污泥中胞内和胞外聚合物的形成及对污泥性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥法是倍受环境工程师欢迎的一种水处理方法,活性污泥法处理废水要得到最终理想的效果,污泥沉降泥水分离是关键的一步。要得到良好的沉降性能,首先要形成良好的活性污泥絮凝体。因此关于絮凝体形成的机理研究不断,迄今为止关于絮凝体形成机理研究结果有很多,但是活性污泥复杂的成分和结构,使得各种结论都无法概括所有情况,需要进一步的研究加以完善。
     胞内聚合物是细菌体内碳源和能源贮藏的一种方式,包括糖原、PHB、聚磷酸盐、硫粒等。胞外聚合物是包围在细胞膜外的物质,一般为聚糖、蛋白质、核酸、类脂、腐殖质、纤维等。通常认为胞外聚合物是具有粘性的物质,对污泥的絮凝和沉降有很重要的作用。虽然胞内聚合物和胞外聚合物在生物合成中没有直接联系,但是从培养基质种类、合成和降解阶段等方面可以发现两者存在联系。尤其在活性污泥的絮凝和沉降方面,胞内聚合物通过合成降解影响胞外聚合物的合成降解,形成竞争状态,从而影响活性污泥的絮凝状况和沉降性能。
     课题主要研究胞内聚合物(糖原和PHB)和胞外聚合物(糖原和蛋白质)在活性污泥曝气过程中的合成降解,及其对活性污泥性能的影响。试验采用5个序批式反应器培养活性污泥,以葡萄糖,乙酸钠,葡萄糖和乙酸钠混合物为培养基,考察了胞内聚合物和胞外聚合物在不同絮凝和沉降性能的活性污泥中的合成降解。试验利用葡萄糖、乙酸钠作为碳源培养活性污泥形成糖原和PHB,发现在以葡萄糖为底物的条件下,在曝气开始的3h内约有15.2%被降解的COD转化为糖原;而在以乙酸钠为底物的情况下,在曝气初始的3h内约有14.4%被降解的COD被转化为PHB。曝气过程中胞内聚合物积累后及时降解有利于活性污泥的絮凝和沉降。试验还发现,胞外聚合物的过多积累会影响活性污泥的絮凝,沉降性能变差。胞内聚合物和胞外聚合物存在竞争生长。在曝气过程中胞内聚合物与胞外聚合物和合成降解同时进行,胞内聚合物与胞外聚合物形成量的差距,都将有利于活性污泥表现出良好的絮凝和沉降性能。
To environment engineers, activated sludge process is the most popular process in water treatment. In this process, sludge settling and mud-water separating is a committed step if we want to get a perfect result. To gain a good settleability, good activated sludge floc must be formed first of all. So far, there have been a lot of studies and results on the mechanism of the formation of floc, but none of these can summarize all case because of the complex component and structure of the activated sludge, it needs a further study to perfect them.
     Intracellular polymers (ICPs) are storages of carbon source and energy in bacteria, including glycogen, PHB, polyphosphate, sulfur globules, etc. Extracellular polymers (ECPs) are materials enclosed the cell membrane, including polysaccharides, protein, nucleic acids, lipoid, humus, fibre, etc. It’s considered that these polymers don’t have direct relation in biosynthesis, but from the type of medium, synthesis and degradation, they have relation. Especially in the aspect of the activated sludge’s flocculability and settleability, ICPs’synthesis and degradation impacted ECPs’synthesis and degradation, forming a competition, accordingly impacted the flocculability and settleability of the activated sludge.
     This study on the biosynthesis and degradation of ICPs (glycogen and PHB) and ECPs (glycogen and protein) during the aeration was carried out to get a better insight in their influence on the activated sludge’s performance. With glucose, acetate, glucose and acetate together as substrates respectively, five sequencing-batch-reactors (SBR) of different activated sludge’s performance were utilized to investigate the biosynthesis and degradation of ICPs and ECPs. The two ICPs were observed with glucose and acetate as substrates respectively, indicating that about 15.2% of COD translated into glycogen with glucose as substrate, and 14.4% of COD translated into PHB with acetate as substrate. It was important for a good settlement performance that accumulated ICPs were degraded in time. Besides ICPs, overabundance of ECPs would cause deterioration of the settlement performance of the activated sludge. These was a competition growth between ICPs and ECPs as well as their great quantity gap
引文
1 李天琪,俞国平,卢义程.影响活性污泥沉降性能的因素及控制策略.西南给排水.2000,6:21-23
    2 王郁.水污染控制工程.华东理工大学环境工程系,1998
    3 徐斌,王竟,周集体.微生物利用废弃物产生絮凝剂的研究与应用.工业水处理.2000,20(5):18-24
    4 张彤,朱怀兰,林哲.微生物絮凝剂的研究与应用进展.应用与环境生物学报.1996,2(1):95-105
    5 翁稣颖,戚蓓静,史家梁,等.环境微生物学.科学出版社,1985
    6 Hiroaki Takayi. Purification and Chemical Properties of a Flocculant Produced by Paecilomyces sp. Agri Bio Chem.1985,49(11):3159-3164
    7 R. E. McKinney. Microbiology for Sanitary Engineer. McGraw-Hill Book Company Inc,1962
    8 Yoshitaka Tago, K. O. Aida. Exocellular Muco Polysaccharide Closely Related to Bacterial Floc Formation. Appl Enviro Microbiol.1997,34(3):308-314
    9 联邦(德国)H.G..施莱杰著,陆卫平等译.普通生物学.复旦大学出版社,1989
    10 苏淘,周河治,梁静娟.微生物合成降解塑料聚羟基烷酸酯(PHA).工业微生物. 1997,(3):37-44
    11 王祖农主编,魏凤鸣,谢其明,曲音波等编著.微生物学词典.科学出版社,1990
    12 陈琦,黄和容,易祖华.微生物合成生物可降解塑料研究现状与展望.微生物学通报. 1994,(5):297-303
    13 杨青,贺青.微生物发酵聚羟基链烷酸酯(PHA)研究进展,工业微生物, 1997,(4): 44-47
    14 S. K. Banerji, B. B. Ewing, R. S. Engelbrecht and R. E. Speece. Kinetics of Removal in Activated Sludge System. J. Wat. Pollut. Control Fed. 1968,(40):161-173
    15 吴东儒.糖类的生物化学.高等教育出版社,1987
    16 王红武.废水生化处理中胞内聚合物的形成及其作为反硝化碳源的研究.华东理工大学硕士论文. 2000
    17 徐亚同.废水的生物除磷.环境科学研究. 1994, 7(5):1-6
    18 T. Suzuki, T. Yamane, S. Shimizu. Mass Production of Poly-β-hydroxybutyric Acid by Fully Automatic Fed-batch Culture of Methylotroph. Appl. Microbiol. Biotechnol. 1986,(23):322-329
    19 J. L. Barnard. Cut P and N Without Chemicals. Water and Waste Eng.. 1974,11(7): 33-36
    20 G. W. Fuhs and M. Chen. Phosphate Removal in the Activated Sludge Process. Microbial Ecology. 1975,2(2):119-138
    21 M. C. Wentzel, L. Lotter, R. E. Loewenthal, G. V. R. Marais. Metabolic Behavior of Acinetobacter spp. in Enhanced Biological Phosphorus Removal-a Biochemical Model. Water S. A.. 1986,12:209-224
    22 D. S. Shalsky and G. T. Daigger. Wastewater Solids Fermentation for Volatile Acid Production and Enhanced Biological Phosphorus Removal. Water Environment Research. 1995,(6792):230-237
    23 L. Szpyrkowicz and F. Zilio-grandi. Seasonal Phosphorus Removal in a Phostrip process-Ⅱ Phosphorus Fractionation and Sludge Microbiology During Start-up. Wat. Res.. 1995,29(10):2327-2338
    24 T. Fukase, M. Shibata and Y. Miyaji. Studies on the Mechanism of Biological Phosphorus Removal. Jap. J. Wat. Pollut. Res.. 1982,5:309-317
    25 K. Nakamura, K. Masuda and E. Mikami. Isolation of a New Type of Polyphosphate Accumulating Bacterium and Its Phosphate Removal Characteristics. J. Ferment. Bioeng.. 1991,71:258-263
    26 H. Satoh, T. Mino, T. Matsuo. Uptake of Organic Substrates and Accumulation of Polyhydroxyalkanoates Linked with Glycolysis of Intracellular Carbonhydrates under Anaerobic Conditions in the Biological Excess Phosphorus Removal Process. Wat. Sci. Tech. 1992,26:933-942
    27 T. Mino, W. T. Liu, F. Kurrsu and T. Matsuo. Modelling Glycogen Storage and Deniteification Capability of Microorganisms in Enhanced Biological Phosphate Removal Process. Wat. Sci. Tech.. 1995,31(2):25-34
    28 T. Kohno, K. Yoshina and S. Satoh. The Roles of Intracellular Organic Storage Materials in the Selection of Microorganisms in Activated Sludge. Wat. Sci. Tech.. 1991,23(4-6):889-898
    29 W. T. Liu, T. Mino, K. Nakamura and T. Matsuo. Glycogen Accumulating Population and Its Anaerobic Substrate Uptake in Anaerobic-aerobic Activated Sludge without Biological Phosphorus Removal. Wat. Res..1996, 30(1):75-82
    30 A. H. Ulrich, M. W. Smith. The Biosorption Process of Sewage and Waste Treatment. Sewage and Industrial Wastes. 1951,23:1248-1255
    31 B. Bohnke. Das Adsorption-Belebungsverfahren. Korrespondenz Abwasser. 1977,24:122-127
    32 M. I. Crombie-Quilty and A. J. Mcloughlin. The Adsorption of Bovine Serum Albumin by Activated Sludge. Wat. Res. 1983,17(1):39-45
    33 A. Van Niekerk, D. Jenkins and M. G. Richard. Application of Batch Kinetic Data to the Sizing of Continuous-flow Activated Sludge Reactors. Wat. Sci. Tech.. 1987,19:505-516
    34 B. W. Bunch and D. M. Grill-in Jr. Rapid Removal of Colloidal Phosphorus Removal with Different Organic Substrates in an Anaerobic/aerobic Sequencing Batch Reactor. 1992,35(1):161-168
    35 H. H. P. Fang, C. L. Y. Yeoug, K. M. Book and C. M. Chiu. Removal of COD and Nitrogen in Wastewater Using Sequencing Batch Reactor with Fibrous Packing. Wat. Sci. Tech..1993,28(7):125-131
    36 L. Novak, L. Larrea, I. Wanner, P. Grau and A. De Ila Sota. Population Dynamics of R-D-N and D-R-D-N Nutrient Removal Processes. The Two day Workshop on Design and Operational Expericncc of Treatment Plants for Nutrient Removal from wastewater. Perugia, 1993:28-29
    37 R.H. Siddiqi, R. S. Engelbrccht and R. E. Speece. The Role of Enzymes in the Contact Stabilization Process. Advances in Water Pollution Research. Proceedings of the 3rd International Conference. 1996,2:353-380
    38 A. M. Van Niekerk, D. Jenkins and M. G. Richard. The Competitive Growth of Zoogloea Ranigera and Type 021N in Activated Sludge Reactors. Wat. Sci. Tech.. 1987,19:505-516
    39 Libor Noval, Luis Larrea and Jiri Wanner. Mathematical Model for Soluble Carbonaceous Substrate Biosorption. Wat. Sci. Tech. 1995,31(2):67-77
    40 顾国维编著.水污染治理技术研究.同济大学出版社, 1997: 96-275
    41 严煦世主编.水和废水技术研究.中国建筑工业出版社,1991:457-590
    42 M. C. Wenzel, G. A. Ekama, R. E. Loewenthal, P. L. Dold and G. V. R. Marais. Enhanced Polyphosphate Organism Cultures in Activated Sludge Systems. Part
    Ⅱ: Experimental Behaviour. Wat. S. A.. 1989,15(2):71-88
    43 J. P. Kerrn-Jesperdrn and M. Henze. Biological Phosphorus Uptake under Anoxic and Aerobic Conditions. Wat. Res.. 1993,27(4):617-624
    44 G. Bortone, F. Malaspina, L. Stante and A. Tilche. Biological Nitrogen and Phosphorus Removal in an Anaerobic/anoxic Sequencing Batch Reactor with Separated Biofilm Nitrification. Wat. Sci. Tech.. 1994,30(6):303-313
    45 J. P. Kerrn-Jesperdrn, M. Henze and R. Strube. Biological Phosphorus Release and Uptake under Alternating Anaerobic and Anoxic Conditions in a Fixed-film Reactor. Wat. Res.. 1994,28(5):1253-1255
    46 T. Kuba, A. Wanchtmeister, M. C. M. Van Loosdrecht and J. J. Heijnen. Effect of Nitrate on Phosphorus Release in Biological Phosphorus Removal Systems. Wat. Sci. Tech.. 1994,30(6):263-269
    47 T. Kuba, M. C. M. Van Loosdrecht and J. J. Heijnen. Phosphorus and Nitrogen Removal with Minimal COD Requirement by Integration of Denitrifying Dephosphatation and Nitrification in a Two-sludge System. Wat. Res.. 1996,30(7):1702-1710
    48 Nakata, Kuniho, Kurane, Ryuichiro. Production of an Extracellular Polysaccharide Bioflocculant by Klebsiella pneumoniae. Biosci Biotechnol Biochem.1999,63(12):2064-2068
    49 Fujita, Masanor. Production of a Novel Bioflocculant from Organic Wastes Using Bioconversion Processes. Yosuito Haisui.2000,42(4):327-332
    50 李季伦等. 微生物生理学. 北京农业大学出版社, 1993, 12
    51 De Beer. Appl Microbiol Biotechnol. 1996, 46:1364-1366
    52 Nielsen. Appl Microbiol Biotechnol. 1996, 44: 823-830
    53 Bo Frolund. Extraction of Extracellular Polymeric Substances from Activated Sludge Using a Cation Exchange Resin. Water Res.. 1996,30(8):1749-1758
    54 V. Urbain, J. C. Block and J. Manem. Bioflocculation in Activated Sludge: an Analytic Approach. Water Res.. 1993,27(5):829-838
    55 M. F. Dignac and V. Urbain. Chemical Description of Extrallular Polymers: Implication on Activated Sludge Floc Structure. Water Sci. Technol.. 1998, 38(8-9):45-53
    56 J. K. Vallom and A. J. McCloughlin. Lysis as a Factor on Sludge Flocculation. Water Res.. 1984,18(11):1523-1528
    57 S. Nishikawa and M. Kuriyama. Nucleric Acid as a Component of Mucilage in Activated Sludge. Water Res.. 1968,2(11):811-812
    58 J. A. S. Goodwin. A Further Examination into the Composition of Activated Sludge Surfaces in Relation to Their Settlement Characteristic. Water Res.. 1985, 19(4):527-533
    59 R. Gehr and J. G. Henry. Removal of Extracellular Material Techniques and Pitfalls. Water Res.. 1983,17(12):1743-1748
    60 V. Lazarova and J. Manem. Biofilm Characterization and Activity Analysis in Water and Wastewater Treatment. Wat Res. 1995,29: 2227-2245
    61 Andreas Jahn and Per Her Halkjer Nielsen. Cell Biomass and Exopolymer Composition in Sewer Biofilms. Wat. Sci. Tech. 1998,37(1):17-24
    62 A. Jahn, T. Griebe, P. H Nielsen. Composition of Pseudomonas Putida Biofilms: Accumulation of Protein in the Biofilm Matrix. Biofouling. 1999,14(1): 49-57
    63 J. Melanie Brown and J. N. Lester. Metal Removal in Activated Sludge: the Role of Bacterial Extracellular Polymers. Water Res. 1979,13:817-837
    64 Y. Tezuka. A Zoogloea Bacterial with Gelatinous Mucopolysaccharid Matrix. J. Wat. Pollut. Control Fed. 1973,45(3): 531-536
    65 J. E. Zajic. Developments in Industrial Microbiology. American Institute of Biological Science. 1971
    66 Y. Bar-Or. Characterization of Macromelecular Flocculants Produced by Phormedium spp. strain J-1 and by Anabenopsis Circularis PCC 6720. Appl Envir Microbiol. 1987,53(9):2226-2230
    67 J. W. Morgan. A Comparative Study of the Nature on Biopolymers Extracted from Anaerobic and Activated Sludge. Water Res.. 1990,24(6):743-753
    68 Delia Teresa Sponza. Extracellular Polymer Substances and Physicochemical Properties of Flocs in Steady and Unsteady State Activated Sludge Systems. Process Biochemistry. 2002,37:983-998
    69 R. Bura, M. Cheung and B. Liao. Composition of Extracellular Polymeric Substances in the Activated Sludge Floc Matrix. Water Sci. Technol.. 1998, 37(4-5):325-333
    70 J. T. Novak and Bjorn-Erik Haugan. Polymer Extraction from Activated Sludge. WPCF. 1981,53(9):1420-1424
    71 A. W. Decho. Microbial Exopolymer Secretions in Ocean Environment: Their Role(s) in Food Webs and Marine Process. Oceanogr. Mar. Biol. Ann. Rev.. 1990,28:73-153
    72 A. W. Decho. Microbial Biofilms in Intertidal Systems: an Overview. Cont. - 65 -Shelf Res.. 2000,20:1257-1273
    73 D. Daffochio, J. Thaveesri and W. Verstraete. Contact Angle Measurement and cell HydropHobicity of Granular Sludge from Upflow Anaerobic Sludge Bed Reactors. Appl. Environ. Microbiol.. 1995,61(10):3676-3680
    74 F. Orand, F. Bouge-Bigne, J. C. Block and V. Urbain. Hydrophobic/hydrophilic Properties of Activated Sludge Exopolymeric Substances. Water Sci. Technol.. 1998,37(4-5):307-316
    75 刘壮,杨造燕,田淑媛.活性污泥胞外多聚物的研究进展.城市环境与城市生态. 1999,12(5):54-57
    76 姚毅 . 活性污泥的表面特性与其沉降性能的关系 . 中国给水排水 . 1996,12(1):22-26
    77 C. F. Forster and D. C. Lewin. Polymers Interactions at Activated Sludge Surfaces. Effluent Water Treat.. 1972,12:520
    78 D. Li and J. J. Ganczarczyk. Structure of Activated Sludge. Biotech. Bioeng.. 1990,35(1):57
    79 T. E. Cloete and P. L. Steyn. A Combined Membrane Filter Immunofluorescent Technique for the Insitu Identification and Enumeration of Acinetobacter in Activated Sludge. Water Res.. 1988,22(6):961-969
    80 C. F. Forster and J. Dallas-newton. Activated Sludge Settlement-some Supposition and Suggestion. Wat. Pollut. Control. 1980,79(3):338-351
    81 Y. Magara. Biochemical and Physical Properties of an Activated Sludge on Settling Characteristics. Water Res.. 1976,10(1):71-77
    82 A. C. Chao and T. M. Keinath. Influnce of Process Loading Intensity on Sludge Charification and Thickening Characteristics. Water Res.. 1979,13(10):1213-1223
    83 S. N. Liss, I. G. Droppo, D. T. Flannigan and G. G. Leppard. Floc Architecture in Wastewater and Natural Riverine System. Environ. Sci. Technol.. 1996,30(2):680-686
    84 T. Rudd. Complexation of Heavy Metal by Extracellular Polymers in Activated Sludge Process. WPCF. 1984,56(12):1260-1267
    85 国家环保局.《水和废水监测分析方法》编委会.水和废水监测分析方法.中国环境科学出版社,1997
    86 北京大学生物系生物分子学教研室编.生物化学实验指导.人民教育出版社,1979
    87 Y. Comeau, K. J. Hall, W. K. Oldham. Determination of Poly-hydroxybutyrate and Poly-hydroxyvaleration in Activated Sludge by Gas-liquid Chromatography. Appl Environ Microbics.1988,54(9):2325-2327
    88 Tetsuji Okuda, A. U. Baes, Wataru Nishijima, et al. Isolation and Characterization of Coagulant Extracted from Moringa Oleifera Seed by Salt Solution. Wat Res.2001,35(2):405-410
    89 Bo Frolund, Rikke Palmgren, Kristian Keiding, Per Halkjaer Nielsen. Extraction of Extracellular Polymers from Activated Sludge Using a CationExchange Resin. Wat Res.1996,30(8):1749-1758
    90 J. Chudoba, J. Blaha, V. Madera. Control of Activated Sludge Filamentous Bulking-Ⅲ:Effect of Sludge Loading. Wat Res.1974,8(6):231-237

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700