]. Biological Sciences, 1993, 342(1301): 209-215
    3. Wang TL, Domoney C, Hedley CL et al. Can we improve the nutritional quality of legume seeds[J]. Plant Physiol, 2003, 131 (3): 886-891
    4. Koshiyana I, Kikuchi M, Harada K et al. 2S globulins of soybean seeds. 1. Isolation and characterization of protein components[J]. J Agric Food Chem., 1981, 29(2): 336-340
    5. Lambert N, Yarwood J N. Engineering legume seed storage proteins[M]. Plant Protein Engineering, Cambridge University Press, 1992: 167-187
    6. Marconem F. Possible nutritional implications of varietal influence on the 7S/11S seed globulin ratios in amaranth[J]. Plant Foods for Human Nutrition, 1999, 54(4): 375-380
    7. Kitamura K, Takagi T, Shibasaki K. Subunit structure of soybean 11S globulin[J]. Agric Biol Chem 1976, 40: 1837-1844
    8. Badley RA, Atkinson D, Hauser H et al. The structure, physical and chemical properties of the soybean protein glycinin[J]. Biochem Biophys Acta., 1975, 412(2): 214-228
    9. Hill JE, Breidenbach RM. Proteins of Soybean Seeds: I. Isolationg and Characterization of the Major Components[J]. Plant Physiol., 1974, 53(5): 742-746
    10. Thanh VH, Shibasaki K. Beta-conglycinin from soybean proteins. Isolation and immunological and physicochemical properties of the monomeric forms[J]. Biochem Biophys Acta., 1977, 490(2): 370-384
    11. Thanh VH, Shibasaki K. Major protein of soybean seeds. Subunit structure of β-conglycinin[J]. J Agric Food Chem., 1978, 26: 692-695
    12.阮禹松,赵文明.种子盐溶球蛋白的结构特征[J].西北植物学报,2002,22(4):999-1003
    13.高新起.种子贮藏蛋白的运输、积累和基因表达调控[J],细胞生物学杂志, 2005,27:35-38
    
    14. Ladin BF, Tierney ML, Meinke DW et al. Developmental Regulation of beta-Conglycinin in Soybean Axes and Cotyledons [J].. Plant Physiol., 1987, 84(1): 35-41
    
    15. Walling L, Drews GN, Goldberg RB. Transcriptional and post-transcriptional regulation of soybean seed protein mRNA levels [J]. Proc Natl Acad Sci U S A., 1986, 83(7): 2123-2127
    
    16. Goldberg RB, Barker SJ, Perez-Grau L. Regulation of gene expression during plant embryogenesis [J]. Cell., 1989, 56(2): 149-160
    
    17. Bustos MM, Begum D, Kalkan FA et al. Positive and negative cis-acting DNA domains are required for spatial and temporal regulation of gene expression by a seed storage protein promoter [J]. EMBO J., 1991, 10(6): 1469-1479
    
    18. Morton RL, Quiggin D, Higgins TJV. Seed Development and Germination [M]. NewYork: Marcel Dekker, 1995, 103
    
    19. Lessard PA, Allen RD, Fujiwara T et al. Upstream regulatory sequences from two beta-conglycinin genes [J]. Plant Mol Biol., 1993, 22(5): 873-885
    
    20. Voelker T, Sturm A, Chrispeels MJ. Differences in expression between two seed lectin alleles obtained from normal and lectin-deficient beans are maintained in transgenic tobacco [J]. EMBO J., 1987, 6(12): 3571-3577
    
    21. Dickinson CD, Evans RP, Nielsen NC. RY repeats are conserved in the 5'-flanking regions of legume seed-protein genes[J]. Nucleic Acids Res., 1988, 16(1): 371
    
    22. Fujiwara T, Beachy RN. Tissue-specific and temporal regulation of a beta-conglycinin gene: roles of the RY repeat and other cis-acting elements [J]. Plant Mol Biol., 1994, 24(2): 261-272
    
    23. Lelievre JM, Oliveira LO, Nielsen NC. 5'-CATGCAT-3' Elements Modulate the Expression of Glycinin Genes. Plant Physiol., 1992, 98(1): 387-391
    
    24. Reidt W, Wohlfarth T, Ellerstrom M et al. Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J., 2000, 21(5): 401-408
    
    25. Williams ME, Foster R, Chua NH. Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding [J]. Plant Cell .,1992, 4(4):485-496
    
    26. Donald RG, Cashmore AR. Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1 A promoter. EMBO J., 1990, 9(6): 1717-1726
    
    27. Guiltinan MJ, Marcotte WR Jr, Quatrano RS. A plant leucine zipper protein that recognizes an abscisic acid response element. Science, 1990, 250(4978):267-271
    
    28. McKendree WL, Paul AL, DeLisle AJ et al. In vivo and in vitro characterization of protein interactions with the dyad G-box of the Arabidopsis Adh gene. Plant Cell, 1990, 2(3): 207-214
    
    29. Oeda K, Salinas J, Chua NH. A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes [J]. EMBO J., 1991, 10(7):1793-1802
    
    30. Weisshaar B, Armstrong GA, Block A et al. Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J., 1991, 10(7): 1777-1786
    
    31. Murre C, McCaw PS, Vaessin H et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence [J]. Cell. 1989,58(3): 537-544
    
    32. Kawagoe Y, Cambell BR, Murai N. Synergism between CACGTG (G-box) and CACCTG cis-elements is required for activation of the bean seed storage protein beta-phaseolin gene [J]. The Plant Journal, 1994, 5(6): 885-890
    
    33. Bustos MM, Guiltinan MJ, Jordano J et al. Regulation of beta-glucuronidase expression in transgenic tobacco plants by an A/T-rich, cis-acting sequence found upstream of a French bean beta-phaseolin gene [J]. Plant Cell, 1989, 1(9):839-853
    
    34. Harada JJ, Barker SJ, Goldberg RB. Soybean beta-conglycinin genes are clustered in several DNA regions and are regulated by transcriptional and posttranscriptional processes[J]. Plant Cell, 1989, 1(4): 415-425
    35. Conceicao Ada S, K, rebbers E. A cotyledon regulatory region is responsible for the different spatial expression patterns of Arabidopsis 2S albumin genes[J]. Plant J., 1994, 5(4): 493-505
    36. Bobb A J, Chern MS, Bustos MM. Conserved RY-repeats mediate transactivation of seed-specific, promoters by the developmental regulator PvALF. Nucleic Acids Res., 1997, 25(3): 641-647
    37. Li G, Chandrasekharan MB, Wolffe AP et al. Chromatin structure and phaseolin gene regulation. Plant Mol Biol., 2001, 46(2): 121-129
    38.黄上志,傅家瑞.花生种子贮藏蛋白质与活力的关系及其在萌发时的降解模式[J].植物学报,1992,34(7):543-550
    39. Yamada T, Aibara S, Morita Y. Isolation and some properties of arachin subunits[J]. Agri Biol Chem., 1979, 43: 2563-2568
    40. Yamada T, Aibara S, Morita Y. Dissociation-association behavior of arachin between dimeric and monomeric forms[J]. Agric Biol Chem., 1979, 43: 2549-2556
    41.黎茵,黄上志,傅家瑞.不同品种花生种子蛋白质的电泳分析[J].植物学报,1998,40(6):534—541
    42.杨晓泉,陈中,赵谋民.花生蛋白的分离及部分性质研究[J].中国粮油学报,2001,16(5):25-28
    43.杨晓泉,张水华,黎茵等.花生2S蛋白的提取分离及部分性质研究[J].华南理工大学学报(自然科学版),1998,26(4):1—5
    44.黄上志,傅家瑞.花生种子的发育与贮藏蛋白质的合成和积累[J].植物生理学报,1992,18(2):142-150
    45.廖斌,卢春斌,王蕾等.花生种子发育和萌发过程中贮藏蛋白的合成和降解[J].植物生理与分子生物学报,2004,30(1):115—118
    46. Sicherer SH, Munoz-Furlong A, Burks AW et al. Prevalence of peanut and tree nut allergy in the US determined by a random digit dial telephone survey[J]. J Allergy Clin Immunol., 1999, 103(4): 559-562
    47. Emmett SE, Angus FJ, Fry JS et al. Perceived prevalence of peanut allergy in Great Britain and its association with other atopic conditions and with peanut allergy in other household members [J]. Allergy, 1999, 54(4): 380-385
    
    48. Burks W, Bannon GA, Sicherer S et al. Peanut-induced anaphylactic reactions [J]. Int Arch Allergy Immunol., 1999, 119(3): 165-172
    
    49. Burks AW, Williams LW, Helm RM et al. Identification of a major peanut allergen, Ara h I, in patients with atopic dermatitis and positive peanut challenges [J]. J Allergy Clin Immunol., 1991,88(2): 172-179
    
    50. Burks AW, Cockrell G, Stanley JS et al. Recombinant peanut allergen Ara h I expression and IgE binding in patients with peanut hypersensitivity [J]. J Clin\ Invest., 1995, 96(4): 1715-1721
    
    51. De Jong EC, Van Zi jverden M, Spanhaak S et al. Identification and characterization of multiple major allergens in peanut proteins [J]. Clin Exp Allergy, 1998, 28(6): 743-751
    
    52. Stanley JS, King N, Burks AW et al. Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2 [J]. Arch Biochem Biophys., 1997, 342(2): 244-253
    
    53. Rabjohn P, Helm EM, Stanley JS et al. Molecular cloning and epitope analysis of the peanut allergen Ara h 3[J]. J Clin Invest., 1999, 103 (4): 535-542
    
    54. Kleber-Janke T, Crameri R, Appenzeller U et al. Selective cloning of peanut allergens, including profiling and 2S albumins, by phage display technology [J]. Int Arch Allergy Immunol., 1999, 119(4): 265-274
    
    55. Dean TP. Immunological responses in peanut allergy [J]. Clin Exp Allergy, 1989,28(1): 7-9
    
    56. Shin DS, Compadre CM, Maleki SJ et al. Biochemical and structural analysis of the IgE binding sites on Ara h1, an abundant and highly allergenic peanut protein [J]. J Biol Chem., 1998,273(22): 13753-9
    
    57. Koppelman SJ, Vlooswijk RA, Knippels LM et al. Quantification of major peanut allergens Ara h 1 and Ara h 2 in the peanut varieties Runner, Spanish, Virginia, and Valencia, bred in different parts of the world [J]. Allergy, 2001, 56(2):132-137
    58. Mills EN, Jankins J, Marighetto N et al. Allergens of the cupin superfamily[J]. Biochem Soc Trans., 2002, 30(6): 925-929
    59. Maleki SJ, Chung SY, Champagne ET et al. The effects of roasting on the allergenic properties of peanut proteins[J]. J Allergy Clin Immunol., 2000, 106(4): 763-8
    60. Koppelman SJ, Bruijnzeel-Koomen CA, Hessing, M et al. Heat-induced conformational changes of Ara h1, a major peanut allergen, do not affect its allergenic properties[J]. J Biol Chem., 1999, 274 (8): 4770—4777
    61. Al-Musen S, Clerke AE, Kagan RS. Peanut allergy: an overview[J]. CMAJ., 2003, 168(10): 1279-85
    62. Burks AW, Williams LW, Connaughton C et al. Identification of a second major peanut allergen, Ara h Ⅱ, with use of the sera of patients with atopic dermatitis and positive peanut challenge[J]. J Allergy Clin Immunol., 1992, 90(6): 962-9
    63. Sen M, Kopper R, Pons L et al. Protein structure play a critical role in peanut allergen stability and may determine immunodominant IgE-binding epitopes[J]. J Immunol., 2002, 169(2): 882-887
    64. Maleki SJ, Viquez O, Jacks T et al. The major peanut allergen, Ara h 2, functions as a trypsin inhibitor, and roasting enhances this function[J]. J Allergy Clin Immunol., 2003, 112(1): 190-195
    65. Koppelman S J, Knol EF, Vlooswijk RA et al. Peanut allergen Ara h 3: isolation from peanuts and biochemical characterization[J]. Allergy, 2003, 58(11): 1144-1151
    66. VandenBosch KA, Stacey G.. Summaries of legume genomics projects from around the globe. Community resourses for crops and models[J]. Plant Physiol., 2003, 131(3): 840-865
    67.张恒悦.花生果实发育过程中贮藏物质的积累和动态[J].山东农业大学学报,1990,21(3):57—66
    68.林鹿,傅家瑞.花生种子贮藏蛋白质合成和累积与活力的关系[J].热带亚热带植物学报,1995,4(1):57—60
    69. McElroy D, Zhang W, Cao J et al. Isolation of an efficient actin promoter for use in rice transformation[J]. Plant Cell, 1990, 2(2): 163-171
    70. Narusaka Y, Nakashima K, Shinwari ZK et al. Interaction between two cisacting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses[J]. Plant J., 2003, 34(2): 137-148
    71. Yoon IS, Park DH, Mori H et al. Characterization of an auxin-inducible 1-aminocyclopropane-1-carboxylate synthase gene, VR-ACS6, of mungbean (Vigna radiata (L.) Wilczek) and hormonal interactions on the promoter activity in transgenic tobacco[J]. Plant Cell Physiol., 1999, 40(4): 431-438
    72. Ayliffe MA, Roberts JK, Mitchell HJ et al. A plant gene up-regulated at rust infection sites[J]. Plant Physiol., 2002, 129(1): 169-180
    73. Nitz I, Berkefeld H, Puzio PS et al. Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana[J]. Plant Sci., 2001, 161(2): 337—346
    74. Trindade LM, Horvath B, Bachem C et al. Isolation and functional characterization of a stolon specific promoter from potato (Solarium tuberosum L.)[J]. Gene, 2003, 303: 77-87
    75. Marraccini P, Courjault C, Caillet V et al. Rubisco small subunit of Coffea arabica: cDNA sequence, gene cloning and promoter analysis in transgenic tobacco plants[J]. Plant Physiol Biochem., 2003, 41(1): 17-25
    76. Singh M, Bhalla PL, Xu H et al. Isolation and characterization of a flowering plant male gametic cell-specific promoter[J]. FEBS Lett., 2003, 542(1-3): 47-52
    77.游志鹏,范云六,廖玫江.水稻种子贮存醇溶蛋白4a基因的启动子Ⅰ及其调控元件[J].农业生物技术学报,1999,7(2):103-108
    78. Borisjuk NV, Borisjuk LG, Logendra S et al. Production of recombinant proterins in plant root exudates[J]. Nature Biotechnol., 1999, 17(5): 466-9
    79. Mariani C, Beuckeleer MD, Truettner J et al. Induction of male sterility in plants by a chimaeric ribonuclease gene[J]. Nature, 1990, 347: 737-741
    80. Mariani C, Gossele V, Beuckeleer MD et al. A chimaeric ribonuclease- inhibitor gene restores fertility to male sterile plants[J]. Nature, 1992, 357: 384-387
    81.张晓国,刘玉乐,康良仪等.水稻花药特异表达基因启动子的扩增及克隆[J].武汉大学学报(自然科学版),1997,43(4):480—484
    82.毛自朝,于秋菊,甄伟.果实专一性启动子驱动ipt基因在番茄中的表达及其对番茄果实发育的影响[J].科学通报,2002,47(6):444-448
    83. Vasconcelos M, Datta K, Oliva N et al. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene[J]. Plant Science, 2003, 164(3): 371-378
    84. Datta K, Baisakh N, Oliva N et al. Bioengineered 'golden' indica rice cultivars with β-carotene metabolism in the endosperm with hygromycin and mannose selection systems[J]. Plant Biotech J., 2003, 1(2): 81-90
    85.叶梁,李枞,宋艳茹.双价、三价种子特异性表达载体的构建及表达PHB合成相关基因的转基因油菜的获得[J].科学通报,2000,45(5):516-521
    86.朱会英,吴存祥,胡宝忠等.利用植物生物反应器生产口服疫苗的进展[J].分子植物育种,2004,2(3):443—448
    87. Lichter P, Tang CJ, Call K et al. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones[J]. Science, 1990, 247(4938): 64-69
    88. Wiegant J, Wiesmeijer CC, Hoovers et al. Multiple and sensitive fluorescence in situ hybridization with rhodamine-, fluorescein-, and coumarin-labelled DNAs[J]. Cytogenet Cell Genet., 1993, 63 (1): 73-76
    89. Fransz PF, Stam M, Montijn B et al. Detection of single-copy genes and chromosome rearrangement in Petunia hybrida by fluorescence in situ hybridization[J]. The Plant Journal, 1996, 9: 767-774
    90. Ten Hoopen R, Robbins TP, Fransz PF et al. Localization of T-DNA insertions in Petunia by fluorescence in situ hybridization: physical evidence for suppression of recombination[J]. Plant Cell, 1996, 8(5): 823-830
    91. Moscone EA, Matzke MA, Matzke AJ. The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco[J]. Chromosoma, 1996, 105(4): 231-236
    92. Ohmido N, Akiyama Y, Fukui K. Physical mapping of unique nucleotide sequences on identified rice chromosomes[J]. Plant Mol Biol., 1998, 38(6): 1043-1052
    93. Wiegant J, Kalle W, Mullenders L et al. High-resolution in situ hybridization using DNA halo preparations[J]. Hum Mol Genet., 1992, 1(8): 587-591
    94. Heng HH, Squire J, Tsui LC. High resolution mapping of mammalian genes by in situ hybridization to free chromatin[J]. Proc Natl Acad Sci U S A, 1992, 89(20): 9509-9513
    95. Fransz PF, Alonso-Blanco C, Liharska TB et al. High resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibers[J]. Plant J., 1996, 9(3): 421-430
    96. Jackson SA, Wang ML, Goodman HM et al. Application of fibre-FISH in physical mapping of Arabidopsis thaliana[J]. Genome, 1998, 41(4): 566-572
    97.钟筱波,Paul F,Fransz J et al.用荧光原位杂交技术构建高分辨率的DNA物理图谱[J].遗传,1997,19(3):44-48
    98. Wolters AM, Trindade LM, Jacobsen E et al. Fluorescence in situ hybridization on extended DNA fibres as a tool to analyse complex T-DNA loci in potato[J]. The Plant Journal, 1998, 13: 837-847
    99. Jackson SA, Cheng Z, Wang ML et al. Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome[J]. Genetics, 2000, 156(2): 833-8
    100. Heiskanen M, Karhu R, Hellsten E et al. High resolution mapping using fluorescence in situ hybridization to extended DNA fibers prepared from agarose-embedded cells[J]. Biotechniques, 1994, 17(5): 928-9, 932-3
    101. Michalet X, Ekong R, Fougerousse F et al. Dynamic molecular combing: stretching the whole human genome for high-resolution studies[J]. Science, 1997, 277(5331): 1518-23
    102. Weier HU, Wang M, Mullikin JC et al. Quantitative DNA fiber mapping[J]. Hum Mol Genet., 1995, 4(10): 1903-10
    103.王关林,方宏筠.植物基因工程(第二版)[M].北京:科学出版社,2002,744
    104.萨姆布鲁克J,拉塞尔DW.分子克隆实验指南(第3版)[M].北京:科学出版社,2003
    105. Li L, Yang J, Tong Q et al. A Novel Approach to Prepare Extended DNA Fibers in Plants[J]. Cytometry A., 2005, 63(2): 114-117
    106. Li ZY, Huang SL, Jin WW et al. Determination of copy number for 5S rDNA and centromeric sequence RCS2 in rice by Fiber-FISH[J]. Chin Sci Bull., 2002, 47(3): 214-217
    107.曹仪植.植物分子生物学[M].北京:高等教育出版社,2002,132
    108. Chandrasekharan MB, Bishop KJ, Hall TC. Module-specific regulation of the beta-phaseolin promoter during embryogenesis[J]. The Plant Journal, 2003, 33: 853-866
    109. Ezcurra I, Ellerstrom M, Wycliffe P et al. Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression[J]. Plant Molecular Biology, 1999, 40(4): 699-709
    110. Viquez OM, Konsn KN, Dodo HW. Structure and organization of the genomic clone of a major peanut allergen gene, Ara h 1[J]. Molecular Immunology, 2003, 40(9): 565-571
    111. Bensimon A, Simon A, Chiffaudel A et al. Alignment and sensitive detection of DNA by a moving interface[J]. Science, 1994, 265(5181): 2096-8
    112. Parra I, Windle B. High resolution visual mapping of stretched DNA by fluorescent hybridization[J]. Nat Genet., 1993, 5(1): 17-21
    113. Ahlroth MK, Ahlroth P, Kulomaa MS. Copy-number fluctuation by unequal crossing-over in the chicken avidin gene family[J]. Biochem Biophys Res Commun., 2001, 288(2): 400-6
    114. Ramos ML, Fleming G, Chu Y et al. Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence[J]. Mol Genet Genomics., 2006, 14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700